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We consider the angular momentum of a harmonically trapped, noninteracting Fermi gas subject to either
rotation or to an artificial gauge field. The angular momentum of the gas is shown to display oscillations as
a function of the particle number or chemical potential. This phenomenon is analogous to the de Haas–van
Alphen oscillations of the magnetization in the solid-state context. However, key differences exist between the
solid-state and ultracold atomic gases that we point out and analyze. We explore the dependence of the visibility
of these oscillations on the physical parameters and propose two experimental protocols for their observation.
Due to the very strong dependence of the amplitude of the oscillations on temperature, we propose their use as a
sensitive thermometer for Fermi gases in the low-temperature regime.
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I. INTRODUCTION

When subject to an applied magnetic field, the electron
gas of a metal displays an oscillatory dependence on physical
observables as a function of field strength. Generally known
as “quantum oscillations,” these effects can be observed for
example for the magnetization (de Haas–van Alphen oscil-
lations), the resistivity (Shubnikov–de Haas oscillations), the
Hall resistance, or the specific heat. Quantum oscillations are a
macroscopic manifestation of the Landau level quantization of
the spectrum of electrons in the presence of a magnetic field.
They were predicted by Landau [1] and observed by de Haas
and van Alphen [2] in 1930. Since then, quantum oscillations
have become an invaluable tool in characterizing the electronic
states of metals and semimetals with large mean-free path.
The measurement of the oscillations allows in particular for
a quantitative determination of Fermi surfaces and of the
effective masses of quasiparticles. A recent illustration is the
remarkable observation of quantum oscillations in underdoped
cuprates in large magnetic fields [3]. This measurement has
triggered many discussions about the reconstruction of the
Fermi surface in these systems and the possible relevance
of Fermi liquid descriptions. In this article, we explore the
possibility of observing similar quantum oscillation effects for
ultracold gases of fermionic atoms, either by putting the gas
in rotation or by using artificial gauge fields. We focus mostly
on the total angular momentum of the gas as a key observable,
and identify the regimes in which oscillations of this quantity
as a function of, e.g., atom number are pronounced enough to
be observable experimentally. We emphasize the similarities,
but also the key differences, with the solid-state context.

Rotation has proven to be an efficient way to mimic the
effect of a magnetic field for ultracold gases of neutral atoms.
Over the last years, strong experimental and theoretical effort
[4–6] has been devoted to the understanding of rotating cold
atomic gases. Experimental achievements include notably the
observation of vortex nucleation in Bose-Einstein condensates
[7] and Fermi gases [8], which has been used as a proof of their

superfluidity. On the theory side, rotating gases are expected to
be highly controllable test tables for strongly correlated phases
of matter under the influence of a magnetic field [4–6], such as
the fractional quantum Hall regime. Recently, the experimental
realization of artificial gauge fields with Raman beams [9,
10] opened another promising way towards the generation of
artificial magnetic fields for cold atoms.

In this paper, we analyze the influence of rotation or of an
artificial magnetic field on a noninteracting Fermi gas, in a
cylindrically symmetric harmonic trap. We focus mostly on
the angular momentum of the gas with respect to the rotation
axis. The angular momentum of a quantum gas differs from
its classical counterpart. While the former is defined from the
change in energy when varying rotation frequency, the latter
is given by the moment of inertia of the gas considered as
a rigid body and hence is related to its mean-square radius
in the plane perpendicular to the rotation axis. We compare
the quantum angular momentum to its classical counterpart by
introducing their ratio. This quantity has already been studied
in the context of rotating Bose-Einstein condensates. When
Bose-Einstein condensation occurs, this ratio deviates from
unity [11]. It has also been shown to be proportional to the
difference of frequencies of the m = 2 quadrupolar oscillation
modes [7,12,13]. In the case of superfluid helium, this ratio can
give access to the ratio of the normal and superfluid fractions
[14,15].

In the fermionic gas considered in this article, the ratio of
the quantum angular momentum to its classical counterpart
tends to unity for very large atom number. We show here
that for intermediate values of the atom number and at low
enough temperature, this ratio displays pronounced quantum
oscillations as a function of atom number or chemical potential
(Sec. II, Sec. III). Considering both the slow and fast rotation
regime, we provide (Sec. IV) a simple qualitative picture of
these oscillations and emphasize the similarities but also key
differences with the de Haas–van Alphen oscillations in the
solid- state context [16]. We perform a detailed analytical
and numerical analysis of the dependence of the amplitude
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and period of these oscillations on temperature, rotation
frequency, atom number or chemical potential, and aspect
ratio of the trap (Sec. V). We emphasize in particular that
this oscillatory behavior, due to its sensitivity to temperature,
may be used as an accurate thermometer in the low (T/TF <

0.1) temperature regime. Finally, we propose (Sec. VI) two
different experimental protocols that aim at measuring the
angular momentum of the gas and thus revealing its oscillating
behavior with respect to particle number.

II. MODEL AND OBSERVABLES

A. General framework

We consider a noninteracting Fermi gas in a cylindrically
symmetric harmonic trap (with the radial and axial trapping
frequencies being ω0 and ωz, respectively), rotating at an
angular frequency ω around the symmetry axis Oz. The
Hamiltonian in the rotating frame has the following form
[4–6]:

H = �p2

2M
+ 1

2
Mω2

0(x2 + y2) + 1

2
Mω2

zz
2 − Lzω , (1)

where �p is the momentum, M is the atomic mass, and Lz is
the angular momentum with respect to the rotation axis. The
Hamiltonian (1) is an analog of the Hamiltonian describing an
electron moving in a magnetic field in the solid-state context.
The angular momentum is the analog of the magnetization,
and the angular frequency plays the role of the magnetic field.
However, note that typically no external trapping potential is
present in the solid-state context. We will see that this can lead
to quite different behavior.

The Hamiltonian (1) gives rise to the following spectrum
[4,17]:

εν = h̄ω+(n+ + 1/2) + h̄ω−(n− + 1/2) + h̄ωz(nz + 1/2),

(2)

where ω± = ω0 ± ω and ν = (n+,n−,nz) with the nonnega-
tive integers n+,n−,nz. Interestingly, (2) is identical to the
spectrum of a noninteracting Fermi gas in a fully anisotropic
harmonic trap, with trapping frequencies ω± and ωz.

The gas will be described at fixed inverse temperature
β = 1

kBT
, chemical potential μ, and angular frequency ω in

the grand-canonical ensemble through the thermodynamic
potential �:

� ≡ �(β,μ,α,αz) = −kBT
∑
{ν}

ln [1 + eβ(μ−εν )]. (3)

We defined the following dimensionless quantities,

α = ω

ω0
and the aspect ratio of the trap αz = ωz

ω0
, (4)

which together with T
TF

will be the relevant parameters of the
problem.

B. Angular momentum

The angular momentum 〈Lz〉 of the gas is given by the
derivative of the thermodynamic potential (3) with respect to

the angular frequency ω:

〈Lz〉 ≡ −∂�

∂ω
. (5)

Here, it reduces to

〈Lz〉 = h̄
∑
{ν}

f (εν − μ)(n− − n+)

= h̄(〈n−〉 − 〈n+〉). (6)

In the first equality, f (ε) = 1
1+eβε denotes the Fermi function

at temperature T .
The angular momentum of a classical gas is proportional,

in a rigid-body-like motion, to the classical moment of inertia,
which is proportional to its square extension around the
rotation axis z (see Appendix C):

〈Lz〉(cl) = Mω〈x2 + y2〉. (7)

It should be mentioned that this expression remains true even
for interacting particles, as shown in Appendix C.

In order to derive a quantum analog of the classical
expression, we use that the square extension is given by the
derivative of � [see Eq. (3)] with respect to the squared radial
trapping frequency ω2

0:

〈x2 + y2〉 = −2
∂�

∂(Mω2
0)

= h̄

Mω0

∑
{ν}

f (εν − μ)(n+ + n− + 1). (8)

This leads to the following expression for the quantum analog
of the classical angular momentum:

〈Lz〉(cl) = h̄α
∑
{ν}

f (εν − μ)(n+ + n− + 1) (9)

= h̄α(〈n+〉 + 〈n−〉 + N ), (10)

where N = ∑
{ν} f (εν − μ) is the total number of particles of

the gas.
In order to quantify the deviation of (6) from its classical

counterpart (10), let us define the ratio

R ≡ 〈Lz〉
〈Lz〉(cl)

= 〈n−〉 − 〈n+〉
α(〈n−〉 + 〈n+〉 + N )

, (11)

which depends on temperature, chemical potential (or equiva-
lently on particle number), rotation, and axial confinement. In
the limit of high temperature and large sample size, the gas be-
haves classically and the angular momentum is well described
by its classical expression (10), and consequently R = 1.
Deviations from this classical analog will be interpreted as
manifestations of the quantum behavior of the gas. The
analysis of these deviations is the main subject of this work.

III. OSCILLATIONS IN THE ANGULAR MOMENTUM

Figure 1 depicts the evolution of R with the atom number for
a rotating fermion gas. In this plot, one sees that the difference
between the angular momentum of the gas (5) and its classical
analog (7) versus the particle number N is twofold:

(1) a monotonic deviation Rmon, given in Eq. (17) [18];
(2) an oscillating contribution Rosc with N which is very

pronounced at low particle number.
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FIG. 1. (Color online) The ratio R, for αz = 0.05, α = 0.01, and
T/TF = 0.03 (in blue). The black dashed line is the monotonic
contribution, and the red dotted line is the oscillating part. At high
particle number, the oscillating contribution is negligible, and R

coincides with its monotonic part (17), as they both go to unity.

In order to understand these two different contributions,
we step back and investigate the thermodynamic potential
� (3) from which the physical quantities will be extracted.
Appendix A shows how the expression (3), via Poisson
summation, splits into two parts � = �(no) + �(osc). The first
one denotes the nonoscillating contribution with the chemical
potential and is given by

�(no) = − (kBT )4

h̄ω+h̄ω−h̄ωz

Li4[−eβ(μ−ε0)]. (12)

The second part is responsible for the oscillations with the
chemical potential and is determined by

�(osc) = −2kBT Re

{ ∑
�k �=�0

�̃�k

}
, with (13)

�̃�k =
∫

[0,+∞[3
d �ue2iπ �k·�u ln [1 + eβ(μ−ε�u)]. (14)

In the previous equations, Lin is the nth polylogarithm
function [19], �k = (k+,k−,kz) is the vector conjugated to �u =
(u+,u−,uz) with k+, k−, and kz positive integers, ε0 = h̄ω0 +
1
2h̄ωz is the ground-state energy, and ε�u = ε0 + h̄ω+u+ +
h̄ω−u− + h̄ωzuz.

The splitting of the thermodynamic potential into an
oscillating and a monotonic contribution with μ carries over
to many observables. Typically, these oscillations stem from
“shell filling” effects as we will show in the next section.
They have been predicted for different observables as, e.g., the
radius of the cloud [20–24]. However, the relative strengths
of both contributions can vary very much with the observable
considered. We will show that the oscillating contribution is
much more pronounced in the angular momentum 〈Lz〉 of

the gas with respect to the rotation axis then in previously
considered observables [20–24].

From the splitting of the thermodynamic potential into the
two contributions, the analog separation of both 〈Lz〉 and its
classical analog follows:

R = 〈Lz〉(no) + 〈Lz〉(osc)

〈Lz〉(cl,no) + 〈Lz〉(cl,osc)
= Rmon + Rosc. (15)

The monotonic contribution is given by

Rmon = 〈Lz〉(no)

〈Lz〉(cl,no)
(16)

= 2Li4[−eβ(μ−ε0)]

2Li4[−eβ(μ−ε0)] + (βh̄ω0)4(1 − α2)2αzN
. (17)

The expression (17) goes to unity for large samples as depicted
in Fig. 1 which means that the classical value of the angular
momentum is reached. The variations of the ratio R with
respect to N , α, and αz stem both from a direct dependence
on these parameters as evident in (17), but also from the
indirect dependence via the chemical potential. For example,
at zero temperature the chemical potential can be expressed by
μ(T = 0 K) = h̄ω0[6(1 − α2)αzN ]1/3. Using this expression
and developing the Lin functions in (17), one sees that the
strongest dependence is seen at low temperatures, where the
expression simplifies to

Rmon = 1

1 + 2(1 − α2)2/3(6αzN )−1/3
. (18)

The oscillating part of R (the red dotted line in Fig. 1) is
recovered by expanding the denominator in (16) in power
series. It is of the general form

Rosc = 2Re

⎧⎨⎩∑
�k �=�0

R̃(�k)

× exp

[
2iπμ

(
k+

h̄ω+
+ k−

h̄ω−
+ kz

h̄ωz

)]⎫⎬⎭ , (19)

where R̃(�k) contains contributions from 〈Lz〉(no), 〈Lz〉(osc),
〈Lz〉(cl,no), 〈Lz〉(cl,osc).

The expression (19) states clearly that this contribution has
a periodic dependence on the chemical potential, and therefore
on the particle number, and that the characteristic frequencies,
which are the oscillation periods, are ω± and ωz. The next
section will shed some light on this oscillating behavior, on
the basis of qualitative arguments.

IV. QUALITATIVE INTERPRETATION

This section provides an intuitive interpretation of the
oscillatory behavior of the angular momentum at low tem-
perature. We shall first review a simple physical picture of
quantum oscillations in a two-dimensional electron gas, and
then point out the differences and similarities in the case of
rotating cold atomic gases. We derive in particular simple
analytical expressions for the angular momentum in the case
of a two-dimensional system (ωz → ∞) in the regime of fast
rotation ω � ω0.
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A. Quantum oscillations in a two-dimensional electron gas:
A simple picture

Let us first consider the case of electrons in a strictly two-
dimensional electron gas (2DEG). Quantum oscillations have
been reported in such systems; see, e.g., Ref. [25]. In this
case, such effects can be understood from a simple calculation
which we now recall [16].

In the presence of a magnetic field B, the energy levels
of the 2DEG are Landau levels with single-particle energies
εn = (n + 1/2)h̄ωc, with n � 0 an integer and ωc = eB

m
the

cyclotron frequency (m is the mass of the electron and −e its
charge). Each Landau level is macroscopically degenerate,
with the degeneracy given by 



0
, where 
 = BS is the

magnetic flux over the whole sample, with B the amplitude of
the magnetic field and S the surface of the sample, and 
0 = h

e

is the flux quantum.
Let us consider the system at zero temperature with N

electrons, in the case where the first p Landau levels are
completely filled (each one with 
/
0 electrons) and the
(p + 1)th one is partially filled with N − p
/
0 electrons.
The energy of the system E = ∑p−1

n=0 (n + 1/2)h̄ωc
/
0 +
(N − p
/
0)h̄ωc(p + 1/2) reads

E = h̄ωc

2





0
p2 +

(
N − p





0

)
(p + 1/2)h̄ωc. (20)

Taking a derivative, one obtains the magnetization of the
electron gas for p 



0
< N � (p + 1) 



0
:

M = −∂E

∂B
= μB(2p + 1)

[
p





0
− N

]
+ μB p





0
(21)

with μB = h̄e
2m

the Bohr magneton. This expression shows that
the magnetization jumps discontinuously by a macroscopic
amount 2NμB each time a new Landau level starts to be filled:
When exactly p Landau levels are filled the magnetization
per electron is M/NμB = −1 (Landau diamagnetism), and
it jumps to M/NμB = +1 as the (p + 1)th level starts to
be filled, reaching smoothly M/NμB = −1 again when this
new level is completely filled. This behavior is depicted in
Fig. 2, which displays M/NμB as a function of N
0/
.
These abrupt jumps are due to the macroscopic degeneracy of
the Landau levels. The magnetization per electron at T = 0
is an approximately periodic function of N
0/
, that is, of
particle number and inverse magnetic field.

While this picture applies to 2DEGs, the electron dispersion
along the z axis is of course not negligible in most solid-state
materials and must be taken into account (leading, e.g., to
the semiclassical picture of quantum oscillations in terms of
extremal closed orbits on the Fermi surface). However, the
simple picture above captures the essence of the de Haas–van
Alphen effect.

B. Physical picture for a trapped rotating Fermi gas

1. Geometrical representation

We now investigate the case of a rotating trapped atomic
gas of fermions at T = 0, focusing again for simplicity on
a purely two-dimensional gas (strong transverse confinement
ωz → ∞). The main difference with the case of a 2DEG is that
the single-particle spectrum is now that of a two-dimensional
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FIG. 2. (Color online) Dashed curve (red line, left scale): mag-
netization per particle M/NμB of a two-dimensional electron gas at
zero temperature, as a function of N
0/
, with N the number of
electrons and 
/
0 the magnetic flux in units of the flux quantum

0 = h/e. A discontinuous jump is observed each time a Landau level
is completely filled. Plain curve (blue line, right scale): dependence of
the angular momentum Lz/N

2h̄ on Nω−/ω+ for a zero-temperature
rotating trapped fermionic gas, in the limit of fast rotation. The
angular momentum displays cusps at the discrete values Nω−/ω+ =
p(p + 1)/2 = 1,3,6,10, . . ., corresponding to the complete filling of
an integer number of n+ levels. At these points, the derivative of the
angular momentum versus Nω−/ω+ displays discontinuous jumps.
This illustrates the similarities, but also the differences between
the solid-state and ultracold fermionic gas contexts, regarding the
phenomenon of de Haas–van Alphen quantum oscillations.

anisotropic harmonic oscillator, with two different frequencies
ω± = ω0 ± ω. Hence, energy levels are nondegenerate, in
contrast to the macroscopic degeneracy of the Landau levels
typically present in the solids.

Figure 3 helps to understand how this reflects on the angular
momentum. This picture displays the single-particle states on a
two-dimensional grid labeled by (n+,n−). Because the energy
levels (counted from the zero-point energy h̄ω0) read h̄ω+n+ +
h̄ω−n−, the value of the energy of a given state is obtained
geometrically by projecting the representative point (n+,n−)
onto an axis tilted by an angle tan θ = ω−/ω+. Since each
state can be filled by at most one fermion, the ground-state
configuration for a given chemical potential (Fermi level) μ

is obtained by occupying all states whose projection onto this
axis is lower than μ. The angular momentum of a single-
particle state, on the other hand, being given by �z/h̄ = n− −
n+ is obtained by projecting the point onto the antidiagonal
of slope −1 (Fig. 3). This means that particles exactly on the
diagonal will not contribute to the angular momentum, whereas
particles close to the vertical (n−) and horizontal (n+) axis will
contribute most, with a positive and negative sign, respectively.
The evolution of �z is shown in the inset of Fig. 3, ordering the
particles with respect to the order in which states are filled.

Increasing the chemical potential μ will lead to the filling
of new states. In the situation sketched in Fig. 3 the difference
between the two different chemical potentials corresponds to
exactly adding one particle, namely particle number 16. Since
this particle has negative angular momentum, it will lead to a
decrease of the total angular momentum 〈Lz〉 (see Fig. 3).

This simple picture shows very clearly the origin of the
oscillations in the angular momentum. Roughly speaking,
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FIG. 3. (Color online) Sketch explaining the origin of the quan-
tum oscillations for a two-dimensional gas at zero temperature. (The
case of low confinement is similar. In this case, each point of the graph
will account for the particles that populate the ωz levels allowed by
the energy constraint.) Each level is labeled by its integer coordinate
(n+,n−) and a projection onto the ϑ axis with slope ω+/ω− gives
the single-particle energy ε − ε0. The occupation of the levels is
fixed by the chemical potential (green line). Green circles represent
filled levels at zero temperature (satisfying the energy constraint), and
the green situation depicted corresponds to the ground state of the
system with N = 15 particles. The angular momentum corresponds
to the projection onto the axis labeled by �z/h̄ as indicated by
the dashed-dotted line. The two different colors for the axis and
the corresponding shaded area indicate different sign of �z. The
particles have been attributed a number (inside the green circle)
corresponding to their order of appearance as the chemical potential
is increased. Inset: The inset shows the evolution of the total angular
momentum of the gas (in blue) with the number of particles, and the
angular momentum of each particle (orange). The arrows point to
the total angular momentum for N = 16, and the contribution from
the supplementary particle added to the system by changing the
chemical potential from the green to the red line.

depending on whether during a shift of the chemical potential
more particles are added in the upper diagonal (resp. lower)
diagonal part, the angular momentum will increase (resp.
decrease). For particles on the diagonal the angular momentum
does not change.

2. Simple picture at fast rotation

For the case of fast rotation (ω ≈ ω0, so that ω+ 
 ω−)
this reasoning can be made more quantitative, and a simple
calculation in the spirit of the one on 2DEGs above can
be done. In this case, an analog of the Landau levels is
the successive n+ levels. Further, the factor ω+/ω− relates
the number of n− levels with respect to the number of n+
levels analogous to 
/
0, so that fast rotation corresponds
to large magnetic fields. However, a crucial difference is that
each n+ level is not macroscopically degenerate, since ω−
is small but nonzero. The number of available n− states is
nevertheless much larger than the number of available n+
states. Therefore, we can assume a continuum of levels, in
the n− direction, while treating the n+ levels as discrete.

Assume that at a certain chemical potential (particle number),
the largest allowed n+ quantum number is given by p. Then
the largest allowed n− which corresponds to a certain fixed
n+ is given by x−(n+) = ω+/ω−[p + δ+(N ) − n+], where
δ+(N ) = [N − ω+/ω−p(p + 1)/2]/[ω+/ω−(p + 1)] is the
distance of crossing of the chemical potential line and the
n+ axis from p, as depicted in Fig. 3.

In this picture the angular momentum can be calculated as

〈Lz〉
h̄

=
p∑

n+=0

∫ x−(n+)

0
(n− − n+) (22)

= 1

2(1 + p)

[
N − p(1 + p)

2

]2

+ p(p + 1)

24

[
(p + 2)

(
h̄ω+
h̄ω−

+ 1

)2

− 2(p + 1)

]
.

(23)

In the limit of very fast rotation ω+ 
 ω−, this can be cast in
the simpler form, valid for p(p + 1)/2 � Nω−/ω+ � (p +
1)(p + 2)/2:

〈Lz〉
N2h̄

= 1

2(p + 1)
+ p(p + 1)(p + 2)

24
[

Nh̄ω−
h̄ω+

]2 , (24)

which is to be compared to the form (21) for a 2DEG. In
contrast to this case, it is easily checked that this formula is
actually a continuous function of Nω−/ω+ (Fig. 2). At the
special filling factors Nω−/ω+ = p(p + 1)/2 corresponding
to starting to fill the pth level of the ω+ oscillator, Lz does
not display a discontinuous jump but rather a cusp, at which
only the derivative of Lz with respect to Nω−/ω+ has a
discontinuity. This is clearly visible in Fig. 2. This difference
in the behavior of 〈Lz〉 and the magnetization M of an
electron gas, which are analogous quantities, stems from the
macroscopic degeneracy of the Landau level in the case of
electrons. In the case of the rotating gas, the degeneracy is
lifted due to the presence of the ω− oscillator.

3. Oscillations at slow rotation

From this picture, and from the geometrical representation
above, we expect that stronger oscillations are expected to
occur in situations in which the number of occupied + and −
are comparable, i.e., for slow rotation. Furthermore, leaving
the assumption of a two-dimensional system, we see that many
particles can be added in the ωz levels between successive ω±
levels if ωz is small, thus leading to oscillations occurring for
larger systems.

This simple scheme also explains why the oscillations are
much less pronounced for the classical angular momentum
(rigid-body moment of inertia). The ω± levels contribute to this
quantity with the same sign [Eq. (10)]. Hence, only shell-filling
effects for very small systems are expected, as previously
discussed for the radius of a mesoscopic gas confined to
an anisotropic trap [20–24]. These oscillations, e.g., in the
extension of the cloud, are very hard to resolve experimentally
and are typically only visible for very small atom numbers.
Figure 4 compares, for weak confinement, the effects in Lz

and in its classical analog (extension of the gas). It is seen that
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FIG. 4. (Color online) Angular momentum and its classical
counterpart as a function of N , for αz = 0.05, T/TF = 0.01, and
α = 0.05. The shell filling effect in the angular momentum is
magnified due to the difference between n+ and n− in its expression,
and results in an oscillating behavior. The inset shows the same two
quantities, at low particle number. The shell filling effects are visible
in the classical angular momentum only at low particle number.

in contrast to the latter, Lz displays pronounced oscillations as
a function of the number of particles for rather large systems.
This is because the angular momentum 〈Lz〉 involves the
difference of n+ and n−. This also shows clearly that the main
oscillatory contribution in (11) stems from 〈Lz〉(osc).

In this section, we have gained a helpful intuitive picture
of the occurrence of oscillations in the angular momentum.
The following section explores in more details the influence
of the physical parameters of the system on the deviations
of the angular momentum from its classical counterpart, both
analytically and numerically.

V. INFLUENCE OF PHYSICAL PARAMETERS ON
QUANTUM OSCILLATIONS

In this section, we essentially focus on the oscillating
contribution to the ratio of the quantum and classical angular
momentum R. We discuss the impact of temperature, axial
confinement, and angular frequency on the amplitude and
period of the oscillations, through the dimensionless quantities
T
TF

, αz, and α, respectively. In an experiment, typically the
atom number can be measured more easily than the chemical
potential. Therefore, we monitor the evolution of physical
quantities as functions of the atom number rather than the
chemical potential. Since the amplitude of the oscillations will
vary considerably with the system parameters we will point
out the regimes in which the oscillations are best visible at
reasonably large particle numbers.

A. The oscillation amplitude

In this subsection, we focus on the influence of the system’s
parameters on the amplitude of the quantum oscillations.

1. Axial confinement and temperature

Figure 5 compares the angular momentum ratio R as a
function of particle number for different values of the aspect
ratio αz of the trapping, and for identical values of angular
frequency and temperature. For all parameters, the monotonic
contribution leads to a rise of the ratio R with increasing
particle number towards the value 1 signaling a classical
behavior of the angular momentum. On top of this rise, clear
oscillations are evident at low particle number. The strong
damping of the oscillations at large particle number is expected
from the physical intuition given by Fig. 3. The occupation of
a new level becomes less important due to the large number
of possible configurations. Also the denominator in (11) has
larger values, and consequently a damping associated with the
increasing particle number is visible.

The confinement along the z direction controls how many
levels are already at play before new +,− levels contribute
(see Fig. 3). Therefore, the sharpness of the oscillations is
strongly influenced by the aspect ratio of the trap as evident
in Fig. 5. The largest amplitude of the oscillations is found
at an almost isotropic confinement and low particle number
N . However, at lower aspect ratio the oscillations survive till
larger particle numbers, which might be a favorable situation
to observe quantum oscillations in experiments.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  35  70  105

R

zN

z=0.01

z=0.1
z=2

z=10

FIG. 5. (Color online) R vs αzN , at low temperature T/TF = 0.03
and α = 0.05, for αz = 0.01, αz = 0.02, αz = 2, and αz = 10. Even
though at low particle numbers, the amplitude of the oscillation is
strongest for the intermediate aspect ratio αz = 2, the oscillations
remain visible for larger particle numbers in the weak confinement
case. This indicates that a compromise between these two feature
might be a favorable choice of parameter to observe the oscillation
of angular momentum.
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FIG. 6. (Color online) (a) The ratio R vs particle number, at low rotation frequency α = 0.05 for T/TF = 0.03, T/TF = 0.05, T/TF = 0.07,
and T/TF = 0.1. Panel (a) shows a weak aspect ratio of the confinement αz = 0.02 and panel (b) an intermediate aspect ratio αz = 2. In both
cases, the low-temperature curve displays the most pronounced oscillations, and the oscillating behavior remains visible for larger samples.
The stronger confinement leads to larger oscillation amplitudes, but the oscillations disappear for lower particle numbers. The insets shows the
Fourier transform of R with respect to μ for the corresponding parameters. It shows that the amplitude of the oscillation modes decreases with
the temperature, but the oscillation period remains unchanged.

In the low-αz case, the oscillations reach a universal
regime, where the curves coincide as functions of αzN , as
depicted on Fig. 5. This dependence on αzN can be understood
transforming the sum over nz in (3), into an integral, which
gives for the thermodynamic potential

� = (kBT )2

h̄ωz

∑
n+,n−

Li2[−eβ(μ−ε0−h̄ω+n+−h̄ω−n−)]. (25)

The only dependencies on ωz are in the prefactor and in
ε0. However, in the weak confinement regime, ωz � ω0, and
consequently the zero-point energy is dominated by ε0 � h̄ω0.
Taking the ratio R, the prefactor drops out in the expression
(11), and one is left with a function of μ ∝ (αzN )1/3 only.
This universal regime strongly resembles the van Alphen
oscillations in a solid. Due to its large extensions in a solid
typically the electrons are assumed to move freely in the
direction of the magnetic field.

The previous reasoning is valid at low temperature. At
larger temperature, the sharpness of the Fermi surface is lost
which will lead to less pronounced oscillations. Figures 6(a)
and 6(b) compare the oscillations for different temperatures
and fixed rotation, in the weak and strong confinement cases,
respectively. A strong damping with increasing temperature
of the amplitude of the oscillations is evident. The strong
dependence of the oscillations on the sharpness of the Fermi
surface plays an important role in the observability of quantum
oscillations, as known from the solid-state context [16], and
pointed out for cold atoms in [20,22–24].

Figure 7 presents the amplitude of the oscillations as a func-
tion of temperature, at fixed rotation and axial confinement. A
strong increase at low temperatures which seems almost linear

occurs. This strong temperature dependence of the amplitude
of the oscillating contribution can be understood from a
Poisson summation analysis as presented in Appendix A,
applied to 〈Lz〉 and 〈Lz〉(cl). By doing so, the temperature
dependence only occurs in the sum in form of the expression
{sinh [π2kBT ( k+

h̄ω+
+ k−

h̄ω−
+ kz

h̄ωz
)]}−1. This term causes the

strong temperature damping of the oscillating behavior of
thermodynamic quantities. Let us note that it also shows that
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FIG. 7. (Color online) Amplitude of the oscillation of the ratio
R vs T/TF , for α = 0.05 and for αzN = 11.5 (blue) and αzN = 4.5
(black) with respect to the monotonic contribution (16). As expected,
at fixed confinement, the oscillation becomes less pronounced for
bigger particle numbers. The strong damping effect due to the
temperature is clearly visible in both cases.
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FIG. 8. (Color online) R vs particle number, at zero temperature
(upper panel) and T/TF = 0.03 (lower panel) and weak trapping
αz = 0.075, for several angular frequencies. Slow rotation favors
the appearance of quantum oscillations. At zero temperature, fast
oscillations due to the contribution of the ωz levels appear.

the temperature has no influence on the oscillation period as
we discuss below.

The strong dependence of the oscillation amplitude on tem-
perature offers the possibility to use the oscillations as a ther-
mometer in the low-temperature regime. This low-temperature
regime (T/TF � 0.07) is experimentally challenging, but
has nevertheless been realized in a different context, with
rotating [8] or nonrotating [26,27] apparatus. A thermometer
in this regime would be very important, since commonly used
thermometry as the momentum distribution after time-of-flight
imaging becomes less sensitive to temperature changes in this
regime.

2. Rotation frequency

In the solid-state case, quantum oscillations are most easily
seen with high magnetic fields, which translate here into
fast angular frequency. This statement finds its origin in the
criterion that the cyclotron frequency ωc = eB

M
must be bigger

than kBT .
Figure 8 depicts the evolution of R with the particle

number for different values of α at constant T/TF and axial
confinement. In contrast to the solid-state case the oscillations
here are more pronounced when the rotation of the gas is
slow, as already discussed qualitatively in Sec. IV. This can be
related to the occurrence of the two characteristic frequencies

1
h̄(ω0±ω) . Indeed, α should not be too high such that h̄ω− remains
bigger than kBT . This is expected from the Poisson summation
analysis: Lower values of h̄ω− (corresponding to higher values
of α) tend to increase the temperature damping factor (see
Appendix A) and thereby decrease strongly the amplitude of
the oscillations. Thus a strong dependence on the frequency ω

is found. Although α must be low compared to 1, the rotation
must not be too slow to be observable.
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=0.05
=0.1
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=0.2
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0.01

13 14

FIG. 9. (Color online) Fourier transform of R vs xh̄ω0 at zero tem-
perature (upper panel) and T/TF = 0.03 (lower panel), for fixed αz =
0.075. The successive harmonics of the fundamental frequencies are
visible. The arrows indicate the position of the two characteristic
“frequencies” 1

h̄ω± . Inset: Fourier transform of R at zero temperature

showing the peak corresponding to 1
h̄ωz

, indicated by an arrow.

B. (Pseudo)period of oscillation

In this subsection we focus on the effect of experimental
parameters on the pseudoperiod of the oscillations. From the
intuitive picture described in Sec. IV, one expects that the
period of the oscillations does mainly depend on the energy
level spacing given by h̄ω±,z.

The strong dependence on the two fundamental “frequen-
cies” 1

h̄ω+
and 1

h̄ω−
is confirmed by our numerical investigations

reported in Fig. 9. This figure displays the modulus of the
Fourier transform of the ratio R (11) for several angular
frequencies at zero temperature (upper panel) and for T/TF =
0.03 (lower panel). The peaks that develop around integer
values of xh̄ω0 (the variable conjugated to μ) show that two
fundamental “frequencies” 1

h̄ω+
and 1

h̄ω−
appear (pointed out by

arrows in Fig. 9). Increasing the frequency ω the peaks become
more and more separated. Additionally to these main peaks, a
peak at 1

h̄ωz
shows up here well separated from the other peaks

(see inset in the upper panel of Fig. 9). The interplay of these
three different frequencies is also well seen in the quantum
oscillation shown versus the particle number in Fig. 8. The
influence of ω± can in particular be identified in Fig. 8 com-
paring α = 0.1 and 0.2. A clear shift of the main oscillation
period occurs. Additionally to the frequencies ω±, the trapping
frequency ωz causes smaller oscillations (Fig. 8). Choosing
a larger value of the aspect ratio of the trap will influence
considerably the oscillation period as shown in Fig. 5.

Most of the detailed substructures of the oscillation dis-
cussed above are washed out at higher temperature, since the
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temperature causes the sharp peaks in the Fourier transform
to broaden and only the main frequency determined by ω0

survives, as shown in Figs. 8 and 9. One major difference
compared to the solid-state context is the existence of the three
characteristic frequencies 1

h̄(ω0±ω) and 1
h̄ωz

in the oscillations,
which is an effect of the radial and axial trapping potential,
respectively. This occurrence is responsible for an intrinsic
limitation on angular frequency, which is forced to be lower
than ω0 so that ω− remains positive. This limitation is also at
the origin of the difficulties encountered to generate artificial
magnetic fields strong enough to observe the quantum Hall
effects in rotating gases [4–6]. One possibility to circumvent
this problem is to add a quartic term to the trapping potential,
which has been implemented for example in [28]. This intrinsic
limitation is also a motivation for the implementation of
artificial gauge fields, which form the basis of one of the
protocols described in Sec. VI.

VI. MEASUREMENT OF THE ANGULAR MOMENTUM

In Sec. V, we have shown that the quantum oscillations of
the angular momentum are best visible at low temperatures
(T/TF � 0.07) and slow rotation (α � 0.2). A compromise
between the particle number and the axial confinement has
to be found. Even if hard to fulfill, these requirements
are nevertheless within the reach of current experimental
capacities. The height of the amplitude of the oscillations will
be a very sensitive probe to the temperatures of the gas.

In order to measure R, one has to measure two observables:
the square radius of the gas, and its angular momentum.
Measurements of the density of the cloud and thus of its
square radius can be performed using spatially resolved in
situ imaging techniques which are nowadays standard. For
the observation of 〈Lz〉 two different experimental protocols
(Fig. 10) are useful. Since these are not commonly used, we
briefly summarize them here:

(1) exciting the quadrupole modes of the rotating gas and
measuring the induced precession angle [7,29], depicted in
Fig. 10(a);

(2) measuring the occupation of internal states of the
atoms which are connected to the angular momentum for light
induced vector fields [30,31], shown in Fig. 10(b).

The first method has been successfully implemented with
rotating Bose-Einstein condensates [7,29]. The underlying
idea, as depicted in Fig. 10(a), is to imprint an anisotropic
perturbation of the form

Van = V0

2
(x2 − y2) (26)

for a time δt shorter than the rotation period ω−1 [32]. This
perturbation will cause an excitation of quadrupolar oscillation
modes, which will lead to a precession of the cloud. The
precession angle ϕ of the main axis of the gas [see Fig. 10(a)]
is related to the geometrical properties of the gas:

tan 2ϕ = 2〈xy〉
〈x2〉 − 〈y2〉 . (27)

After the short excitation these properties change with
time and can be computed perturbatively in the

FIG. 10. (Color online) Sketch of the two different protocols
for measuring the angular momentum of the fermion gas (see
text for description). (a) Measurement of the precession angle.
The stirring beam (in green) is also used to create the anisotropic
perturbation, which provokes the appearance of quadrupole modes,
and are responsible for a precession angle ϕ. Observing this angle
provides a direct measurement of the angular momentum of the gas.
(b) Generation of artificial rotation with lasers with spectroscopic
measurement of the angular momentum. The two copropagating
beams carry different angular momenta, and the effective rotation
is proportional to the angular momentum difference. The angular
momentum is then measured by spectroscopy as suggested in [30,31].

parameter ε = V0δt

h̄
:

〈xy〉(t) = εh̄

M2
〈Lz〉t2, (28)

〈x2〉 − 〈y2〉(t) = 2h̄ε

M
r2

0 t, (29)

where r2
0 is the radial size of the gas before the perturbation is

applied. Assuming that ϕ is small leads to the relation

ϕ � 〈Lz〉
2Mr2

0

t. (30)

Thus, following the evolution of this precession angle with
time provides a direct measurement of 〈Lz〉.

The second technique to measure the angular momentum is
described in Ref. [30,31], making use of artificial gauge fields
to generate an artificial slow rotation. More precisely, one
has to shine on the gas two copropagating Laguerre-Gauss
beams carrying different angular momenta � and � + ��, as
indicated in Fig. 10(b). By two-photon Raman transition, the
atoms become dressed by these beams and the dispersion
of the lowest band is displaced by an effective shift to a
nonzero angular momentum that is proportional to ��. Since
the generation of the vector field by this gauge field induces
a coupling between the external (angular momentum) and
internal (hyperfine) states of the atoms, the population of the
internal states can be used to infer the angular momentum of
the cloud.

Both these methods can be used as a thermometer of the
fermionic cloud at low temperature, as suggested in Sec. V. By
comparing directly the measured oscillation pattern with the
exact expression derived from the thermodynamic potential
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(3), knowing all the other parameters allows one to determine
the temperature of the gas. Furthermore, as Fig. 7 has shown,
the amplitude of the oscillatory phenomenon is expected to
depend strongly on T , thus making the oscillation a very
reliable temperature probe in the low-temperature regime
where current techniques fail.

VII. SUMMARY AND OUTLOOK

In this article, we have investigated the phenomenon of
quantum oscillations for a noninteracting Fermi gas subject to
rotation or to an artificial magnetic field. We have considered
the angular momentum of the gas, which is directly analogous
to the magnetization in the solid-state context, and hence
for which de Haas–van Alphen oscillations are expected as
a function of, e.g., atom number or chemical potential.

We have uncovered important differences between atomic
gases and the solid-state context, especially in the limit of
fast rotation ω ∼ ω0 for a two-dimensional system. These
differences are due to the different degeneracies of the effective
Landau levels. As a result, the pronounced periodic jumps in
the magnetization per electron of a two-dimensional electron
gas are replaced in the cold fermionic gas context by milder
cusplike singularities of the angular momentum versus atom
number.

In contrast, we have shown that pronounced oscillations
do show up in the opposite limit of slow rotation. The
angular momentum is an observable which is particularly
prone to oscillations, in contrast to the mean-square radius
of the gas for example (related to the rigid-body moment of
inertia), which only displays small shell-filling effects for very
small systems. We performed a detailed investigation of the
dependence of these oscillations on experimentally relevant
parameters. We concluded that they are observable up to rather
large atom numbers (several thousands) provided the harmonic
confinement along the rotation axis is weak. The temperature
must also be low compared to h̄ω−/kB = h̄(ω0 − ω)/kB , so
that a significant effect for reasonably large systems is typically
found only for T/TF � 0.1. In the solid-state context, quantum
oscillations are a tool of choice for determining the Fermi
surface of clean-enough materials [16,33]. Such use is also
possible in the context of atomic gases, but the technique
can probably not compete with adiabatic band mapping [34].
Quantum oscillations could, however, provide a useful method
for in situ thermometry in the regime of low T/TF where the
amplitude of the oscillations depends strongly on temperature
and where time-of-flight or in situ measurements of the density
profile are less sensitive.

We proposed two experimental protocols which could be
used to observe these quantum oscillations experimentally.
These protocols elaborate on previous propositions to measure
the angular momentum of the gas [7,30] inspired from the his-
toric Andronikashviili experiment [35] on superfluid helium.
There are several extensions of the present work that are worth
considering. One is the effect of interactions on the quantum
oscillations. Interactions and the associated finite lifetime of
the quasiparticles will lead to a damping of the oscillations
which will reduce their visibility [23]. At a phenomenological
level, this can be accounted for by a Dingle-like factor, which in
our case reads e−γ (n+/ω++n−/ω−) in the oscillating contributions

(assuming that the broadening due to interactions is the same
for all energy levels). The characteristic damping γ can be
interpreted as the inverse lifetime of quasiparticles and its
measurement (e.g., as a function of scattering length) could
thus provide useful information on this lifetime. Another
interesting direction is to investigate quantum oscillations in
the presence of an optical lattice and an artificial gauge field,
exploring in particular the possible signature of nontrivial
topological states.
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APPENDIX A: POISSON SUMS

Poisson summation is useful to compute sums of the form

∞∑
n=n0

φ(n) , (A1)

and has been used by Landau to predict quantum oscillations
for clean electronic systems [1]. To describe the results
presented in the main text, a sum over three variables n+,n−,nz

is needed. In full generality, the result of this procedure is given
by

∑
{ν}

φ(ν) =
∫

[0,+∞[3
d �uφ(�u)

+ 2Re

⎧⎨⎩∑
�k �=�0

∫
[0,+∞[3

d �uφ(�u)e2iπ �k·�u

⎫⎬⎭, (A2)

where ν = (n+,n−,nz) on the left-hand side of Eq. (A2) and
�k = (k+,k−,kz) with k±,kz positive integers. The expression
(A2) already displays the separation between monotonic and
oscillatory contributions.

Let us apply this procedure to the average of a generic
quantity 
 which reads

〈
〉 =
∑
{ν}


(ν)

1 + eβ(εν−μ)
. (A3)

Using Eq. (A2), this average can be separated into two
contributions

〈
〉 = 〈
〉(no) + 〈
〉(osc). (A4)

Here the monotonic part is given by

〈
〉(no) =
∫

[0,+∞[3
d �u 
(�u)

1 + exp [β(ε�u − μ)]
(A5)
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and the oscillating contribution by

〈
〉(osc) = 2Re

⎧⎨⎩∑
�k �=�0

F(�k) exp

[
2iπ

(
k+

h̄ω+
+ k−

h̄ω−
+ kz

h̄ωz

)
μ

]⎫⎬⎭ . (A6)

In the last expression, the quantity F(�k) is given by

F(�k) = 2

3h̄3ω+ω−ωz

∫ +∞

−μ

dε

∫ +∞

−∞
dy ′

∫ +∞

−∞
dz′

exp
[
2iπ

(
k+

h̄ω+
+ k−

h̄ω−
+ kz

h̄ωz

)
ε
]

1 + eβ(ε+ε0)

× exp

[
2iπ

(
k+

h̄ω+
− k−

h̄ω−

)
y ′

]
exp

[
2iπ

3

(
k+

h̄ω+
+ k−

h̄ω−
− 2

kz

h̄ωz

)
z′

]
×


(
ε + μ + y ′/3 + z′/9

h̄ω+/3
,
ε + μ − y ′/3 + z′/9

h̄ω−/3
,
ε + μ − 2z′/9

h̄ωz/3

)
, (A7)

where the indices k± ,kz are all positive integers and
(k+,k−,kz) �= (0,0,0).

This analysis shows how the oscillating behavior arises in
thermodynamical quantities such as the angular momentum
studied here. Furthermore, one sees that the temperature
dependence of the oscillating part is contained in F , which
is the convolution between the Fourier transform of 


and the one of the occupation number, which behaves like
{sinh [π2kBT ( k+

h̄ω+
+ k−

h̄ω−
+ kz

h̄ωz
)]}−1. Thus, one can expect

an exponential damping of the oscillating term due to
temperature.

This computation also shows that the period of the oscil-
lations are related to the inverse frequencies 1

h̄ω±
and 1

h̄ωz
. In

our case, the axial trapping frequency is usually quite small,
making the corresponding period very long, and thus not
observable in realistic temperature conditions. In most cases,
the expressions for the oscillating part are quite complicated,
and not very illuminating. Nevertheless, the decomposition
(A4) provides rather simple expressions for the nonoscillating
contributions.

APPENDIX B: EXACT EXPRESSIONS FOR
NONOSCILLATING CONTRIBUTIONS

The generalization of (A2) for several variables leads to the
following expressions for the nonoscillating contributions, at
any temperature:

N = 1

(βh̄ω0)3(1 − α2)αz

J , (B1)

〈n±〉(no) = 1

(βh̄ω0)4(1 − α2)αz(1 ∓ α)
I, (B2)

〈Lz〉(no) = 2h̄α

(βh̄ω0)4(1 − α2)2αz

I, (B3)

Rmon = 〈n−〉(no) − 〈n+〉(no)

〈n−〉(no) + 〈n+〉(no) + N
(B4)

= 2I
2I + βh̄ω0(1 − α2)J , (B5)

I = 1

6

∫ ∞

0
du

u3

1 + eu−ξ
= −Li4[−eβ(μ−ε0)], (B6)

J = 1

2

∫ ∞

0
du

u2

1 + eu−ξ
= −Li3[−eβ(μ−ε0)], (B7)

with Lin the nth polylogarithm function [19].
These expressions show in particular that at large μ, the

populations of the radial harmonic oscillators are such that
〈n+〉
〈n−〉 = 1−α

1+α
. Also, we see that the deviation of the ratio between

the angular momentum of the gas and its classical expression
goes like 1

μ
, thus like N−1/3 [36] for macroscopic samples.

The strictly zero-temperature result for the number of particles
leads to EF = h̄ω0(6αzN )1/3 [36], as expected.

APPENDIX C: ANGULAR MOMENTUM OF
A CLASSICAL GAS

We consider a gas of classical particles interacting through
the potential V trapped in a potential Vtrap. The whole gas is
rotating at constant angular frequency ω around the z axis:

H =
∑

i

�p2
i

2M
+ Vtrap(�ri) − Lz,iω +

∑
ij

V (|�ri − �rj |) . (C1)

The average angular momentum of the gas is given by

〈Lz〉 = −∂Tr(e−βH)

∂ω
. (C2)

One can rewrite the Hamiltonian (C1) as

H =
∑

i

[ �pi − M �ω × �r]2

2M
+ Vtrap(�ri) − 1

2
Mω2(x2 + y2)

+
∑
ij

V (|�ri − �rj |), (C3)

showing that, analogously to the Bohr–van Leeuwen theorem
(see, e.g., [37]), with an appropriate change of variables in
the partition function, one can immediately prove that the
angular momentum is given by Eq. (10). Furthermore, one
also sees that the interaction potential V does not play any role
in deriving the expression of the angular momentum, showing
that the result (10) also holds for interacting particles.
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