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Few-cycle laser-pulse-assisted electron-atom potential scattering
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S-matrix theory of electron-atom scattering assisted by a few-cycle laser pulse is introduced. The result
obtained in the first Born approximation corresponds to the direct or single scattering, while the result in the
second Born approximation corresponds to the rescattering or double scattering contribution to the laser-assisted
scattering process. The rescattered electrons may acquire high energies while moving in the laser pulse. The
dependence of the energy spectrum on the value of the carrier-envelope phase and the duration of the laser pulse
is investigated. The abrupt cutoffs of the plateau structures in the energy spectra of the process are explained by
the classical analysis. It is shown that the height of both the single and double scattering plateaus can be increased
by orders of magnitude by choosing the heavier atomic targets.
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I. INTRODUCTION

Laser-assisted electron scattering (LAES) is a process in
which electrons elastically scatter off atoms or molecules
(or their ions) in the presence of a laser field. In this so-
called free-free transition n photons are absorbed (n > 0)
or emitted (n < 0) from the laser field so that the initial
(Ei = k2

i /2) and final (Ef = k2
f /2) electron kinetic energies

are connected by the formula Ef = Ei + nω, where ki and kf

are the corresponding electron momenta and ω is the photon
angular frequency (atomic units are used). The LAES was
experimentally observed by Weingartshofer et al. in 1977
[1]. For a review of later experiments see [2]. From the
theoretical side, laser-assisted potential scattering in the first
Born approximation (BA) was treated by Bunkin and Fedorov
[3], while Kroll and Watson (KW) [4] have obtained the
following more general approximate result for the differential
cross section (DCS) of LAES with exchange of n photons:

dσn

d�
(kf,ki) = kf

ki
J 2

n (x)
dσel

d�
, (1)

where Jn is the Bessel function of the first kind of order n

and dσel/d� is the field-free elastic DCS. The argument of
the Bessel function, x = êL · (ki − kf )I 1/2/ω2, is a coupling
parameter that depends on the electron energy, laser field
intensity I and frequency ω, and the angle between the unit
polarization vector êL of linearly polarized laser field and
the momentum change vector of the electron. A review of
theoretical results is given in [5].

First experimental results were in good agreement with
the KW formula [2] (see also [6], and references therein, for
more detailed theoretical and experimental studies). However,
in more recent experiments by Wallbank and Holmes [7,8],
performed for such scattering geometries that the parameter
x is small, the observed DCSs were much larger than the
KW prediction. These results have renewed interest for
theoretical studies of LAES. However, even with the use
of the sophisticated Floquet R-matrix method, it was not
possible to explain this discrepancy between the theoretical
and experimental results for small values of x (see [9],
and references therein). The conclusion was that the most

probable explanation for such experimental results is multiple
scattering [10].

In the experiments [1,2,6–8] a pulsed CO2 laser (wave-
length 10.6 μm) with pulse duration ∼3 μs and the peak
intensity up to 4 × 108 W/cm2 was used, while the targets
were argon [1] or other inert atomic gases or molecular
gases. The incident electron energies were <40 eV. More
recently [11], one- and two-photon LAES processes were
observed in the experiment with a Nd:YAG laser (wavelength
1.06 μm, pulse duration 6 ns, and the intensity 6 GW/cm2) and
scattering of electrons having the incident energy in the range
50–350 eV off the helium atoms. The results obtained were
consistent with the KW formula. Finally, the only experiment
in which the LAES was observed using the femtosecond laser
was performed by Kanya et al. [12]. Since the used pulse
duration (200 fs) was only 10−7 relative to that used in the
experiments [1,2,6–8], only the n = ±1 photon processes were
observed (a slight increase of the DCS for n = ±2 was also
noticed). The wavelength of the used Ti:sapphire laser was
795 nm, while the intensity was 1.8 × 1012 W/cm2 which is an
increase by the factor of 103 in comparison with the intensities
used in [1,2,6–8]. The 1 keV electrons were scattered off
xenon atoms. A successful simulation of this experiment was
performed using the result of Ref. [3], according to which the
DCS of LAES is given by relation (1) with dσel/d� calculated
in the first BA.

In the 1990s a new process in which LAES is important
was discovered [13]. This is the so-called high-order above-
threshold ionization (HATI), which is described as a three-step
process [14]. The first step is above-threshold ionization, a
process in which an atom (or molecule) is ionized in such
a way that more photons are absorbed from the laser field
than is necessary for ionization. The ionized electron, in the
second step, moves in the laser field and may return to the
parent atomic or molecular core. The returned electron can
scatter off this core and, in fact, the third step of HATI is the
LAES process, which occurs on an optical-cycle time scale.
More recently, it has been suggested to exploit this rescattering
process as an ultrafast imaging technique [15], which is called
laser-induced electron diffraction (LIED) (see Refs. [16–19]
for theoretical and [20–22] for experimental results).
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In particular, the HATI by few-cycle pulses has appeared
to be very important for the development of a new area of
physics—attophysics [23–25]. In order to specify a few-cycle
pulse, besides the laser frequency and intensity, one needs ad-
ditional parameters such as the pulse duration and the carrier-
envelope phase (CEP). The CEP is the relative phase between
the maximum of the pulse envelope and the nearest maximum
of the carrier wave. It determines the shape of a few-cycle pulse
and, therefore, the laser-induced or laser-assisted processes in
such a pulse. In order to determine the value of CEP various
methods were proposed, one of which is the “stereo-HATI”
experiment [26–28]. In the context of the above-mentioned
LIED, molecular HATI by few-cycle pulses was used in [29]
to extract the electron-molecular ion elastic scattering DCSs.

In spite of the importance of HATI by few-cycle pulses,
it is interesting that LAES in few-cycle pulses has never
been analyzed in detail. This is the aim of the present paper.
We will first present the S-matrix theory for scattering in a
laser pulse. Next, we will consider LAES within the BA and
show that in the second BA an additional plateau appears in
the high-energy part of the electron spectrum. As we have
mentioned in the first part of the Introduction, it is very
difficult to realize the LAES with the femtosecond few-cycle
laser pulses. The reason is that, for the Ti:sapphire wavelength
of 800 nm, the few-cycle pulses have a duration of only a few
femtoseconds, which is too short to achieve an experimental
demonstration of LAES. However, very recently, few-cycle
strong laser pulses in the mid-infrared region have become
available [30–34]. For example, in [34] using a six-cycle pulse
having wavelength 3.9 μm, which lasts 80 fs and has
the intensity 3.3 × 1014 W/cm2, it was possible to generate
high harmonics of the order 5000. This brings LAES with
few-cycle pulses closer to reality. We will present LAES results
for such laser pulse parameters. In particular, we will explore
the influence of CEP and pulse duration on the scattered
electron spectra. Atomic units are used throughout the paper.

II. S-MATRIX THEORY FOR FEW-CYCLE PULSES

The total Hamiltonian of the LAES process is H (t) = H0 +
V (r) + VL(t) = HV + VL(t) = HL(t) + V (r), where H0 =
−∇2/2, ∇ ≡ ∂/∂r, V (r) is the scattering potential, and VL(t)
is the interaction with the laser pulse. We introduce the
time-evolution operators U , UL, and UV of the Hamiltonians
H (t), HL(t), and HV , respectively. Born expansion (in the
scattering potential V ) of the total time-evolution operator has
the form

U (t ′,t) = UL(t ′,t) − i

∫ t ′

t

dτ UL(t ′,τ )V (r)UL(τ,t)

+ (−i)2
∫ t ′

t

dτ UL(t ′,τ )V (r)

×
∫ τ

t

dτ ′ UL(τ,τ ′)V (r)UL(τ ′,t) + · · · . (2)

The total time-evolution operator also satisfies the integral
equation

U (t ′,t) = UV (t ′,t) − i

∫ t ′

t

dτ U (t ′,τ )VL(τ )UV (τ,t). (3)

The S-matrix element for transition from the initial to the final
plane-wave electron state, governed by the total time-evolution
operator U (t ′,t), is defined by

Sfi = lim
t ′→∞

lim
t→−∞ eik2

f t
′/2〈kf|U (t ′,t)|ki〉e−ik2

i t/2. (4)

Let us now be more specific and choose the interaction with
the laser pulse in dipole approximation and length gauge. For
a linearly polarized (along the z axis) few-cycle laser pulse
of duration Tp, with a sine-squared envelope, and with the
carrier-envelope phase φ, we have VL(t) = EL(t) · r, with

EL(t) = E0 sin2

(
πt

Tp

)
cos(ωt + φ)êL, t ∈ [0,Tp]. (5)

Here E0 = I 1/2 is the laser field amplitude and we suppose
that the pulse length is equal to an integer number np of optical
cycles T = 2π/ω, i.e., Tp = npT . Since the laser pulse is such
that E(t) = 0 for t � Tp and for t � 0, using (3), we obtain

U (t ′,t) = UV (t ′,Tp)U (Tp,0)UV (0,t). (6)

Then Eqs. (4) and (6) imply

Sfi = 〈ψ (−)
kf

(Tp)|U (Tp,0)|ψ (+)
ki

(0)〉, (7)

where ψ
(−)
kf

and ψ
(+)
ki

are the continuum eigenstates of the
Hamiltonian HV .

Outside the laser field the scattering off the potential V is
elastic. Since we are interested in the laser-assisted plateau
structures which correspond to absorption or emission of a
large number of laser photons we can neglect the scattering
after and prior to the laser pulse and approximate the S-matrix
element by (up to a phase factor)

Sfi = 〈kf|U (Tp,0)|ki〉, (8)

where the total time-evolution operator satisfies Eq. (2) with

UL(t ′,t) =
∫

d3k|k + A(t ′)〉〈k + A(t)|e(i/2)
∫ t

t ′ dτ [k+A(τ )]2
(9)

and A(t) = − ∫ t
dt ′ E(t ′) = A(t)êL. The zeroth-order term in

V in Eq. (2) does not contribute and we keep only the first-
and second-order terms in V in (2). In this approximation,
after a long derivation, which is based on a unification of the
method used in Ref. [35] to study LAES by an infinitely long
pulse and the strong-field approximation used to study HATI
by few-cycle pulses (see Sec. 5.1 of Ref. [24]), the S-matrix
element (up to a phase factor) can be written as

Sfi ≈
∫ Tp

0
dt ei(Ẽf−Ẽi)t+i(k̃f−k̃i)·α(t)

{
〈k̃f|V |k̃i〉

− i

∫ t

0
dτ

(
2π

iτ

)3/2

〈k̃f|V |ks〉〈ks|V |k̃i〉e(i/2)(ks−k̃i)2τ

}
,

(10)

where Ẽi = k̃2
i /2, Ẽf = k̃2

f /2, k̃i ≡ ki − A(0), and k̃f ≡ kf −
A(Tp), while the stationary intermediate electron momentum is
ks = [α(t − τ ) − α(t)]/τ , with α(t) = ∫ t

dt ′ A(t ′). The shift
of the momenta by A(0) = A(Tp) �= 0 assures that we cal-
culate the probability of transition from a state with the
initial momentum ki to a state with the momentum kf at the
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detector outside the laser field. This is a situation similar to
the introduction of the final electron momentum shift in the
above-threshold ionization by few-cycle pulses [24].

The first term on the right-hand side of Eq. (10), which is
proportional to 〈k̃f|V |k̃i〉 = 〈kf|V |ki〉, describes the process
in which the electron, dressed by the few-cycle laser field,
scatters once on the potential V (r). The scattering happens
at the time t and the integration is over whole pulse duration
from t = 0 to t = Tp. The remaining term in Eq. (10) is the
second BA for LAES by a few-cycle pulse. It describes the
process in which the electron first scatters off the potential
V at the time t − τ , then moves in the laser field during the
time from t − τ to t , and finally rescatters off the potential
V at the time t . The integration is over all electron travel
times τ from 0 to t and over all rescattering times t from
the beginning (t = 0) to the end (t = Tp) of the pulse. The
factor τ−3/2 comes from the saddle-point-method solution of
the integral over all intermediate electron momenta k (k → ks;
see Appendix A in [36]). This second term is responsible for
the rescattering plateau in the LAES spectrum which was first
found in Ref. [37] (see also [35,38]) for an infinitely long
pulse.

For the pulse (5) we have α(t) = α(t)êL, with

α(t) = E0

2ω2

⎡
⎣cos(ωt + φ) − 1

2

∑
j=1,2

(
ω

ωj

)2

cos(ωj t + φ)

⎤
⎦ ,

(11)

and ω1 = ω + ωp, ω2 = ω − ωp, ωp = ω/np = 2π/Tp, so that
α(t) is time periodic with the period Tp. The exponent with α(t)
in (10) can be expanded in a Fourier series

∑
n cn exp(−inωpt),

where the coefficients cn can be presented by sums of the
generalized Bessel functions [39,40]. In accordance with this,
we will calculate only the spectra for the electron energies that
satisfy the relation

Ẽf = Ẽi + nωp, (12)

with integer n > −Ẽi/ωp. The DCS in the case of potential
scattering in a laser pulse can be defined as the differential
transition probability per unit time of an electron with the
energy Ef = k2

f /2 into the solid-angle element d�kf , divided
by the flux Jinc of incident electron plane wave (along the
z axis) 〈r|ki〉 = (2π )−3/2eikiz, which is Jinc = ki/(2π )3, and
multiplied by the energy interval ωp between the subsequent
points determined by (12). The result is

dσfi(n)

d�kf

= |Sfi|2
Tp

d3kf

d�kf dEf

ωp

Jinc
= (2π )3ωp

kf

ki

|Sfi|2
Tp

. (13)

We model the scattering potential by the sum of the
polarization potential VP and the static potential VS, so that
V = VP + VS. We use the polarization potential

VP(r) = − αP

2(r2 + d2)2
, (14)

where αP is the electrostatic dipole polarizability of the atom
that can be found in [41], while the parameter d is connected
with αP and nuclear charge Z by the formula d4 = αP/(2Z1/3)
[42]. Our static potential is modeled by the double Yukawa

potential

VS(r) = − Z

H

e−r/D

r
[1 + (H − 1)e−Hr/D], (15)

where H = DZ0.4 and the values of D for various atomic
targets are given in [43].

III. CLASSICAL ANALYSIS

In order to perform the classical analysis of the single
and double scattering, we consider the arguments of the
exponential functions in the first and second terms on the
right-hand side of Eq. (10). The first term in Eq. (10) describes
the direct or single scattering. The argument of the exponential
function in the first term is

SD = (Ẽf − Ẽi)t + (k̃f − k̃i) · α(t), (16)

where t is the scattering time. The stationarity condition
∂SD/∂t = 0 gives

k̃2
f + 2A(t) · (k̃f − k̃i) − k̃2

i = 0, (17)

which can be written in the form

[k̃i + A(t)]2 = [k̃f + A(t)]2. (18)

This is the electron-energy-conserving condition at the scat-
tering time t . We assume that the initial electron momentum
ki is in the direction of the laser-field polarization vector êL

and solve Eq. (17) for kf . The result is

(kf)± = −a cos θf ±
√

(a cos θf)2 + k2
i + 2aki, (19)

where a = A(t) − A(Tp) and θf is the angle between the final
electron momentum kf and the laser-field polarization vector.
This means that the final electron energy Ef = k2

f /2 can be
expressed as a function of the scattering time t .

The second term in Eq. (10) corresponds to the double
scattering, i.e., the scattering with a subsequent rescattering.
The argument of the exponential function in the second term
is

SR = (Ẽf − Ẽi)t + (k̃f − k̃i) · α(t) + τ

2
(ks − k̃i)

2, (20)

where t is the rescattering time and τ is the travel time (i.e., the
time between the first scattering and the rescattering). From
the conditions ∂SR/∂t = 0 and ∂SR/∂τ = 0 we get

k2
s + 2A(t − τ ) · (ks − k̃i) − k̃2

i = 0, (21)

k̃2
f + 2A(t) · (k̃f − ks) − k2

s = 0, (22)

which can be rewritten as

[ks + A(t − τ )]2 = [k̃i + A(t − τ )]2, (23)

[k̃f + A(t)]2 = [ks + A(t)]2. (24)

Equation (23) is the electron-energy-conserving condition
at the scattering time t − τ , while Eq. (24) expresses the
electron-energy-conserving condition at the rescattering time
t . Equations (23) and (24) represent a system of two nonlinear
equations which can be solved numerically in order to calculate
the final electron energy Ef for different values of the travel
time τ . Considering the fact that a large number of travel times
may correspond to the same value of energy Ef , we restrict
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ourselves to the calculation of the maximum value of Ef and
its corresponding travel time τ .

IV. NUMERICAL RESULTS

In all our calculations, we assume that the laser field is
linearly polarized with the electric field vector given by Eq. (5)
and that the initial electron momentum ki is in the direction of
the laser-field polarization vector êL.

We first consider the direct scattering of electrons on atomic
targets. This process is described by the first term on the right-
hand side of Eq. (10). In Fig. 1 the DCS for potential scattering
of electrons on He atoms is presented as a function of the final
electron energy. The scattering occurs in a linearly polarized
few-cycle laser pulse having a wavelength of 3100 nm and an
intensity of 4.5 × 1013 W/cm2. The carrier-envelope phase of
the laser pulse is φ = 0◦, while the number of optical cycles np

is denoted in each panel of Fig. 1. The initial electron energy is
Ei = 15 eV and the scattering angle of the final-state electrons
is θf = 0◦. The energy spectra in Fig. 1 show a plateau with
an abrupt cutoff. The low-energy part of the plateau contains a
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FIG. 1. The DCS for potential scattering of electrons on He atoms
in the presence of a linearly polarized few-cycle laser pulse, as a
function of the final electron energy Ef . Only the direct (single)
scattering is included. The laser pulse has a wavelength of 3100 nm
and a peak intensity of 4.5 × 1013 W/cm2, while the CEP is φ = 0◦.
The initial electron energy is Ei = 15 eV and the scattering angle of
the final-state electrons is θf = 0◦. The number of optical cycles np

is denoted in each panel.
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FIG. 2. Classical analysis of the direct scattering solutions for the
parameters of Fig. 1. The final electron energy Ef is presented as a
function of the scattering time t , expressed in laser-pulse durations
Tp. The number of optical cycles np is denoted in each panel.

dense oscillatory structure, while the oscillations in the high-
energy part of the plateau are much less pronounced. It is also
clearly visible that the energy spectrum for six optical cycles
is much richer with oscillations than that for three optical
cycles. These oscillatory structures and cutoffs of the plateaus
in energy spectra can be explained by the classical analysis of
the direct scattering. Using Eq. (19) and setting all parameters
the same as in Fig. 1, we have calculated the final electron
energy Ef as a function of the scattering time t , expressed in
units of Tp. The results are presented in Fig. 2, showing that
4 and 8 scattering time solutions exist for np = 3 and np = 6,
respectively. While all scattering time solutions contribute to
the process in the region of very low values of the final electron
energy, the number of contributing solutions decreases with an
increase of the final electron energy. In the region close to the
plateau cutoff just one pair of solutions remains. The highest
maximum in each panel of Fig. 2 should match the cutoff
energy of the plateau in the corresponding panel of Fig. 1.
Comparing Figs. 1 and 2, we conclude that the results obtained
by numerical integration of the S matrix [Eqs. (10) and (13)]
agree very well with the estimates of the classical analysis
[Eq. (19)].

Let us explain the connection between the energy spectra
obtained by numerical integration of the S-matrix element
and the classical analysis. Instead of numerical integration
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over the time t in Eq. (10), the stationary phase method can
be used in order to express the S-matrix element as a sum
over the stationary points ts [44]. For a given value of the
final electron energy, there is a certain number of stationary
points ts, i.e., the stationary phase solutions. Each of these
stationary points gives a contribution to the S-matrix element.
These contributions interfere producing the oscillations in the
energy spectrum. The interference of more contributions of
the stationary points leads to a richer oscillatory structure
of the energy spectrum. The stationary points are actually
the scattering time solutions t for a given value of the final
electron energy Ef , as presented in Fig. 2. For example, let us
consider the np = 3 case shown in the upper panel of Fig. 2.
For fixed Ef < 26 eV, there are four scattering time solutions
(i.e., four stationary points). This means that we have four
contributions to the S-matrix element for Ef < 26 eV. These
contributions interfere producing a dense oscillatory structure
in the low-energy part of the spectrum (see the upper panel
of Fig. 1). Looking at the upper panel of Fig. 2, one can also
notice that there are only two scattering time solutions for
26 eV< Ef <192 eV, so that only two contributions to the
S-matrix element exist. This explains why the oscillations in
this part of the energy spectrum are much less pronounced
than those observed for Ef < 26 eV, as one can see from the
upper panel of Fig. 1. For Ef > 192 eV, no scattering time
solution exists (see the upper panel of Fig. 2) and there is
no contribution to the S-matrix element. The plateau in the
energy spectrum ends with an abrupt cutoff when Ef increases
over 192 eV (see the upper panel of Fig. 1). The connection
between the energy spectrum and the scattering time solutions
for np = 6 (the lower panels of Figs. 1 and 2) can be explained
using the same arguments. The only difference is that we now
have more scattering time solutions, i.e., more contributions to
the S-matrix element. This results in a much richer oscillatory
structure of the energy spectrum, particularly in the low-energy
part of the spectrum. Physically, this oscillatory structure
should be understood in terms of Feynman’s path integral
interpretation of quantum physics [45]. The probability am-
plitude of the quantum-mechanical scattering process can
be represented as a coherent superposition of all possible
spatiotemporal paths that connect the initial and the final state
of the system [46]. The interference of these contributions
is responsible for the mentioned oscillatory structure. For
simulation of real experiments the LAES spectra should be
averaged over the space-time distribution of laser intensity
in focus. Such focal-averaged LAES spectra were calculated
in Ref. [47]. In comparison with the fixed intensity spectra,
shown in the present paper, the plateaus in the focal-averaged
spectra [47] are more inclined and the oscillatory structure is
suppressed (or even absent).

We will now analyze electron-atom potential scattering with
a subsequent rescattering. In order to include the rescattering
effects in our analysis, we take into account both terms on the
right-hand side of Eq. (10). We first consider the influence of
the CEP φ on the energy spectra. The results are shown in
Fig. 3, where the DCS for potential scattering of electrons on
Ne atoms is presented as a function of the final electron energy.
The scattering is assisted by a linearly polarized few-cycle
laser pulse having a wavelength of 3100 nm and an intensity
of 2.5 × 1013 W/cm2, while the number of optical cycles is
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FIG. 3. The DCS for potential scattering of electrons on Ne atoms
in the presence of a linearly polarized few-cycle laser pulse, as a
function of the final electron energy Ef . Both the direct scattering and
rescattering are included. The laser wavelength and peak intensity are
3100 nm and 2.5 × 1013 W/cm2, respectively, while the number of
optical cycles is np = 4. The initial electron energy is Ei = 6 eV and
the scattering angle of the final-state electrons is θf = 0◦. The CEP φ

is denoted in each panel.

np = 4. The value of the CEP φ is denoted in each panel
of Fig. 3. The initial electron energy is Ei = 6 eV and the
scattering angle of the final-state electrons is θf = 0◦. There
are two plateaus in each panel of Fig. 3. The first plateau is
a consequence of the direct scattering of electrons on atomic
targets, while the second plateau describes rescattering. One
can notice that a change of the CEP affects the oscillatory
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A. ČERKIĆ AND D. B. MILOŠEVIĆ PHYSICAL REVIEW A 87, 033417 (2013)
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FIG. 4. (Color online) Classical results for the maximum value
of the final electron energy in the electron-atom scattering process as
a function of the CEP φ. The other laser field parameters, the initial
electron energy, and the scattering angle are the same as in Fig. 3.
The results for direct scattering (dashed black line, denoted by D)
and rescattering (solid blue line, denoted by R) are presented.

structure of the energy spectrum and it also shifts the cutoff
positions of the plateaus. Using the classical analysis of the
direct scattering and rescattering, we can predict how the cutoff
energy for the direct scattering and rescattering depends on
the CEP. The results are shown in Fig. 4, where the maximum
value of the final electron energy is presented as a function of
the carrier-envelope phase.

The influence of the scattering angle θf on the plateau
structures in energy spectra is analyzed in Fig. 5, where
the DCS for potential scattering of electrons on He atoms
is presented as a function of the final electron energy. The
wavelength and peak intensity of the few-cycle laser pulse
are 3300 nm and 3 × 1013 W/cm2, respectively. The CEP of
the pulse is φ = 0◦ and the number of optical cycles is np = 4.
The initial electron energy is Ei = 10 eV and the scattering
angle θf is denoted in each panel of Fig. 5. The results presented
in Fig. 5 clearly show that the plateau structures in energy
spectra are strongly dependent on the scattering angle of
the final-state electrons. If the scattering angle is increased
from θf = 0◦ to a certain value, the cutoff energy of both
plateaus decreases and the plateaus become shorter. A further
increase of the scattering angle causes an increase of the cutoff
energy and the plateaus become longer. For large values of the
scattering angle (θf > 90◦), the first plateau is longer than
the second one, so that the rescattering effects are masked
by the direct scattering contribution. This behavior of the
plateaus in the energy spectrum is confirmed by our classical
analysis. The results of the classical analysis are illustrated in
Fig. 6, where the maximum value of the final electron energy
is presented as a function of the scattering angle θf .

We will now consider how the number of optical cycles of
the laser pulse affects the energy spectrum of electron-atom
scattering when rescattering effects are included. In Fig. 7
the DCS for potential scattering of electrons on Ar atoms
is presented as a function of the final electron energy. The
wavelength and peak intensity of the few-cycle laser pulse
are 3000 nm and 1.8 × 1013 W/cm2, respectively. The CEP
of the pulse is φ = 0◦, while the number of optical cycles
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FIG. 5. The DCS for potential scattering of electrons on He atoms
in the presence of a linearly polarized few-cycle laser pulse, as a
function of the final electron energy Ef . Both the direct scattering
and rescattering are included. The laser pulse has a wavelength of
3300 nm and a peak intensity of 3 × 1013 W/cm2. The CEP of the
pulse is φ = 0◦ and the number of optical cycles is np = 4. The initial
electron energy is Ei = 10 eV, while the scattering angle θf is denoted
in each panel.

np is denoted in each panel of Fig. 7. The initial electron
energy is Ei = 5 eV and the scattering angle of the final-state
electrons is θf = 0◦. When we have previously considered
the direct scattering, we have seen that the oscillations in the
energy spectrum were denser and more pronounced for a larger
number of optical cycles (the energy spectra for np = 3 and
np = 6 were compared). The same is true for the rescattering,
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FIG. 6. (Color online) Classical results for the maximum value
of the final electron energy in the electron-atom scattering process as
a function of the scattering angle θf . The laser field parameters and
the initial electron energy are the same as in Fig. 5. The results for
direct scattering (dashed black line, denoted by D) and rescattering
(solid blue line, denoted by R) are presented.
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FIG. 7. The DCS for potential scattering of electrons on Ar atoms
in the presence of a linearly polarized few-cycle laser pulse, as a
function of the final electron energy Ef . Both the direct scattering
and rescattering are included. The laser wavelength and peak intensity
are 3000 nm and 1.8 × 1013 W/cm2, respectively, while the CEP is
φ = 0◦. The initial electron energy is Ei = 5 eV and the scattering
angle of the final-state electrons is θf = 0◦. The number of optical
cycles np is denoted in each panel.
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FIG. 8. (Color online) The DCS for potential scattering of
electrons in the presence of a linearly polarized few-cycle laser pulse,
as a function of the final electron energy Ef . Both the direct scattering
and rescattering are included. The laser pulse has a wavelength of
3000 nm and a peak intensity of 2.5 × 1013 W/cm2. The CEP of the
pulse is φ = 0◦ and the number of optical cycles is np = 4. The initial
electron energy is Ei = 8 eV, while the scattering angle is θf = 0◦.
The results for scattering of electrons on Xe (upper black line, denoted
by Xe) and He atoms (lower red line, denoted by He) are presented.

as we can see from Fig. 7 where the energy spectra for np = 4
and np = 7 are presented. Figure 7 shows that both the direct-
scattering and the rescattering plateau show a richer oscillatory
structure for a larger number of optical cycles, i.e., for np = 7.
This can be explained by the fact that the number of classical
solutions for scattering and rescattering times increases with
the increase of np. We have already illustrated this fact for
direct scattering (see Fig. 2).

The choice of the atomic target does not affect the maximum
value of the final electron energy for the direct scattering
and rescattering, but it does affect the value of the DCS.
This is illustrated in Fig. 8, where the DCSs for potential
scattering of electrons on He and Xe atoms are presented
as functions of the final electron energy. The wavelength
and peak intensity of the few-cycle laser pulse are 3000 nm
and 2.5 × 1013 W/cm2, respectively. The CEP of the pulse is
φ = 0◦, while the number of optical cycles is np = 4. The initial
electron energy is Ei = 8 eV and the scattering angle of the
final-state electrons is θf = 0◦. Figure 8 shows that, while the
cutoff positions of the direct-scattering and rescattering plateau
are the same for He and Xe, the DCS for electron scattering
on Xe atoms is much larger than that for electron scattering
on He atoms. The difference is three orders of magnitude for
direct scattering (first plateau) and five orders of magnitude
for rescattering (second plateau). This leads to the conclusion
that the process can be enhanced by the use of heavier atomic
targets.

V. CONCLUSIONS

In spite of the fact that the LAES was one of the first
observed multiphoton processes it still attracts the attention
of both theoretical and experimental physicists. The LAES
process is a part (the third step) of the HATI process
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and is characterized by the femtosecond time scale. Recent
experimental findings [30–34] have stimulated us to explore
the LAES process using few-cycle mid-infrared laser pulses.

We have formulated the S-matrix theory of few-cycle
laser-pulse-assisted electron-atom potential scattering. As in
the case of an infinitely long flat pulse, in the few-cycle pulse
case both the direct and rescattering plateaus develop in the
LAES spectra. We have shown that the length of these plateaus
depends on the value of CEP so that the cutoff position can be
controlled changing the CEP, and vice versa, the measurement
of the cutoff position can be used for determining the value of
CEP.

We have also explored the dependence of the structure
of LAES spectra on the laser pulse duration and found that

for longer pulses the spectrum is characterized by regions of
wild oscillations. Using our classical analysis we have shown
that the reason for such oscillations is the interference of a
large number of quantum orbits [24,44,45]. For shorter pulses
(consisting of three to four optical cycles) the number of such
(classical) solutions is smaller and wild oscillations appear
only for low energies of the final electrons.
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