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Near-resonant optical forces beyond the two-level approximation for a continuous
source of spin-polarized cold atoms

T. Vanderbruggen1,* and M. W. Mitchell1,2

1ICFO - Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain
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We propose a method to generate a source of spin-polarized cold atoms which are continuously extracted and
guided from a magneto-optical trap using an atom-diode effect. We show that it is possible to create a pipe-like
potential by overlapping two optical beams coupled with the two transitions of a three-level system in a ladder
configuration. With alkali-metal atoms, and in particular with 87Rb, a proper choice of transitions enables both
the potential generation and optical pumping, thus polarizing the sample in a given Zeeman state. We extend
the Dalibard and Cohen-Tannoudji dressed-atom model of radiative forces to the case of a three-level system.
We derive expressions for the average force and the different sources of momentum diffusion in the resonant,
nonperturbative regime. We show using numerical simulations that a significant fraction of the atoms initially
loaded can be guided over several centimeters with output velocities of a few meters per second. This would
produce a collimated continuous source of slow spin-polarized atoms suitable for atom interferometry.
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I. INTRODUCTION

The achievement of laser cooling [1] resulted in an
unprecedented control of atomic ensembles, which led to
a dramatic evolution of atom-based sensors such as atomic
clocks, inertial sensors, and magnetometers [2]. These sensors
are today state-of-the-art devices and their improvement is a
major technological issue.

However, the cold atom cloud as the source of the sensors
needs to be reloaded after each measurement cycle. This
limits the maximum repetition rate of the sensor and creates
a sampling of the measured variable. It is, for example,
responsible for the Dick effect that is nowadays limiting optical
lattice clocks [3]. The development of continuous cold atomic
sources can thus lead to important improvements and new
designs of atom interferometers. Continuous atomic sources
are often associated with an atomic guide that is usually
realized with a magnetic potential [4,5] and loaded from a
cold atomic source. Nevertheless, the presence of a magnetic
field may be a limitation for interferometric applications, and
particularly for magnetometers.

Here we propose an all-optical method to create a con-
tinuous source of guided cold atoms loaded directly from a
magneto-optical trap (MOT), as shown in Fig. 1(a). It relies
on an atom-diode effect [6,7] that permits the atoms to enter
into the guide but forbids them to escape. The method uses
optical pumping to both keep the atoms in the guided state
after loading and spin-polarize the sample in a given Zeeman
sublevel. The guide thus provides a collimated and continuous
source of polarized cold atoms suitable for atomic sensors.

The article analyses the main physical processes involved
in the proposal implementation and is organized as follows. In
a brief presentation of the method we explain how light-shift
engineering in a three-level system leads to the continuous
extraction of atoms from a MOT into an optical guide. We
then model the forces for a three-level atomic system in a
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ladder configuration (� system): from the master equation
in the Lindblad form, we derive the optical Bloch equations
and introduce the dressed state picture which simplifies the
description of the internal state dynamics to rate equations.
Since the guide performance is limited by the heating rates,
we quantify the various diffusion processes that an atom
experiences when it propagates along the guide. We exhibit
a possible implementation with 87Rb atoms, but the method
can be generalized to any alkali-metal atom. We finally
use the theoretical results previously obtained to simulate
the stochastic trajectories of atoms in the guide, solving
Langevin-like equations. From these simulations we estimate
the performance of the guide and show that the proposed
method is viable.

II. PRINCIPLE OF THE METHOD

We now give a brief overview of how the guide is generated
and continuously loaded, exhibit the various physical effects
involved, and explain how they combine.

The main idea is to coaxially overlap two beams [Fig. 1(b)]
to engineer the internal state light-shifts and design the
guiding potential. As shown in Fig. 1(c) for 87Rb atoms,
the first beam at 780 nm is tuned to the blue of the
|52S1/2,F = 2〉 → |52P3/2〉 transition, and to the red of the
|52S1/2,F = 1〉 → |52P3/2〉 transition. The 780 nm field then
realizes a state-dependent dipole potential: repulsive for atoms
in |F = 2〉 and attractive for atoms in |F = 1〉. The second
beam, placed on the red of the 52P3/2 → 42D5/2 transition at
1529 nm, induces a differential light-shift on the transition at
780 nm [8,9]. Therefore, the 780 nm radiation is far detuned
at the center of the beams, resulting in a strong reduction of
the dipole potential. As a consequence, the potential is created
only at the periphery of the beam, producing a state-selective
barrier with a pipe shape due to the cylindrical symmetry
of the problem. Moreover, the differential light-shift also
strongly lowers the spontaneous emission rate inside the guide,
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FIG. 1. (Color online) (a) Concept: A pipe-like potential is
generated all optically. It continuously extracts atoms from a
magneto-optical trap and guides them. (b) The 780 nm and 1529
nm beams are coaxial, with the 780 nm beam being slightly larger.
(c) Relevant atomic levels of 87Rb versus the transverse direction. The
1529 nm beam induces a position-dependent differential light-shift on
the transition at 780 nm. The detuning of the 780 nm beam is chosen
to generate a state-dependent dipole force which implements the atom
diode. For an atom in |F = 2〉, the potential in the transverse direction
is a double barrier, that is, a pipe, due to the cylindrical symmetry of
the problem.

reducing the heating rate and thus increasing the guided
distance of the atoms.

Due to the differential light-shift, the 780 nm light is
resonant (or nearly resonant) with atoms in |F = 1〉 at some
position inside the guide. Therefore, atoms in |F = 1〉 from
the MOT can pass through the guide barrier before being
repumped into the barrier-sensitive state |F = 2〉 by the 780
nm light. In other words, an atom can enter the guide but cannot
leave it: this is the atom-diode effect which continuously
extracts atoms from the MOT and fills the guide. We will see
in Sec. V A that a proper choice of polarizations for the optical
beams drives closed transitions that maintain the atoms in the
guided state |F = 2〉 while optically pumping and polarizing
the atomic sample.

For the atom-diode effect to occur the 780 nm radiation
is not far detuned from the 52S1/2 → 52P3/2 transition, and
spontaneous emission will play an important role in the
dynamics of the system. The scattering induces a heating of
the sample that limits the guided distance for a given transport
velocity. Moreover, the occupation of the excited states is
not negligible near the barrier, so that the dipole force of
the 1529 nm light contributes to the overall potential. These
effects may modify the naı̈ve description introduced above.
Therefore, to verify whether the method is viable and what
performance to expect, we developed a comprehensive model
of the problem, expanding the Dalibard and Cohen-Tannoudji
dressed-atom approach [11]. The following sections present a

FIG. 2. Three-level system in a � configuration. The system is
doubly driven with electromagnetic fields: the |1〉 ↔ |2〉 transition at
ω

(1)
0 is driven with a detuning �1 = ω

(1)
0 − ω

(1)
L (note that with this

sign convention � < 0 corresponds to blue detuned light) and a Rabi
frequency �1, whereas the |2〉 ↔ |3〉 transition at ω

(2)
0 is driven with

a detuning �2 = ω
(2)
0 − ω

(2)
L and a Rabi frequency �2. An atom in |2〉

can decay to |1〉 at a rate �1 and an atom in |3〉 can decay to |2〉 at a
rate �2. We assume there is no decay from |3〉 to |1〉.

detailed study of the optical forces and diffusion coefficients
for a three-level atomic system driven near resonance.

III. DIPOLE FORCES IN A THREE-LEVEL
ATOMIC SYSTEM

We estimate the dipole force and the related momentum
diffusion coefficients in a � system (Fig. 2). To solve
this problem, we derive the optical Bloch equations for
such a configuration and introduce the dressed-atom picture,
providing a simplified description of the system when the
secular approximation is valid.

A. Optical Bloch equations

According to the notations in Fig. 2, the Hamiltonian of the
atom in the rotating frame is, in the {|1〉,|2〉,|3〉} basis,

Hat = h̄

⎛
⎝0 0 0

0 �1 0
0 0 �2

⎞
⎠ . (1)

By introducing the jump operators σ12 = |1〉〈2| and σ23 =
|2〉〈3|, the atom-light interaction can be modeled with the
following Hamiltonian:

Hint = h̄�1

2
(σ12 + σ

†
12) + h̄�2

2
(σ23 + σ

†
23), (2)

where the optical phases are assumed to be constant in time
so that the Rabi frequencies �1 and �2 are real numbers.
The Hamiltonian that describes the internal energy of an atom
coupled to the two optical fields is thus V = Hat + Hint.
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The internal state evolution of the system is governed by
the following master equation:

∂tρ = − i

h̄
[V,ρ] + �1L [σ12] ρ + �2L [σ23] ρ, (3)

where the Lindblad superoperators that model the spontaneous
emission processes are

L[σ ]ρ = σρσ † − 1
2 {σσ †,ρ}, (4)

and {A,B} = AB + BA is the anticommutator. Using this
master equation, the optical Bloch equations for a � system
are derived in Appendix A 1.

In the end, we are interested in the external motion of the
atom which occurs at timescales much larger than the internal
state evolution. We thus assume that the internal atomic state
is always in the steady state ρ∞ ≡ limt→∞ ρ. The steady state
satisfies ∂tρ∞ = 0 and its value is derived in Appendix A 2.

B. Dressed-atom picture

The dressed states are defined as the eigenstates of the
Hamiltonian V , which admits the following eigendecomposi-
tion:

V = U †Ṽ U, (5)

where Ṽ = diag(Ẽα,Ẽβ,Ẽγ ) is diagonal in the basis
{|α〉,|β〉,|γ 〉} called the dressed states basis. U is the unitary
transformation between the bare and dressed states basis
{|1〉,|2〉,|3〉} ↔ {|α〉,|β〉,|γ 〉} [10].

A knowledge of the unitary transformation U allows us
to define the jump operators for the dressed states as σ̃ † =
Uσ †U †. Similarly, the density matrix in the dressed basis can
be obtained from the solution ρ of the Bloch equations in the
bare basis: ρ̃ = UρU †.

The main advantage of the dressed-atom description is that,
when the system is strongly driven, the secular approximation
applies and the equation of motion for the internal degrees of
freedom reduce to rate equations, as shown in Appendix B1.
The decay rate between the dressed states |k〉 and |k′〉 is

�k→k′ = �1 |(̃σ12)kk′ |2 + �2 |(̃σ23)kk′ |2 . (6)

The rate equations are

∂t ρ̃ + �ρ̃ = 0, (7)

where ρ̃ = (ρ̃αα,ρ̃ββ,ρ̃γ γ )T is the vector of the dressed state
populations and the rate matrix is

� =

⎛
⎜⎝

�α→β + �α→γ −�α→β −�α→γ

−�β→α �β→α + �β→γ −�β→γ

−�γ→α −�γ→β �γ→α + �γ→β

⎞
⎟⎠ .

(8)

The stationary populations ρ̃∞ are obtained by solving the
system �ρ̃∞ = 0 with ‖ρ̃∞‖1 = 1.

C. Dipole force

If the Rabi frequencies �1 and �2 are functions of the
spatial position coordinates r, as expected for Gaussian optical
beams, then the overall Hamiltonian of the atom, including

both the internal and external degrees of freedom, is

H = p2

2m
+ V (r), (9)

where p is the atomic momentum operator and m is the mass
of a single atom.

The dipole force operator can be defined from the Heisen-
berg equation of motion for the momentum operator [11],

F = d

dt
p = i

h̄
[H,p] = −∇V (r). (10)

Over a time interval long compared to the lifetimes 1/�1 and
1/�2, the mean force experienced by an atom at position r is
obtained from the average for the steady internal state,

〈F(r)〉 = Tr [F(r)ρ∞(r)] = −Tr{[∇V (r)]ρ∞(r)}. (11)

Note that 〈F(r)〉 
= −∇〈V (r)〉 since the density operator ρ∞
depends on the position r.

Since the trace of an operator is independent of the
basis choice, the mean dipole force can be written using
the steady state density matrix in the dressed states ba-
sis: 〈F〉 = Tr(Fρ∞) = Tr(UFU †Uρ∞U †) = Tr(̃Fρ̃∞) = 〈̃F〉.
In that case, a dipole force can be associated with each dressed
state,

〈̃F〉 = 〈̃Fα〉 + 〈̃Fβ〉 + 〈̃Fγ 〉, (12)

where 〈̃Fk〉 = −ρ̃∞
kk ∇Ẽk . The potential can then be obtained

by integrating the force.

IV. HEATING RATES

As we will see in Sec. V B, the doubly driven � system
can create a double barrier potential in exchange for a non-
negligible spontaneous emission rate near the barrier position.
Those spontaneous emission events are a source of heating. It
is thus necessary to quantify the various heating processes to
estimate whether the proposed method is viable.

The stochastic fluctuations of the atomic momentum result
in a random walk of the trajectory in momentum space that
increases the kinetic energy of an atom in the guide. This
phenomena limits the atomic lifetime and thus the guided
distance for a given mean velocity of the atoms. Two stochastic
processes are responsible for this effect:

(i) the radiation pressure due to the discrete nature of the
spontaneous scattering events and the random direction in
which the photon is emitted;

(ii) the dipole force fluctuation due to the random variation
of the internal atomic state [11,12].

The velocity dispersion induced by a given process is
characterized by a diffusion coefficient D. It is defined so
that an infinitesimal variation of the velocity during a time
interval dt satisfies

dv =
√

DdWt , (13)

where dWt = ζ
√

dt is the increment of a Wiener noise pro-
cess, and ζ is a random vector with a normally distributed norm
of unitary variance (|ζ | ∈ N (0,1)) and a random direction.

It must be noted that all the heating processes result
from the same stochastic source: the spontaneous emission.
As a consequence, the processes are not only correlated
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but synchronized since the change of the recoil and dipo-
lar forces occurs simultaneously. This effect may modify
the resulting diffusion coefficient compared to the unsyn-
chronized case where the two processes are uncorrelated.
Nevertheless, in the following we assume that the processes
are independent and do not consider any synchronization
effect.

We will now determine the diffusion coefficients associated
with both the radiation pressure and the dipole force fluctua-
tion.

A. Radiation pressure fluctuation

The diffusion coefficient associated with the radiation
pressure at the wavelength λk (k = 1,2) is

Dk(r) =
(

h̄kR

m

)2

�
(k)
S (r), (14)

where kR is the single photon recoil momentum at λk , m is
the atomic mass, and the scattering rate is proportional to
the decay rate and to the population in the bare state |k〉:
�

(k)
S (r) = �kρ

∞
kk (r).

If the diffusion coefficient in a given spatial direction
is desired, a prefactor must be applied depending on the
polarization of the considered transition. For example, for the
isotropic diffusion due to s-wave scattering the prefactor is
1/3 for all directions, whereas for a σ+/− transition a factor of
1/4 must be applied for the two directions orthogonal to the
dipole axis and a factor of 1/2 for the last direction.

B. Dipole force fluctuation

Since the internal atomic state changes at random times,
the dipole force fluctuates around its mean value [Eq. (12)].
From the rate equations of the dressed states populations
[Eq. (7)], we see that the stochastic evolution of the dipole
force {̃Ft ,t � 0} is a continuous time Markovian process with
infinitesimal generator � given by Eq. (8).

The diffusion coefficient is given by Ref. [11]:

Ddip = lim
t→∞

1

m2

∫ ∞

0
(〈̃Ft F̃t+τ 〉 − 〈̃Ft 〉2) dτ. (15)

Since the process is Markovian, we show in Appendix B2 that
the diffusion coefficient along a direction ε ∈ {x,y,z} satisfies
the following relation:

D
(ε)
dip = 1

m2
〈̃F(ε),��F̃(ε)〉, (16)

where F̃(ε) = (̃F(ε)
α ,̃F(ε)

β ,̃F(ε)
γ )T is the vector of the forces in the

different dressed states with F̃(ε)
k = −(∇Ẽk)ε, �� is the group

inverse of �, and the scalar product is defined as 〈x,y〉 =∑
i ρ̃

∞
ii xiyi . This formula allows us to calculate the diffusion

coefficient of any system described by a set of rate equations
(Markovian process). Moreover, it provides an efficient way
to perform a numerical estimation.

V. IMPLEMENTATION WITH RUBIDIUM 87 ATOMS

We now present how to implement the guided continuous
source with 87Rb atoms. We first show how an effective

FIG. 3. (Color online) Cycling transitions in 87Rb. (a) The use of
σ+ polarized light allows us to drive a doubly closed transition while
providing optical pumping. (b) The decay from the 42D5/2 state to
the 52P1/2 state is forbidden.

� system can be realized within the complicated structure
of 87Rb transitions using a proper choice of polarizations
for the optical fields. We then use the previous results to
determine the parameters for a suitable configuration and
analyze the atom loading process into the guide based on the
atom-diode effect. We also explain how the transport velocity
along the guide can be controlled using counter-propagating
beams. Finally, we simulate atom trajectories along the
guide using stochastic Langevin-like differential equations
to quantify the expected performance in terms of guided
efficiency along a given distance and output velocity.

A. Doubly closed transitions

A closed � system within the 87Rb structure is realized
using the 52S1/2 → 52P3/2 transition at 780.24 nm and the
52P3/2 → 42D5/2 transition at 1529.37 nm [13]. Therefore, it
realizes a very good approximation of the theoretical model
developed above. Note that this idea can be generalized to
other alkali-metal atoms since they have analogous struc-
tures. Furthermore, the choice of the 1529 nm wavelength
is appealing since laser technologies developed for optical
telecommunications can be used.

The use of σ+ polarized electromagnetic fields both opti-
cally pumps the sample and drives closed transitions between
the Zeeman substates |F = 2, mF = 2〉 → |F ′ = 3, m′

F = 3〉
and |F ′ = 3,m′

F = 3〉 → |F ′′ = 4,m′′
F = 4〉, as depicted in

Fig. 3(a). Note also that, with this choice of hyperfine states,
a decay into the 52P1/2 state is forbidden (�F > 1), as shown
in Fig. 3(b). Such a configuration is thus equivalent to the �

system sought for. Moreover, since an atom in |F = 2〉 loaded
inside the guide cannot decay into |F = 1〉 after a spontaneous
emission event, the atom will remain in the guided state, thus
avoiding its loss during propagation.

B. A possible configuration

We analyze the properties of the guide obtained in the
following specific configuration. The 780 nm beam has a
waist of 1 mm and an intensity of 1000 mW/cm2 (the optical
power is thus 16 mW), blue detuned by �1 = −2π × 485 MHz
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FIG. 4. (Color online) Dipole trap properties vs transverse po-
sition at the waist of the beams. (a) Dipole potential for an atom
in |F = 2〉 (blue) and |F = 1〉 (red). The potential in |F = 1〉 is
represented only in a region where the scattering rate is low since
|F = 1〉 is not a stationary state of the system. (b) Scattering rates
at 780 nm (blue) and 1529 nm (black) for an atom in |F = 2〉 (solid
line) and |F = 1〉 (dashed line). (c) Diffusion coefficient for an atom
in |F = 2〉 due to the recoil at 780 nm (blue), at 1529 nm (black) and
to the fluctuations of the dipole force (brown).

from the |F = 2〉 → |F ′ = 3〉 transition and �1 = 2π ×
6.065 MHz [14].

The beam at 1529 nm has a waist of 300 μm and thus a
Rayleigh range of 18 cm. Its intensity is 3 × 105 mW/cm2

(a power of 420 mW), and the detuning is �2 = +2π ×
133 MHz to the red of the |F ′ = 3〉 → |F ′′ = 4〉 transition.
The transition linewidth is �2 = 2π × 2 MHz [15,16].

From these parameters, we determine the steady state
density matrix versus spatial position using the results in
Appendix A 2, and estimate the dipole potential after inte-
grating the dipole force [Eq. (12)]. The results are presented
in Fig. 4.

C. Loading of the guide

We see in Fig. 4(a) that, for an atom in |F = 2〉, the potential
has a double barrier shape, creating a pipe-like potential due
to the cylindrical symmetry of the problem. The guide depth
is 365 μK. Conversely, for an atom in |F = 1〉, the potential
is flat at the barrier position. The proposed configuration thus
implements the state-dependent potential necessary to obtain
the atom-diode effect.

Nevertheless, for the atom-diode effect to occur an atom
in |F = 1〉 must first pass through the barrier and then be
repumped into |F = 2〉, after passing the barrier maximum.
In other words, an atom in |F = 1〉 should not scatter more

than a few photons between the moment when it enters the
780 nm beam and the moment when it reaches the position of
the barrier maximum. From Fig. 4(b), we see that the barrier
width is about 0.1 mm wide and the scattering rate is below 1
kHz before the barrier maximum. As a consequence, an atom
with a velocity of ∼10 cm/s scatters less than one photon
while crossing the barrier, resulting in a low probability for
the atom to be repumped. Conversely, the scattering rate of an
atom in |F = 1〉 strongly increases at the guide center and the
atom will be pumped into the trap sensitive state, thus realizing
the atom-diode based loading. This effect is studied in details
using a numerical simulation in Sec. V F2.

D. Heating rates

By creating a differential light-shift, the 1529 nm radiation
not only creates the guide barriers but also reduces the
scattering rates, and thus the diffusion coefficients due to
photon recoil, at 780 nm and 1529 nm by about two orders of
magnitude [Fig. 4(c)]. This effect strongly lowers the heating
rate of the guided sample.

Nevertheless, the heating rate due to the recoils cannot be
made arbitrarily small. The reason is that the diffusion due
to the dipole force fluctuation increases with the intensity at
1529 nm because of the enhanced light-shift. A compromise
must thus be found between the spontaneous emission rate
and the dipole force diffusion. In the present configuration,
the parameters are adjusted so that the diffusion due to the
recoil is of the same order as the one induced by the dipole
force fluctuation.

E. Transport along the guide

To transport the atoms, an extra force must be applied along
the guide axis. By counterpropagating the beams at 780 nm
and at 1529 nm, the scattering imbalance between the two
beams pushes the atoms in a given direction with a force

Fpush(r) = h̄∂tk = h̄
(
�

(1)
S (r)k(1)

R − �
(2)
S (r)k(2)

R

)
uz, (17)

where k
(k)
R is the single-photon recoil impulsion at the

wavelength λk and uz is the unit vector in the z direction. The
spatial distribution of the pushing force is depicted in Fig. 5.
The velocity of an atom inside the guide is almost constant
whereas the atom accelerates near the barrier.

F. Numerical simulation

Since the heating processes limit the lifetime of the guided
sample, a compromise must be found between the transport
velocity and the guided length: the atomic sample at the guide
output should be cold—meaning that the output velocity and its
dispersion should be of the order of a few meters per second—
while the sample should be guided along a few centimeters.
This distance is sufficient, for instance, to deliver atoms inside
the magnetic shield required for any kind of high-performance
atom interferometer, particularly since the MOT magnetic field
is continuously operated.

To validate that the proposed configuration satisfies these
requirements we numerically simulate the trajectories of atoms
along the guide, solving a set of Langevin equations. The
statistical analysis of the behavior over a large number of
trajectories allows us to estimate the expected performances
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FIG. 5. Pushing acceleration vs the transverse position resulting
from the counterpropagation of the 780 and 1529 nm beams
(g = 9.81 m/s2).

of the system in terms of guided distance and output velocity
distribution. Moreover, the loading process is included in the
simulation to consider its influence on the guided sample.

1. Langevin equations

The simulation relies on the fact that the internal degrees
of freedom of an atom evolve on a much shorter time-scale
(limited by the lifetime of the excited states to submicrosec-
onds) than the external ones (∼ms). This allows us to employ
a semiclassical description of the problem, describing the
internal state evolution according to quantum mechanics while
modeling the external dynamics with Langevin-like equations
(Newton equations with stochastic velocity increments).

The momentum diffusion of the atoms generates a random
walk of their velocities in the transverse direction, inducing

stochastic heating. This random walk can be modeled from
the diffusion coefficients derived in Sec. IV and with a Wiener
increment [Eq. (13)] in the differential equation of motion.
Explicitly, the velocity vector v = (vx,vy,vz) evolution is
governed by the following system of stochastic differential
equations:

dvx(t) = 1

m
Fx(r(t))dt +

√
D1(r(t))dW

(1)
x,t

+
√

D2(r(t))dW
(2)
x,t +

√
D

(x)
dip(r(t))dW

(dip)
x,t , (18a)

dvy(t) = 1

m
Fy(r(t))dt +

√
D1(r(t))dW

(1)
y,t

+
√

D2(r(t))dW
(2)
y,t +

√
D

(y)
dip(r(t))dW

(dip)
y,t , (18b)

dvz(t) = 1

m
[Fz(r(t)) + Fpush(r(t))]dt +

√
D1(r(t))dW

(1)
z,t

+
√

D2(r(t))dW
(2)
z,t +

√
D

(z)
dip(r(t))dW

(dip)
z,t . (18c)

We solve this system using a Monte Carlo method to
simulate atom trajectories along the guide and employ the
Runge-Kutta method [17] to perform the numerical integration
of the system.

2. Initial conditions and loading of the guide

We first describe the initial conditions of the simulation and
use the simulation to analyze the loading efficiency—that is,
the probability for an atom to enter the guide—and the velocity
distribution of the loaded atoms.

The atom is initially in the |F = 1〉 state and located along
the y axis at a distance of 3 mm from the guide axis. Since the
atoms in the MOT are far from degeneracy, the initial velocity
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FIG. 6. Trajectory of an atom along the guide obtained by numerical integration of the system of stochastic differential equations [Eqs. (18)].
The simulation includes the loading of the atom inside the guide. The atom is initially in |F = 1〉 and placed at 1.5 mm from the guide
axis. It is launched towards the guide with a velocity distributed according to a Maxwell-Boltzmann law with temperature T0 = 50 μK.
(a) Trajectory along the guide. The atom is reflected off the guide barrier until it escapes the guide when the transverse kinetic energy is higher
than the height of the barrier. (b) Evolution of the velocities along the three directions. When a reflection occurs, the transverse velocities exhibit
sudden sign changes and the longitudinal velocity increases due to the higher spontaneous emission rate near the barrier. (c) The Brownian
motion of the transverse velocities responsible for the heating of the sample by increasing the radial kinetic energy.
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v0 is distributed according to a Maxwell-Boltzmann law,

f (v) =
√

2

π

v2

δv3
exp

(
− v2

2δv2

)
, (19)

for a temperature T0 = 50 μK corresponding to a velocity
dispersion δv = √

kBT0/m ∼ 7 cm/s, and the initial velocity
vector is v0 = (v0,0,0). Moreover, the Doppler frequency shift
(�νD = −v/λ) is included in the simulation.

During the propagation of the atom towards the guide, we
estimate at each step of the simulation the probability for the
atom to be pumped into the stable state |F = 2,mF = +2〉 and
then randomly determine whether the atom is pumped or not.
More precisely, we use the knowledge of the scattering rate at
each position �

(1)
S (r) and the fact that on average 2.4 photons

must be scattered to pump the atom. We consider that an atom
is loaded inside the guide when it is pumped at less than 0.5 mm
from the guide center (which corresponds to the guide radius
defined from the position of the barrier maximum). From the
simulation of 104 stochastic trajectories, we find that about
21% of the atoms are loaded into the guide.

After selecting the trajectories that lead to loaded atoms,
we analyze the velocity distribution of the atoms before
their further transport along the guide. We define the loaded
velocity as that when the atom first reaches the plane y = 0.
From a large number of loading simulations we estimate the
velocity distribution and the result is presented in Fig. 7.
The resulting distribution is well described by the initial
Maxwell-Boltzmann distribution [Eq. (19)] for T0 = 50 μK
shifted by 2.3 cm/s, and the mean velocity of the loaded
atoms is 13.4 cm/s. This deterministic increase of kinetic
energy has two contributions: first the |F = 1〉 potential is
slightly attractive, and secondly the atom rolls down the barrier
potential after being pumped into |F = 2〉. However, it is
interesting to note that the velocity dispersion of the loaded
atoms remains that of the atoms in the MOT.

3. Transport along the guide

We now analyze the transport of the atoms along the guide.
An example of a simulated trajectory is presented in Fig. 6. We
see that the atom is guided along the beam axis by reflections
off the potential barrier. During the reflections, the transverse
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FIG. 7. (Color online) Velocity distribution of the loaded atoms.
The histogram is the distribution obtained from the simulation of 2132
Monte Carlo trajectories, the solid green line is the initial Maxwell-
Boltzmann distribution with T0 = 50 μK, and the solid blue line is
the initial distribution shifted by 2.3 cm/s.
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FIG. 8. (Color online) Statistical properties obtained from the
simulation of 2132 atomic trajectories. (a) Probability for an atom to
be guided over a given distance. Inset: The distribution for the lifetime
of an atom in the guide. (b) Longitudinal velocity distribution at a
guided distance of 5 cm.

velocities reverse while the longitudinal velocity increases
due to the higher scattering rate near the guide barrier. This
demonstrates the effect of the pushing force (discussed in
Sec. V E), which is nondeterministic since it depends on the
stochastic atomic trajectory.

Simulating a large number of atomic trajectories allows
us to estimate the guide performance. The distribution of
the guided distances—an atom is lost when it is further than
0.5 mm from the guide axis—shows that a significant fraction
of the loaded atoms (∼16%) have been guided over at least
5 cm [Fig. 8(a)]. Moreover, from the velocity distribution at the
guided distance of 5 cm [Fig. 8(b)] we determine that the mean
velocity is 3.9 m/s with a dispersion of 2.1 m/s, corresponding
to a temperature of about 25 mK. Note that transverse
cooling could be added [18]: either to maintain a given
propagation distance while reducing the longitudinal velocity,
or to increase the propagation distance for a given velocity. A
better control of the longitudinal velocity could be achieved
by retropropagating the beams at 780 nm and 1529 nm and
precisely tuning the power ratios between the forward and
backward directions; in that case, a grating would be generated
and sub-Doppler cooling mechanisms could be exploited.

VI. CONCLUSION

We proposed and theoretically analyzed an all-optical
method to produce a continuous source of cold atoms in a
spin-polarizing guide. The resulting system is a combination
of several physical effects, and notably an atom-diode effect
based on light-shift engineering in a three-level atom.

To engineer the system, we modeled the dipole forces in
a doubly-driven � system and provided a deep description
of the diffusion processes responsible for the heating of the
atomic sample. These results constitute a general theoretical
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framework which can be used to design other atom control
methods based on � systems.

We finally presented and studied in detail a possible
implementation with 87Rb. In particular, we isolated a closed
three-level transition which can be driven with reliable optical
sources based on diode laser and telecommunication technolo-
gies. Since the guide consists in overlapping two optical beams,
the experimental implementation should be compact and
simple to operate which are interesting features for embedded
applications. We showed with numerical simulations that a
guiding distance of several centimeters is achievable and
compatible with slow velocities of a few meters per second.
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APPENDIX A: OPTICAL BLOCH EQUATIONS
AND STEADY STATE SOLUTION

1. Optical Bloch equations

In the {|1〉,|2〉,|3〉} basis, the density operator can be written
as

ρ =
⎛
⎝ρ11 ρ12 ρ13

ρ∗
12 ρ22 ρ23

ρ∗
13 ρ∗

23 ρ33

⎞
⎠ , (A1)

and Eq. (3) provides the optical Bloch equations for a �

system:

∂tρ11 = i
�1

2
(ρ12 − ρ∗

12) + �1ρ22, (A2a)

∂tρ22 = −i
�1

2
(ρ12 − ρ∗

12) + i
�2

2
(ρ23 − ρ∗

23)

+�2ρ33 − �1ρ22, (A2b)

∂tρ33 = −i
�2

2
(ρ23 − ρ∗

23) − �2ρ33 (A2c)

∂tρ12 =
(

−�1

2
+ i�1

)
ρ12 − i

�1

2
(ρ22 − ρ11) + i

�2

2
ρ13,

(A2d)

∂tρ13 =
(

−�2

2
+ i�2

)
ρ13 + i

�2

2
ρ12 − i

�1

2
ρ23, (A2e)

∂tρ23 =
[
−1

2
(�1 + �2) + i (�2 − �1)

]
ρ23

= − i
�2

2
(ρ33 − ρ22) − i

�1

2
ρ13. (A2f)

2. Steady state of the density matrix

The steady state solution of the optical Bloch equations
is obtained for ∂tρ∞ = 0. Since Tr(ρ) = 1, one has the
following relation between the populations: ρ11 + ρ22 + ρ33 =
1. Moreover, ρij − ρ∗

ij = 2i Im ρij and the steady state thus
obeys the following system of equations:

−�1Imρ12 + �1ρ22 = 0, (A3a)

�2Imρ23 − �2ρ33 = 0, (A3b)(
−�1

2
+ i�1

)
ρ12 − i

�1

2
(2ρ22 + ρ33 − 1) + i

�2

2
ρ13 = 0,

(A3c)(
−�2

2
+ i�2

)
ρ13 + i

�2

2
ρ12 − i

�1

2
ρ23 = 0, (A3d)[

−1

2
(�1 + �2) + i (�2 − �1)

]
ρ23

− i
�2

2
(ρ33 − ρ22) − i

�1

2
ρ13 = 0. (A3e)

Note that the second equation has been removed since it
can be obtained from a linear combination of the first and the
third equations.

To solve this system, we split the density matrix components
into real and imaginary parts: ρij = ρR

ij + iρI
ij . From Eqs.

(A3a) and (A3b) we obtain the relationship between the
coherences and the populations in |2〉 and |3〉:

ρ22 = �1

�1
ρI

12, (A4a)

ρ33 = �2

�2
ρI

23. (A4b)

The real parts of Eqs. (A3c), (A3d), and (A3e) provide the
following relations between the real and imaginary parts of the
coherence terms:⎛
⎜⎝

ρR
12

ρR
13

ρR
23

⎞
⎟⎠ =

⎛
⎜⎝

−2�1/�1 −�2/�1 0

−�2/�2 −2�2/�2 �1/�2

0 �1
�1+�2

−2�2−�1
�1+�2

⎞
⎟⎠

⎛
⎜⎝

ρI
12

ρI
13

ρI
23

⎞
⎟⎠ .

(A5)

From this relation and the imaginary parts of Eqs. (A3c),
(A3d), and (A3e), we show that the imaginary parts of the
coherences are solutions of the following system:

M

⎛
⎜⎝

ρI
12

ρI
13

ρI
23

⎞
⎟⎠ =

⎛
⎜⎝

�1�1

0

0

⎞
⎟⎠ , (A6)

where

M =

⎛
⎜⎝

�2
1 + 4�2

1 + 2�2
1 + �1

�2
�2

2 2�2
(
�1 + �1

�2
�2

)
0

2�2
(
�2 + �2

�1
�1

)
�2

2 + 4�2
2 + �2

�1
�2

2 + �2
�1+�2

�2
1 −2 �2

�1+�2
�1(�2 − �1)

�1�2
(
1 + �2

�1

)
2�1

(
�2 + �2

�1+�2
(�2 − �1)

) −�2
1 − �2

2 − 4 �2
�1+�2

(�2 − �1)2 − �2(�1 + �2)

⎞
⎟⎠ . (A7)
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As a consequence, the determination of the inverse matrix M−1

allows us to solve the system (A6), and thus to fully determine
the steady state density matrix ρ∞ using the relations (A5)
and (A4).

APPENDIX B: CALCULATION OF THE DIFFUSION
COEFFICIENT OF THE DIPOLE FORCE FLUCTUATION

Here we calculate the diffusion coefficient associated with
the dipole force fluctuation. Using the master equation in the
dressed state basis we show that, in the secular approximation,
the dressed state populations obey rate equations. This means
that the stochastic internal state evolution is a continuous time
Markov process. We then derive a general expression for the
diffusion coefficient associated with a Markov process. This
result is finally applied in the case of the dipole force diffusion.

1. Evolution of the dressed states populations

The master equation (3) can be written for the operators in
the dressed state basis as

∂t ρ̃ = − i

h̄
[Ṽ ,ρ̃] + �1L [̃σ12] ρ̃ + �2L [̃σ23] ρ̃. (B1)

Following [19], we project Eq. (B1) on a given dressed state
|i〉. Since Ṽ |i〉 = Ei |i〉, one has 〈i|[Ṽ ,ρ̃]|i〉 = 0, the only
contribution to the population evolution of the dressed states
is thus provided by the projection of the Lindblad terms:

〈i|L[̃σ ]ρ̃|i〉 = 〈i |̃σ ρ̃σ̃ †|i〉 − 1
2 〈i |̃σ σ̃ †ρ̃|i〉 − 1

2 〈i|ρ̃σ̃ σ̃ †|i〉.
(B2)

From the decomposition of the density matrix in the dressed
states basis,

ρ̃ =
∑
j,l

ρ̃j l |j 〉 〈l| , (B3)

we obtain

〈i| σ̃ ρ̃σ̃ † |i〉 =
∑
j,l

ρ̃j l 〈i| σ̃ |j 〉 〈l| σ̃ † |i〉 . (B4)

We now assume that we are in the limit �1 � �1 and �2 � �2,
in which case the coherences evolve fast compared to the
populations. We can thus perform the secular approximation
where the coherences are replaced by their mean value—that
is, for j 
= l, 〈ρ̃j l〉 ∼ 0—and thus obtain

〈i |̃σ ρ̃σ̃ † |i〉 =
∑

j

ρ̃jj |(̃σ )ij |2. (B5)

Decomposing again the density operator in the dressed state
basis, we have

〈i |̃σ σ̃ †ρ̃|i〉 =
∑
j,l

ρ̃j l〈i |̃σ σ̃ †|j 〉〈l|i〉 (B6)

=
∑

j

ρ̃j i 〈i| σ̃ σ̃ † |j 〉 (B7)

∼ ρ̃ii 〈i| σ̃ σ̃ † |i〉 , (B8)

where the last line is obtained using the secular approximation
again. From the resolution of unity

∑
j |j 〉〈j | = 1, we finally

obtain

〈i |̃σ σ̃ †ρ̃|i〉 = ρ̃ii〈i |̃σ
⎛
⎝∑

j

|j 〉〈j |
⎞
⎠ σ̃ †|i〉 (B9)

= ρ̃ii

∑
j

|(̃σ )ij |2. (B10)

Combining these results according to the master
equation (B1), the evolution of the populations finally reduces
to the following rate equations:

∂t ρ̃ii = −
⎛
⎝∑

j

�i→j

⎞
⎠ ρ̃ii +

∑
j

�i→j ρ̃jj , (B11)

where the transition rates are:

�i→j = �1|(̃σ12)ij |2 + �2|(̃σ23)ij |2. (B12)

Introducing the dressed states populations vector ρ̃ =
(ρ̃αα,ρ̃ββ,ρ̃γ γ )T , the population equations (B11) can be written
as

∂t ρ̃ + �ρ̃ = 0, (B13)

where

� =

⎛
⎜⎝

�α→β + �α→γ −�α→β −�α→γ

−�β→α �β→α + �β→γ −�β→γ

−�γ→α −�γ→β �γ→α + �γ→β

⎞
⎟⎠ .

(B14)

It is important to note that det � = 0, which means that � is
singular.

The populations thus evolve according to

ρ̃(t) = e−�t ρ̃(0). (B15)

This relation allows us to determine the transition prob-
ability Pij (τ ) = P (j,τ |i,0), that is, the probability to be in
the state |j 〉 at time t = τ given that it was in state |i〉 at
time t = 0. In other words, this is the population ρ̃jj (τ ) given
that initially ρ̃ii(0) = 1. The relation (B15) thus provides the
transition probability matrix

P (τ ) = e−�τ . (B16)

The internal state evolution is a homogeneous continuous time
Markov process associated with the transition matrix P(τ ). The
Markov process is characterized by � which is the infinitesimal
generator of this process: it is the generator of the semigroup
{P(τ ),τ � 0} and forward time translation is mapped onto
this semi-group though the Chapman-Kolmogorov relation
∀τ2 � τ1, P(τ1 + τ2) = P(τ1)P(τ2).

2. Diffusion coefficient of the dipole force fluctuation

We have shown that the stochastic evolution of the internal
state is a homogeneous continuous time Markov process with
generator �. Since for each dressed state |k〉 there corresponds
a given dipole force F̃k = −∇Ẽk , the stochastic dipole force
evolution {̃Ft ,t � 0} is also a homogeneous continuous time
Markov process with generator �. The transition graph
associated with this Markov chain is depicted in Fig. 9.
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FIG. 9. (Color online) Transition graph of the Markov chain that
follows the dipole force in the dressed states basis.

Since there is a unique stationary population distribution
ρ̃∞, the Proposition in Appendix B3 gives the diffusion
coefficient for the momentum dispersion associated with the
stochastic evolution of the dipole force,

Ddip = 1

m2
〈̃F,��F̃〉, (B17)

where F̃ = (̃Fα,̃Fβ ,̃Fγ )T , �� is the group inverse of �, and the
scalar product is defined as 〈x,y〉 = ∑

i ρ̃
∞
ii xiyi .

3. Diffusion coefficient of a Markov process

Generalizing the definition of the diffusion coefficient for
the dipole force [Eq. (15)], we define here the diffusion coeffi-
cient associated with a homogeneous continuous time Markov
chain (HCTMC) and show that it can be efficiently calculated
using the group inverse of the infinitesimal generator of the
process.

A HCTMC {Xt,t � 0} is characterized by its transition
matrix P(τ ) with elements Pij (τ ) = P (Xτ = xj |X0 = xi).
It is a stochastic matrix:

∑
i Pij (τ ) = 1, which obeys the

Kolmogorov forward equation

d

dτ
P(τ ) + GP(τ ) = 0, (B18)

where G is called the infinitesimal generator of the HCTMC.
Since the initial condition P(0) = 1 must be verified, the
solution of this differential equation is P(τ ) = exp(−Gτ ).
The generator satisfies

∑
i Gij = 0 and all the off-diagonal

elements must be negative.
The analysis of the long-term behavior of the Markov

process makes use of the stationary probability vector �∞

which is the probability to be in a given state of the chain after
an infinite time. It satisfies �∞G = 0 with ‖�∞‖1 = 1. To
quantify the fluctuations of the stochastic variable around the
stationary distribution we define the diffusion coefficient:

Definition. Let X = {Xt,t � 0} be an irreducible HCTMC
over the countable state space S = {xi} with transition matrix
P(τ ). If a stationary distribution �∞ exists, then the diffusion

coefficient of X is defined as

DX =
∫ ∞

0
(〈X∞Xτ 〉 − 〈X∞〉2) dτ, (B19)

where

〈X∞Xτ 〉 =
∑
i,j∈S

xixj�
∞
i Pij (τ ) , (B20)

〈X∞〉 =
∑
i∈S

xi�
∞
i . (B21)

The transition matrix elements must satisfy
limτ→∞ Pij (τ ) < ∞, which means that any eigenvalue
of G must be positive. Moreover, if all the eigenvalues
are strictly positive then limτ→∞ P(τ ) = 0 which is not a
stochastic matrix. As a consequence the generator must have
at least one eigenvalue equal to zero, meaning that G is
singular.

These properties—which are a consequence of the Perron-
Frobenius theorem—allow us to relate the diffusion coefficient
to the generator of the Markov chain. More specifically, the
diffusion coefficient is the quadratic form involving the states
of the chain and associated with the group inverse (a special
kind of pseudoinverse) of G. This result is particularly useful
for the numerical calculation of the diffusion coefficient.

Proposition. Let X = {Xt,t � 0} be an irreducible
HCTMC over the countable state space S = {xi} which has a
stationary distribution �∞. If G is the infinitesimal generator
of X, then the diffusion coefficient is

DX = 〈x,G�x〉, (B22)

where x = (xi) is the column vector of the Markov chain states,
G� is the group inverse of G, and the scalar product is defined
as 〈x,y〉 = ∑

i∈S �∞
i xiyi .

Proof. Since 〈X∞〉2 = ∑
i,j∈S xixj�

∞
i �∞

j , it follows that

〈X∞Xτ 〉 − 〈X∞〉2 =
∑
i,j∈S

xixj�
∞
i (Pij (τ ) − �∞

j ). (B23)

Moreover, X is irreducible and has a stationary distribution,
and therefore the theorem of convergence to invariant distri-
bution for a continuous time Markov chain is satisfied, and
Pij (∞) ≡ limτ→∞ Pij (τ ) = �∞

j , which results in

DX =
∑
i,j∈S

xixj�
∞
i Zij = 〈x,Zx〉, (B24)

where Z = ∫ ∞
0 [P(τ ) − P(∞)]dτ . Finally, the Lemma here-

inafter provides the relation between the fundamental matrix
and the generator of the chain: Z = G�. As a result the diffusion
coefficient is DX = 〈x,G�x〉. �

The calculation of the diffusion coefficient results from the
calculation of the so-called fundamental matrix or deviation
matrix Z [20,21], which is related to the expected time spent
in state j starting from i. It is equal to the group inverse of the
Markov chain generator.

Lemma.

Z ≡
∫ ∞

0
[P(τ ) − P(∞)] dτ = G�. (B25)
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Proof. By the Perron-Frobenius theorem, the generator
admits the following eigendecomposition:

G = V [0 ⊕ �] V−1, (B26)

with � = diag(λ1, . . . ,λn), n being the number of nonzero
eigenvalues and λi > 0. It results in

P(τ ) = e−Gτ = V[1 ⊕ e−�τ ]V−1, (B27)

and since λi > 0,

P(∞) = lim
τ→∞ V[1 ⊕ e−�τ ]V−1 = V[1 ⊕ 0]V−1. (B28)

The deviation from the stationary probability is thus

P(τ ) − P(∞) = V[0 ⊕ e−�τ ]V−1. (B29)

We can now evaluate the integral

Zij =
∫ ∞

0
(V[0 ⊕ e−�τ ]V−1)ij dτ (B30)

=
∫ ∞

0

∑
ll′

Vil[0 ⊕ e−�τ ]ll′V−1
l′j dτ (B31)

=
∑
ll′

Vil

[
0 ⊕

∫ ∞

0
e−�τ dτ

]
ll′

V−1
l′j . (B32)

Using again the fact that λi > 0, it follows that∫ ∞

0
e−�τ dτ = �−1 = diag

(
λ−1

1 , . . . ,λ−1
n

)
, (B33)

and finally

Zij =
∑
ll′

Vil[0 ⊕ �−1]ll′V−1
l′j = (V[0 ⊕ �−1]V−1)ij .

(B34)

Writing � = 0 ⊕ � and �� = 0 ⊕ �−1 we have G = V�V−1

and Z = V��V−1. Clearly ���� = �, ����� = �� and
��� = ���, therefore

GZG = V����V−1 = V�V−1 = G, (B35)

ZGZ = V�����V−1 = V��V−1 = Z, (B36)

GZ = V���V−1 = V���V−1 = ZG. (B37)

In other words, Z has all the properties of the group inverse
of G, and a matrix that satisfies this properties is unique:
Z = G�. �

As an example, we can use this result to calculate the dif-
fusion coefficient associated with the dipole force fluctuation
in a two-level atom.

Example. In the case of the dipolar force on a two-level
system, one as S = {+F, − F } where F = h̄∇�/2 and the
transitions between the dressed states are described by the
following generator [11]:

G = �

(
cos4 θ − cos4 θ

− sin4 θ sin4 θ

)
, (B38)

where the angle θ satisfies tan 2θ = �/�. The stationary
population vector is

�∞ = �

�pop

(
sin4 θ

cos4 θ

)
, (B39)

where �pop = �(cos4 θ + sin4 θ ). The generator has the
following eigendecomposition: G = V�V−1 with � =
diag(0,�pop) and

V =
(

1 − cot4 θ

1 1

)
, V−1 = �

�pop

(
sin4 θ cos4 θ

− sin4 θ sin4 θ

)
.

(B40)

The group inverse of the generator is thus

G� = �

�2
pop

(
cos4 θ − cos4 θ

− sin4 θ sin4 θ

)
. (B41)

The diffusion coefficient is finally obtained from Eq. (B22)
with x = (+F, − F )T :

Ddip = 〈x,G�x〉 = 4F 2

�

sin4 θ cos4 θ

(sin4 θ + cos4 θ )3
. (B42)

In the high-intensity limit (� � �), the angle is θ = π/4
and the diffusion coefficient becomes Ddip = h̄2|∇�|2/2�.
Conversely, in the low-intensity regime (� � �) the angle is
small (θ ∼ 0) and the diffusion coefficient vanishes.
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