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Iterative evaluation of the effect of long-range potentials on the solution of the Schrödinger equation
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There are cases where the potentials present in the Schrödinger equation are of long range and have measurable
effects as, for instance, for the interaction between atoms at low temperatures or for the calculation of atomic
three-body collisions. In these cases, the solution of the Schrödinger equation for the wave functions by finite-
difference or finite-element techniques may not achieve the desired accuracy. An iterative method is presented,
based on the Lippmann-Schwinger integral equation, that is similar in spirit to the Born approximation but is
applied only in the region of the potential tails. This procedure extends the numerical solution obtained for
short distances to large distances without loss of accuracy. Numerical examples are presented for atomic van der
Waals potentials Cn/rn. For C6/r6, the size of the radial interval, for which an accuracy of 10−10 is achieved,
is � [100,1000] atomic units a0. For the case of C3/r3, the required interval for the same level of accuracy is
[4000,50 000], which, because of its large size, has to be subdivided into smaller partitions. The wave numbers
k chosen for these examples correspond to atomic collision energies in the micro-Kelvin range. The larger the
wave number k, the faster the rate of the convergence, and the limit k → 0 is also investigated. A criterion is
given for determining whether the iterations converge in that limit.
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I. INTRODUCTION

At low temperatures, many of the atomic physics inves-
tigations require the solution of differential equations out to
large distances. The recombination of three atoms requires
a calculation out to a distance of 104 atomic units [1]. The
magnetic dipole interaction between molecules involves cou-
pling potentials that decrease slowly with distance as 1/r3 and
require calculations out to long distances [2]. The occurrence
of resonances in a diatomic system that includes dipole-dipole
interactions also requires calculations out to large distances [3]
because the interaction potential decreases like 1/r3. The
calculations of Ref. [3] are based on a collocation method
at Gaussian support points, that was introduced in 1973 [4].
The conventional finite-difference methods for solving the
Schrödinger equation out to the large distances required here
are not able to provide the necessary accuracy as shown in
the Appendix.

The purpose of this paper is to describe a method that
solves the Schrödinger equation out to large distances R∞
iteratively, avoiding the loss of accuracy that occurs for
such large distances with the conventional finite-element or
finite-difference methods. The present method calculates two
independent solutions Y and Z of the Schrödinger equation in
the presence of the potential VA but only in a restricted radial
domain [RM,R∞]. Here, VA is the difference between the total
potential and the sum of a Coulomb potential and a centripetal
potential. The domain [RM,R∞] is chosen such that VA in
this domain is sufficiently small in order for the iterations to
converge, RM is such that the conventional numerical solution
ψc of the Schrödinger equation in the domain [0,RM ] is
still sufficiently accurate, and R∞ is chosen to be so large
that the magnitude of VA for r � R∞ is sufficiently small
in order to obtain the desired accuracy. By matching ψc to
Y and Z at RM , the loss of accuracy described above can
be mitigated substantially as will be illustrated by means of
a numerical example. The iterative method to obtain Y and
Z is based on the equivalent Lippmann-Schwinger integral

equation, similar to what is performed in the conventional Born
approximation [5]. The method is quite general and consists
of performing integrals over only known functions, i.e., for
each iteration, it does not solve an equation or diagonalize any
Hamiltonian. This method, carried out in configuration space,
can be extended to the solution of coupled-channel equations.

A method similar in spirit to the one presented here has
been developed in the 1970s by Knirk [6]. It also is based
on the Lippmann-Schwinger integral equation and iteratively
propagates the solution from RM to R∞ by a matrix technique.
However, in the numerical examples, only one iteration has
been performed, attaining an accuracy of four significant
figures. Iterative calculations in density-functional theory with
special consideration of long-range effects have also been
performed [7], a low-energy expansion of the Jost function
for long-range potentials [8] has been given, and an effective
potential has been developed [9] that incorporates the effect
of long-range potentials. An adaptation of the quantum defect
theory to a multichannel system has been developed [10], that
approximates the long-range part of the calculation by Milne’s
phase-amplitude method [11]. However, the simplicity of the
present method appears not to have been achieved previously.

II. NOTATION AND FORMALISM

For each partial wave, the total potential V includes the
centripetal and Coulomb potentials,

V (r) = VA(r) + L(L + 1)

r2
+ VC, (1)

where VA describes the atomic or nuclear interaction between
the colliding particles and VC is the Coulomb potential, if
present. The equation for the partial-wave radial function ψ(r)
to be solved is

(
d2

dr2
− L(L + 1)

r2
− VC + k2

)
ψ(r) = VA(r)ψ(r). (2)
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The wave number k is in units of a−1
0 , and the potentials are

in units of a−2
0 , where a0 is the Bohr radius and where the

quantities in energy units are transformed to inverse length
units by multiplication by the well-known factor 2μ/h̄2. The
solutions ψ(r) are normalized such that, asymptotically, they
approach

ψ(r) → F (r) + SH (r), r � R∞, (3)

where F and H are two linearly independent solutions of
Eq. (2) for VA = 0. As is well known, F describes the incident
wave, H describes the scattered outgoing wave [12], and S is
a constant that defines the scattering phase shift.

The un-normalized numerical solution of Eq. (2) in the
domain [0,RM ] is denoted as ψc (c for “computational”). If
VA is already negligible for r � RM , then R∞ = RM , and by
matching ψc to F and H at r = RM by the usual Wronskian
procedure, one obtains the coefficients α and β,

ψc(r) = αF (r) + βH (r), r = RM. (4)

Once the constant α is obtained, the renormalized wave
function (3) is given by ψ(r) = ψc(r)/α and S = β/α.
However, in the case that VA has such a long range that
the accuracy of ψc at R∞ is unacceptable, then the method
described below is preferable. This method consists of defining
two new independent functions Y and Z that obey Eq. (2)
in the domain [RM,R∞]. Because Y and Z also obey the
Lippmann-Schwinger integral equations,

Y (r) = F (r) +
∫ R∞

RM

G(r,r ′)VA(r ′)Y (r ′)dr ′, (5)

and

Z(r) = H (r) +
∫ R∞

RM

G(r,r ′)VA(r ′)Z(r ′)dr ′, (6)

the functions Y and Z also have well-defined boundary
conditions, determined by the nature of the Green’s function
G(r,r ′). For the present application,

G(r,r ′) = −1

k
F (r<)H (r>), (7)

where F and H are either spherical Bessel or Coulomb
functions defined for a particular angular momentum number
L as described, for example, in Refs. [12,13].

Explicit forms of Eqs. (5) and (6) are

Y (r) = F − 1

k
F (r)

∫ R∞

r

H (r ′)VA(r ′)Y (r ′)dr ′ − 1

k
H (r)

×
∫ r

RM

F (r ′)VA(r ′)Y (r ′)dr ′, (8)

and

Z(r) = H − 1

k
F (r)

∫ R∞

r

H (r ′)VA(r ′)Z(r ′)dr ′ − 1

k
H (r)

×
∫ r

RM

F (r ′)VA(r ′)Z(r ′)dr ′. (9)

As a result of Eqs. (8) and (9), the values of Y and Z at r = R∞
are

Y (R∞) = F (R∞) + AH (R∞), (10)

Z(R∞) = (1 + B)H (R∞), (11)

where

A = −1

k

∫ R∞

RM

F (r ′)VA(r ′)Y (r ′)dr ′, (12)

B = −1

k

∫ R∞

RM

F (r ′)VA(r ′)Z(r ′)dr ′. (13)

In order to match the function ψc to Y and Z at RM ,

ψc(r) = ãY (r) + b̃Z(r), r � RM, (14)

one requires the values and the derivatives of Y and Z at
r = RM . They are given by

Y (RM ) = (1 + C)F (RM ), (15)

Z(RM ) = H (RM ) + DF (RM ), (16)

with

C = −(1/k)
∫ R∞

RM

H (r ′)V (r ′)Y (r ′)dr ′, (17)

D = −(1/k)
∫ R∞

RM

H (r ′)V (r ′)Z(r ′)dr ′. (18)

The derivatives are given without loss of accuracy
by Y ′(RM ) = (1 + C)F ′(RM ) and Z′(RM ) = H ′(RM ) +
DF ′(RM ). In view of Eqs. (10) and (11), one has

α = ã, (19)

and

β = ãA + b̃(1 + B). (20)

Since the asymptotic values of F and H at R∞ are known,
then, in view of Eqs. (3), (19), and (20), the value of ψc at R∞
is also known. If VA is negligible beyond R∞, then A and B

change only negligibly if R∞ is made larger, and the scattering
phase shift can be determined in terms of β/α, given by

S = A + b̃

ã
(1 + B). (21)

This is the main result of the present section. In the section
below, an iterative way of obtaining Y and Z is described.

III. THE ITERATION PROCEDURE

The iterative procedure for Y is as follows. One defines a
correction χ (F ) to F ,

Y (r) = F (r) + χ (F )(r), r � RM, (22)

which, after some simple algebra based on Eq. (5), rigorously
satisfies

χ (F )(r) =
∫ R∞

RM

G(r,r ′)VA(r ′)[F (r ′) + χ (F )(r ′)]dr ′. (23)

Since both VA and χ (F ) are small, the term χ (F )(r ′) in the
square brackets can be neglected, and one obtains the first-
order approximation to χ (F ),

χ
(F )
1 =

∫ R∞

RM

G(r,r ′)VA(r ′)F (r ′)dr ′. (24)
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By defining the successive approximations to χ (F ) as

χ (F ) = χ
(F )
1 + χ

(F )
2 + · · · , RM � r � R∞, (25)

one obtains the recursive expressions,

χ
(F )
n+1(r) =

∫ R∞

RM

G(r,r ′)VA(r ′)χ (F )
n (r ′)dr ′, n = 1,2, . . . .

(26)

The final expression for Y (r) is

Y (r) = F (r) + χ
(F )
1 (r) + χ

(F )
2 (r) + · · · , RM � r � R∞,

(27)

and the value of Y (r) at r = R∞ is

Y (R∞) = F (R∞) + H (R∞)
∞∑

n=1

An, (28)

with

An = −1

k

∫ R∞

RM

F (r ′)VA(r ′)χ (F )
n (r ′)dr ′. (29)

For Z(r), expressions similar to Eqs. (22)–(29) hold with
F replaced by H ,

Z(r) = H (r) + χ
(H )
1 (r) + χ

(H )
2 (r) + · · · , RM � r � R∞.

(30)

The asymptotic value of Z(R∞) is given by Eq. (11), with

B =
∞∑

n=1

Bn, (31)

where each value of Bn is given by

Bn = −1

k

∫ R∞

RM

F (r ′)V (r ′)χ (H )
n (r ′)dr ′, n = 1,2, . . . .

(32)

The numerical examples presented in the next section examine
the rate of convergence of the iterations and the high accuracy
that can be obtained if the integrals are performed with high
accuracy.

IV. NUMERICAL EXAMPLES

In these examples, the Coulomb potential is set to zero, F =
zjL(z), and the function H is replaced by G = −zyL(z) so as to
make all quantities real. Here, jL and yL are spherical Bessel
functions, L is the angular momentum quantum number, and
z = kr, k being the wave number. The potential VA is equal to
either V3 or V6, given by

V3(r) = C3/r3 and V6(r) = C6/r6, (33)

where the distances r are in units of the Bohr radius a0 and
the Ci’s are such that the potential Vi is in units of a−2

0 with
i = 3 or 6. For the collision between two Rb or Sr atoms,
whose atomic numbers are in the vicinity of 80 and using
typical values of C3 and C6 of �−1 and �−103 in atomic
energy units, respectively, after multiplication by the factor
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FIG. 1. (Color online) Absolute value of potentials V3 and V6,
defined in Eqs. (33) and (34).

2μ/h̄2, one obtains the following values of these coefficients
in powers of a0:

C3 = −1.6 × 105a0 and C6 = −1.6 × 108a4
0 . (34)

The absolute values of these potentials are illustrated in Fig. 1.
The convergence of the iterated values of Y to the “exact”
value of Y is expressed in terms of the error �Y (n),

�Y (n) =
∣∣∣∣∣F +

n∑
n′=1

χF
n′ − Y

∣∣∣∣∣ . (35)

The exact comparison functions Y and Z are obtained numer-
ically by solving the integral equations (8) and (9) by means
of the spectral Chebyshev expansion method [14], whose
accuracy 10−11 has been tested previously. The quantities An

are obtained by first calculating χ (F )
n by means of (26) and

then evaluating the integrals (29). By substituting F by G,
one obtains the corresponding results for Bn. The integrals
are performed with a Gauss-Chebyshev method, described in
Ref. [15], that uses the spectral integral equation method [14]
and is accurate to 1:10−11. The iterations lead to powers of the
integral,

I1 =
∫ R∞

RM

rVA(r)dr, (36)
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FIG. 2. (Color online) The error of the function Y after n

iterations. The value of n is given in the legend, the potential is
V6, the wave number is k = 0.01a−1

0 , the angular momentum number
is L = 0, and the radial partition is 100 � r � 1000a0.
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FIG. 3. (Color online) The same as Fig. 2 with L = 2.

and

I2 = k

∫ R∞

RM

r2VA(r)dr. (37)

If these integrals are finite and less than unity, then the
iterations converge. This condition can be achieved if either
the magnitude of the potential is sufficiently small in the
range [RM,R∞] or if the range itself is sufficiently small as is
discussed further below.

A. For the potential C6/r6

This potential is denoted as V6 with the value of C6

given by Eq. (34). The chosen radial interval is [RM,R∞] =
[100,1000]a0, and the values of L are 0 and 2. Since, at
R∞ = 1000a0, the value is V6 � 10−10a−2

0 , it is expected that
the absolute error of the final phase shift is not larger than
10−10. The convergence of the iterations to the functions Y for
L = 0 and L = 2 with k = 0.01a−1

0 , according to Eq. (35),
is displayed in Figs. 2 and 3, respectively. The results for the
function Z are similar but are not shown. The convergence of
Y (n) and Z(n) to Y and Z can also be seen by the convergence
of the coefficients An and Bn. This convergence for various
values of k is displayed Figs. 4 and 5, respectively.

These figures show that, for the smaller values of k, the
convergence of the iterations gets progressively slower but
reaches a stable value in the limit of k → 0. An important
consequence is that the long-range scheme described above
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FIG. 4. (Color online) The convergence of the coefficients An

with iteration n for various values of the wave number k expressed
in units of a−1

0 . The potential is V6, L = 0, and the radial partition is
[100,1000]a0.
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FIG. 5. (Color online) The same as Fig. 4 for the coefficients Bn.

can be applied to atomic physics conditions at ultralow
temperatures.

B. For the potential C3/r3

This potential is much larger than V6, and hence, the value
of RM also has to be much larger. For r = 30 000a0, the value
of V3 is 10−8a−2

0 , and hence, if the phase shift is to be accurate
to 10−8, the value of R∞ should be �30 000a0. If RM is
�1000a0, the iterations in the full interval [RM,R∞] do not
converge since V3(RM ) � 10−4a−2

0 is too large. Hence, it will
be necessary to subdivide this interval into smaller partitions
[a,b], and the results from one partition will be matched
to the results from the previous partition. The functions Y

and Z in each partition are obtained iteratively by using the
method described above with RM and R∞ replaced by a and
b, respectively. The convergence properties of the iterations in
partitions [a,b] will be investigated next as follows.

If the size of a subpartition is δ, then b = a + δ. For each
chosen value of δ and a given value of k, the corresponding
value of a is searched numerically so that after 19 iterations,
A19 < 10−8. The results are shown in Fig. 6. This figure shows
that, for a large partition size δ (say 500) and a small value of
k (say 10−5), the value of a has to be large (about 15 000). If
k increases, the corresponding value of a decreases because
the rate of convergence increases. An additional analysis of
the convergence results described above can be performed by
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FIG. 6. (Color online) The value a on the left-hand side of the
interval [a,a + δ] as a function of the size δ of this interval. The
values of a are determined such that the convergence of the values of
An reaches an accuracy of <10−8 after 19 iterations. The potential is
V3, and the values of k (in units of a−1

0 ) are indicated in the legend.
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FIG. 7. (Color online) The integral I1 = ∫ b

a
rVA(r)dr with b =

a + δ as a function of δ and the wave number k, the latter given in
units of a−1

0 . For a given value of δ and k, the corresponding value of
a is determined numerically such that the iterations converge, which
is the case for all the values of I1 illustrated here. The values of a are
illustrated in Fig. 6.

inspecting the values of the integral I1, given by Eq. (36) and
illustrated in Fig. 7. The figure shows that, when |I1| < 1, the
iterations converge even for the smallest values of k. For larger
values of k, the convergence improves, and I1 can be larger
than unity.

The results in this section show that, for a V3 potential, the
iterative method described here is not as as useful as for the
V6 case for ultracold collisions.

V. SUMMARY AND CONCLUSIONS

An iterative method is developed to calculate scattering
solutions of the Schrödinger equation, whose potential VA

is of very long range. Here, VA is the difference between
the total potential V and the sum of the centripetal and
Coulomb potentials. In the radial domain where the long-range
part of the potential VA is small, two independent solutions
of the Schrödinger equation are obtained by an iterative
method. By matching the solution calculated in the short-
range radial domain to the ones obtained for the long-range
domain, it is possible to have the final solution obey the
appropriate asymptotic boundary conditions and to determine
the scattering phase shift. The purpose of this method is
to avoid the large numerical errors that can occur when
propagating the solution to large distances by conventional
finite-difference or finite-element methods. The iterations are
similar in spirit to the Born approximation since they are based
on the Lippmann-Schwinger integral equation and they consist
of integrals over known functions. The rate of convergence of
the iterations depends on the size of the long-range part of the
potential, on the size of the radial domain, and on the value
of the wave number k. In the limit k → 0, convergence still
occurs, provided that the long-range part of the potential is
sufficiently small such that the absolute value of the integral
I1, Eq. (36), is less than unity. A numerical example, involving
potentials C6/r6 and C3/r3 for angular momentum number
L = 0 and 2, is presented for a range of values of the wave
number k that correspond to kinetic energies of the colliding
atoms in the micro-Kelvin region. For the potential C3/r3, the
rate of convergence of the iterations is not as favorable as that

0 2 4 6 8
−4

−3

−2

−1

0

r (in units of a
0
)

P
o

te
n

ti
al

s 
(i

n
 u

n
it

s 
o

f 
a 0−2

)

V
PB6

V
PB

FIG. 8. (Color online) Potential VPB is of a Woods-Saxon form
that has no repulsive core at the origin and decays exponentially at
large distances. To VPB , the potential VPB6 has added a potential of
the form C̄6/r6, whose repulsive core has been smoothly suppressed.

for the C6/r6 potential, and for this case, other methods, such
as the phase-amplitude method [11], should be investigated.

The present method can be generalized to include the case of
coupled equations and is expected to be useful for investigating
the collision of atoms at very low temperatures.
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APPENDIX

A numerical analysis of the accuracy of the finite-difference
Numerov method is described here. It is shown that the
accuracy decreases to unacceptable values in the regime of
cold-atom collisions. Numerov’s method is also denoted as
Milne’s corrector method and is given by Eq. 25.5.21 in
Ref. [13]. In this method, the error of propagation of the
wave function from two previous points to the next point is
on the order of h6, where h is the radial distance between the
consecutive equispaced points.

The calculation is performed for the potential VPB6.
This potential consists of a conventional Woods-Saxon-type
(without hard core) denoted as VPB , Eq. (A1), to which is
added a potential VR6, Eq. (A2), that, at large distances,
decreases with distance r proportional to r−6. At short
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FIG. 9. (Color online) The absolute value of the potentials
illustrated in Fig. 8.
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FIG. 10. (Color online) Wave functions corresponding to VPB6

as a function of radial distance, for two different values of the wave
number k (in units of a−1

0 ). For k = 0.01 the wave function reaches a
maximum of about 8 at r = 300a0, and goes through zero at 450a0.
The reason for this large amplitude is because the phase shift is near
the value 3π/2, that occurs at k = 0.015a−1

0 .

distances, the singularity at the origin is smoothly eliminated
by a radial mapping transformation Eq. (A3),

VPB(r) = −3.36/[1 + exp{(r − 3.5)/0.6}], (A1)

VR6(r) = −3.6458 × 105/R6, (A2)

R(r) = r/[1 − exp(−r/10)], (A3)

VPB6 = VPB + VR6. (A4)

The potentials are given by the equations above; the units of
the constants are such that the potentials are in units of a−2

0
and the lengths are in units of a0. The addition of VR6 to VPB

has a small effect near the origin as shown in Fig. 8, and
the effect at large distances is illustrated in Fig. 9. The wave
function in the presence of VPB6 is illustrated in Fig. 10 for two
values of the wave number k. The value of tan(δ) is obtained by
obtaining the wave function by means of the Numerov method,
normalizing it by matching it to F and G at RM = 200a0 and
then evaluating the integral,

tan(δ) = −(1/k)
∫ R

0
sin(kr)VPB6ψ(r)dr. (A5)
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FIG. 11. (Color online) The accuracy of tan(δ) as a function of
the number of Numerov mesh points in the radial interval [0, 200] (in
units of a0) for two values of the wave number k (in units of a−1

0 ).
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FIG. 12. (Color online) The accuracy of tan(δ) as a function of
the number of Numerov mesh points for two radial intervals [0,RM ]
(in units of a0) for a wave number k = 0.01a−1

0 .

Use of this expression is preferable to using the result tan(δ) =
S = β/α with β and α as defined in Eq. (4). The reason is that
Eq. (A5) is more accurate because it suppresses the error of
ψ for large distances where the potential is small. The error
of tan(δ) is obtained by comparing it to the result obtained by
the spectral Chebyshev expansion method, which is accurate
to 1:10−11, and the result is displayed in Fig. 11. This graph
shows that the accuracy of tan(δ) depends on the value of
the wave number k. The accuracy decreases as k decreases,
probably because, for the smaller k, the wave function has
fewer oscillations, and the errors do not cancel as well as for a
wave function with more oscillations.

For k = 0.01a−1
0 and RM = 200a0, a maximum accuracy

of 2 × 10−7 for tan(δ) is obtained with 6 × 104 mesh points.
For the larger value of RM = 500a0, the maximum accuracy
deteriorates to 10−6 as shown in Fig. 12. The computational
time is displayed in Fig. 13. The computation is performed
on a desktop using an Intel TM2 Quad with a CPU Q 9950,
a frequency of 2.83 GHz, and a random access memory of
8 GB. Maximum accuracy is obtained with approximately
105 mesh points for both values of RM , whereas, for a
larger number of mesh points, the accumulation of errors
reduces the accuracy again. As can be seen from Fig. 13,
the maximum accuracy with the Numerov method requires
approximately 100 s of computing time as compared to
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FIG. 13. (Color online) Computational time of tan(δ) as a
function of the number of mesh points in two radial intervals [0,RM ]
with RM (in units of a0) indicated.
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0.8 s for the spectral Chebyshev method, whose accuracy
is 10−10 or 10−11. The computation time for the 19 it-
erations required for the each of the results displayed in
Fig. 7 is 4 s, which amounts to 0.2 s per iteration. For
these calculations, the number of Chebyshev support points
for the whole radial interval is 200. A comparison of the
Numerov method with a finite-element method, that is based

on a discrete variable representation, was also performed in
Ref. [16].

Figures 11–13 demonstrate that the deterioration in accu-
racy and the increase in computational time with increasing
distance makes the Numerov method unsuitable for the long-
range calculations required to describe the collision of atoms
at low temperatures.
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