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Quantum defect theory for high-partial-wave cold collisions
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We introduce a choice of reference wave functions that allows multichannel quantum defect theory (MQDT)
to describe ultracold collisions involving high-partial-wave quantum numbers L. This requires a careful
standardization of the MQDT reference wave functions at long range to ensure their linear independence.
To illustrate the simplicity and accuracy of the resulting theory, we perform a comprehensive calculation of
L � 2 Fano-Feshbach resonances in the range 0–1000 G for the scattering of 40K +87Rb in their lowest hyperfine
states. Moreover, we derive analytic expressions for our universal set of MQDT parameters in the threshold
regime.
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I. INTRODUCTION

The constituents of cold gaseous matter continue to grow
in variety and complexity far beyond their origins in alkali-
metal atoms to encompass open-shell atoms, molecules, free
radicals, and ions [1]. A detailed understanding of their
collision processes is crucial in determining the properties
and prospects for control of these gases.

However, along with the growing complexity of the atoms
and molecules involved, the difficulty of accurate scattering
calculations grows as well. High-spin and open-shell atoms
contain a multiplicity of internal states, and molecules in-
corporate rotational and vibrational degrees of freedom. At
ultralow temperatures all these degrees of freedom must be
accounted for because they all describe energies that are
typically large compared to translational kinetic energies in the
gas. Moreover, anisotropic species are likely to involve angular
momentum partial waves far larger than the single value
L = 0 that often dominates alkali-metal-atom cold collisions.
These considerations can lead to enormous complexity, even
in seemingly straightforward problems. Consider for example
the scattering of Li atoms with ground-state Li2 molecules,
which necessitates the simultaneous solution of thousands of
coupled Schrödinger equations [2].

It is therefore worthwhile to explore alternative methods
of scattering theory that are less computationally intensive,
yet still accurate. A particularly appealing candidate for this
purpose is the multichannel quantum defect theory (MQDT),
which was originally developed to describe complex spectra
of atoms [3–5]. It has more recently seen fruitful application
to atomic collisions [6,7] and, in particular, cold collisions
[8–10].

In recent years various approaches have been applied to
ultracold collisions with the aim of describing and predicting
scattering observables and, in particular, the locations and
widths of Fano-Feshbach resonances. For example, recent
developments in MQDT and related ideas have stressed the
simplicity and analytic behavior of the theory [11–19]. Also,
the analysis of long-range s-wave solutions developed in [20]
adopts semiclassical ideas and creates a good approximation
to the long-range field solutions in a way that resembles
quantum defect theory to a degree. To a good approximation,
three parameters can describe cold collisions of alkali-metal

atoms. There are two scattering lengths that describe the
physics at small interparticle separation R and one dispersion
coefficient C6 that describes the physics at large R [15].
In parallel developments, the asymptotic bound-state method
stresses direct numerical diagonalization in a basis of singlet
and triplet states that are coupled by hyperfine and magnetic
interactions [21–23]. This has generated extremely rapid and
accurate numerical calculations in these cases.

The present paper describes an attempt to retain the analytic
structure of MQDT and simultaneously perform numerically
exact scattering calculations. On the one hand, MQDT allows
the complex short-range physics to be described via parameters
that are nearly energy and field independent. In addition,
analytic expressions are derived for some of the long-range
parameters in the threshold limit. On the other hand, our
treatment is numerically exact, even in the case of realistic
long-range potentials that are not purely of −C6/R

6 character
and that possess high centrifugal angular momentum. As a
numerical method, it is also fast because it eschews repeated
numerical calculation of the short-range wave functions.

MQDT takes into account the natural separation of length
and energy scales inherent in collision problems. Namely, the
sensitive dependence of collision observables on energy and
electric or magnetic fields arises from interactions between
the scattering partners at large R. These dependencies are de-
scribed ultimately through a carefully chosen set of reference
wave functions in this region. This part of the calculation is
relatively fast, as the reference wave functions are defined
separately for each set of quantum numbers identifying a
scattering channel. Vice versa, the slow part of the calculation
lies at smaller R, where the channels are strongly coupled
together and must all be dealt with at once. However, in this
circumstance, the energy scales driving the physics are far
larger than the μK–mK scale of cold collisions. A properly
chosen representation of the small-R wave function can then be
quite weakly energy dependent, allowing ready interpolation
in energy and field that greatly reduces the computational
time [11].

However, the accuracy of the MQDT method relies on
the availability of a pair of accurate, linearly independent
reference wave functions in each channel. This can become
problematic in cases of high-partial-wave angular momentum
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and extremely low collision energy, where there exists a
substantial region of classically forbidden motion under a
centrifugal barrier. Such a barrier is problematic because
two reference wave functions that are perfectly orthogonal
prior to entering the barrier can often become approximately
linearly dependent (and hence useless to the theory) under
and beyond this barrier. Previously, defining an additional set
of linearly independent reference wave functions beyond a
classical barrier has allowed for this type of difficulty to be
reduced by matching the two sets of reference wave functions
under the barrier [8,24,25].

Our main focus here is to determine reference wave
functions in a way that maximizes their linear independence,
even under the centrifugal barrier. The method is then applied
to the scattering of potassium and rubidium atoms, for which
a reasonable and experimentally constructed Hamiltonian
already exists and the long-range interaction includes con-
tributions from C8 and C10 in addition to the usual C6.
MQDT reproduces the full close-coupling calculation quite
accurately with orders of magnitude less computational effort.
In particular, this version of MQDT reproduces magnetic field
Fano-Feshbach resonances accurately, even those that reside
in high-partial-wave states.

II. THEORY

A. Scattering in the MQDT picture

In two-body atomic or molecular scattering, the wave func-
tion can be expanded in a basis of N magnetic-field-dressed
hyperfine channels that include the partial-wave quantum
number Li ,

ψ = R−1
N∑

i=1

�i(�)ψi(R), (1)

where � represents all angular coordinates and spin degrees
of freedom. This wave function satisfies a set of coupled radial
Schrödinger equations involving the potential matrix V (R),

N∑
j=1

[(
− d2

dR2
+ Lj (Lj + 1)

R2

)
δij + Vij

]
ψj = Eiψi. (2)

Ei is the channel collision energy, i.e., the energy above
threshold for each channel Ei = E − Ethresh

i , where E is the
collision energy and Ethresh

i is the threshold energy of the ith
channel.

Here and throughout this paper (unless otherwise specified),
all lengths are in units of the natural length scale β of
the potential V , and all energies are in units of the natural
energy scale Eβ = h̄2/2μβ2, where μ is the reduced mass.
As a consequence, μ is scaled out of many equations, and
ki = √

Ei − Vij has units of β−1. The form of V at long
range suggests the value of β. For example, if V is well
described at long range by the isotropic potential −C6/R

6,
the natural unit of length is β = (2μC6/h̄

2)1/4. Later sections
discuss the collision of 40K+87Rb, for which β = 143.9 a0 and
Eβ = 152.7 μK, where a0 is the Bohr radius.

One can calculate scattering observables by solving Eq. (2)
subject to physical boundary conditions. In each channel ψ has
the boundary conditions ψi = 0 at R = 0. The closed-channel

(Ei < 0) components of ψ vanish at R = ∞. Hence, if
No is the number of open channels (Ei > 0), there exist
No independent ψ’s that, asymptotically, have nonvanishing
amplitudes in the open channels only. The open-channel
components of these wave functions are energy normalized
and represent the No × No asymptotic-solution matrix �.

Since the potential goes to zero in the limit R → ∞, the
open-channel wave functions become linear combinations of
sine and cosine, and � can be written in terms of energy-
normalized, free-particle solutions,

�ij
R→∞−−−→ 1√

ki

(kiR)[jLi
(kiR)δij − nLi

(kiR)Kphys
ij ], (3)

where jL and nL are spherical Bessel functions of the first and
second kind, respectively,

jLi
(kiR)

R→∞−−−→ sin(kiR − Liπ/2)

kiR
, (4a)

nLi
(kiR)

R→∞−−−→ −cos(kiR − Liπ/2)

kiR
. (4b)

Here, δij is the Kronecker delta function, and ki =√
Ei − Vii

R→∞−−−→ √
Ei . Equation (3) defines the physical

K matrix which contains all the information necessary to
compute scattering observables, including resonance behavior
and threshold effects, and is simply related to the scattering
matrix,

Sphys = (I + iKphys)(I − iKphys)−1, (5)

where I is the identity matrix.
For many problems, such as atoms and molecules in-

teracting via van der Waals potentials, the channels are
approximately uncoupled beyond a radius Rm. In general, there
are N independent solutions to Eq. (2) that have the boundary
conditions ψi = 0 at R = 0 and represent the N × N solution
matrix M . Hence, matching M to single-channel reference
wave functions f̂ and ĝ at R = Rm defines a short-range K

matrix [26],

Mij = f̂iδij − ĝiK
sr
ij . (6)

Here, f̂ and ĝ are solutions to the uncoupled radial Schrödinger
equations in the long-range potential V lr,(

− d2

dR2
+ Li(Li + 1)

R2
+ V lr

i − Ei

){
f̂i

ĝi

}
= 0. (7)

The matching is best done when all channels are locally open
[Ei > Vij (Rm)] because f̂ and ĝ are oscillatory and can,
therefore, easily be made linearly independent. To the extent
that the channel coupling is negligible beyond Rm, applying
boundary conditions at R = ∞ in terms of f̂ and ĝ allows
scattering observables to be computed accurately.

B. Reference wave functions

The major benefit of using the reference wave functions f̂

and ĝ is that they do not need to satisfy physical boundary
conditions. Their boundary conditions can instead be smooth,
analytic functions of energy. In particular, choosing WKB
boundary conditions well within the classically allowed region
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at R = Rx � Rm accomplishes this goal [6,27],

f̂i(R) = 1√
ki(R)

sin

(∫ R

Rx

ki(R
′)dR′ + φi

)
at R = Rx,

(8a)

ĝi(R) = − 1√
ki(R)

cos

(∫ R

Rx

ki(R
′)dR′ + φi

)
at R = Rx,

(8b)

where φi can be any channel-dependent phase that is constant
in R and energy [11]. The set of equations (8) and their full
radial derivatives define f̂ and ĝ. As the WKB boundary con-
ditions define these single-channel reference wave functions
at the single radius Rx , they still constitute exact solutions of
the radial Schrödinger equation (7).

Moreover, the particular solutions defined by (8) have
several advantages. First, unlike the wave functions (4), these
reference wave functions are not energy normalized. They
are well defined for Ei � 0 and analytic in energy across
the threshold. Second, as the large kinetic energy at short
range dominates the low collision energies and relatively
small Zeeman shifts of typical cold collisions, WKB boundary
conditions lead to reference wave functions that are weakly
dependent on the collision energy and magnetic field at short
range. From this follows the weak energy and field dependence
of Ksr. Third, this particular choice of boundary conditions
allows f̂ and ĝ to be maximally linearly independent at short
range.

The matrix Ksr and the linearly independent reference wave
functions f̂ and ĝ contain all the information necessary to
calculate scattering observables. The quantum defect theory
of [11] defines the four MQDT parameters η, A, G, and βBurke

that describe the asymptotic behavior of the wave functions f̂

and ĝ. Hence, these parameters are also smooth functions of
collision energy and magnetic field and completely describe
the long-range physics. The notation in this paper differs from
the notation of [11] only by the use of γ instead of βBurke,
where cot γ = tan βBurke. The introduction of γ emphasizes its
relationship withG, and Sec. IV demonstrates this relationship.

The calculation of Sphys requires two linearly independent,
energy-normalized wave functions at large R in each open
channel and the bound-state wave function in each closed
channel. To this end, the parameters A and G create a
Wronskian-preserving transformation between the reference
wave functions f̂ and ĝ and two energy-normalized wave
functions f and g for Ei > 0,(

f

g

)
=

(
A1/2 0
A−1/2G A−1/2

)(
f̂

ĝ

)
. (9)

The parameter A is responsible for the energy normalization
of f and g, and the parameter G accounts for the different
phase accumulation between f̂ and ĝ in V lr. The phase shift
η describes how f and g differ from the spherical Bessel
functions asymptotically,

fi
R→∞−−−→ 1√

ki

sin(kiR − Liπ/2 + ηi), (10a)

gi
R→∞−−−→ − 1√

ki

cos(kiR − Liπ/2 + ηi). (10b)

For Ei < 0, the parameter γ determines the linear combination
of f̂ and ĝ that vanishes as R → ∞,

tan γif̂i + ĝi
R→∞−−−→∝ e−κiR, (11)

where κi = iki .
Calculating the four MQDT parameters requires the evalu-

ation of several Wronskians that involve f̂ and ĝ as R → ∞,

tan η = W ((kR)jL(kR),f̂ )

W ((kR)nL(kR),f̂ )

∣∣∣∣
R→∞

, (12a)

A−1 = W ((kR)jL(kR),f̂ )2 + W ((kR)nL(kR),f̂ )2

k

∣∣∣∣
R→∞

,

(12b)

G = −W (g,ĝ)

W (g,f̂ )

∣∣∣∣
R→∞

, (12c)

tan γ = −W
(
e−κR,ĝ

)
W (e−κR,f̂ )

∣∣∣∣
R→∞

, (12d)

where W (y1,y2) is the Wronskian with respect to R of any two
functions y1 and y2,

W (y1,y2) = y1(R)
dy2(R)

dR
− y2(R)

dy1(R)

dR
. (13)

The MQDT parameters directly translate Ksr into ob-
servables. By partitioning Ksr into open (P) and closed (Q)
channels, simple algebra produces the physical scattering
matrix [11],

K̃ = Ksr
PP − Ksr

PQ(Ksr
QQ + cot γ )−1Ksr

QP, (14a)

K = A1/2K̃(I + GK̃)−1A1/2, (14b)

Sphys = eiη I + iK

I − iK
eiη. (14c)

III. STANDARDIZING MQDT

Since the MQDT parameters clearly depend on the par-
ticular choice of reference wave functions, standardizing this
choice allows the MQDT parameters for a particular long-
range potential to be tabulated once and for all and defines a
simple procedure to find Ksr [11]. In general, the boundary
conditions (8) define an infinite family of reference wave
functions—one set for each value of φi . This section identifies
a value of φi that guarantees both the maximal numerical
stability of the MQDT parameters as well as their smooth,
analytic energy behavior. Moreover, since the calculation of
φi is required to apply the boundary conditions (8), this
calculation must be numerically stable—even at high L—to
be useful.

In the manner of [11], the MQDT parameters are standard-
ized by letting one of the reference wave functions asymp-
totically coincide (up to a normalization) with a particular
wave function at zero energy. The choice of this standard,
zero-energy wave function, therefore, identifies a particular
value of φi and determines a particular f̂ and ĝ at zero
energy. The energy dependence of f̂ and ĝ near threshold is
then smoothly obtained from their WKB boundary conditions
(8). In principle, any value of φi is equally valid as long as
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f̂ and ĝ remain linearly independent. However, at ultracold
energies, motion under a classical centrifugal barrier can often
cause a pair of reference wave functions to become linearly
dependent numerically, so it is our goal to find the value of φi

that leads (in the limit of zero energy) to maximally linearly
independent reference wave functions under and beyond this
barrier.

For all potentials that fall off faster than 1/R2, the asymp-
totic linear combination of RL+1 and R−L uniquely identifies
a particular zero-energy wave function. Consequently, the
asymptotic linear combination of the analytic zero-energy
solutions [28],

χ+ =
√

RJ− 1
4 (2L+1)(1/2R2)

R→∞−−−→∝ RL+1, (15a)

χ− =
√

RJ 1
4 (2L+1)(1/2R2)

R→∞−−−→∝ R−L, (15b)

identifies a particular zero-energy wave function in any
potential that is dominated by V lr = −1/R6 asymptotically.
Here, J is the Bessel function of the first kind. For L > 0, these
solutions take their asymptotic form under the classical barrier
at R � 1. Therefore, all zero-energy wave functions start to
resemble χ+ in this region—losing their linear independence
numerically—except for those directly proportional to χ−.

Figure 1(a) shows f̂ and ĝ in the long-range potential V lr =
−1/R6 with Ei ≈ 6.547 × 10−3. This energy corresponds
to 1 μK for 40K+87Rb when C6 = 4.300 × 103 in atomic
units. Here, f̂ is chosen to asymptotically coincide with
χ+ at zero energy. The boundary conditions (8) ensure the
maximal independence of f̂ and ĝ at short range, but they
both resemble χ+ in the classically forbidden region R � 1.
While f̂ is required to grow as RL+1 under the classical barrier,
ĝ also quickly begins to grow in a similar way. Hence, this
choice for f̂ leads to a set of reference wave functions that
exhibit increasing linear dependence as the collision energy
approaches zero and the classical barrier grows. In fact, ĝ

always asymptotically diverges at zero energy except for a
unique value of φi .

Since only χ− remains numerically linearly independent
from χ+ in the limit R → ∞, letting ĝ asymptotically coincide
with χ− at zero energy guarantees that the zero-energy limit of
ĝ is maximally independent from f̂ not only at short range but
also well into the classically forbidden region. Moving away
from zero energy causes ĝ to gain a contribution from χ+
asymptotically, but the classically forbidden region becomes
smaller. Figure 1(b) shows that this choice for ĝ leads to
reference wave functions that are linearly independent at both
short and long range—even at ultracold energies and high L.
Hence, these reference wave functions are ideal for a numerical
calculation of the MQDT parameters at ultralow energies.

In order to implement this standardization, one must
determine the value of φi that is used to define f̂ and ĝ.
For long-range potentials in which the zero-energy solutions
are known analytically at all R, this value of φi is easily
derived using the values of χ+ and/or χ− at Rx . However,
since even the zero-energy solutions are known analytically
only for a limited number of power-law potentials, calculating
φi numerically allows the use of the true long-range potential
for a given scattering problem.
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(a) f̂ asymptotically coincides with χ+ at zero energy

(b) ̂g asymptotically coincides with χ− at zero energy

FIG. 1. (Color online) The reference wave functions f̂ (red solid
curve) and ĝ (green dotted curve) are shown for Ei ≈ 6.547 × 10−3

in the long-range potential V lr = −1/R6 (blue dashed curve) with
L = 2. At short range, f̂ and ĝ are linearly independent. Under the
classical barrier, these functions (a) lose their independence when f̂

is chosen to asymptotically coincide with χ+ at zero energy and (b)
retain their independence when ĝ is chosen to asymptotically coincide
with χ− at zero energy.

To this end the zero-energy reference wave functions for
φi = 0 can be numerically propagated from their boundary
conditions at Rx � 1 to large R 	 1. At R 	 1 the reference
wave functions are well approximated by linear combinations
of solutions that are known analytically, and tan φi is a simple
ratio of two Wronskians. For example, the value of tan φi that
lets f̂ asymptotically coincide with χ+ at zero energy is given
by

tan φi
R→∞−−−→ W

(
χ+,f̂(φi=0)

)
W

(
χ+,ĝ(φi=0)

) . (16a)

An alternative choice allows ĝ to asymptotically coincide with
χ− at zero energy, and this value of φi is given by

tan φi
R→∞−−−→ −W

(
χ−,ĝ(φi=0)

)
W

(
χ−,f̂(φi=0)

) . (16b)

The stable calculation of φi requires the linear indepen-
dence of the reference wave functions f̂(φi=0) and ĝ(φi=0). As
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FIG. 2. (Color online) The convergence of tan φi with R is shown
when L = 0–3. Here, f̂ is chosen to asymptotically coincide with χ+
at zero energy in the long-range potential V lr = −C6/R

6 − C8/R
8 −

C10/R
10, and Rx = 0.1.

they each represent a particular linear combination of χ+
and χ− asymptotically, their linear independence relies on
their different, and quickly vanishing, contributions from χ−.
Hence, they can easily lose their linear independence as R

grows, causing the calculation of φi to become unstable. For
example, Fig. 2 demonstrates the difficulty of numerically
calculating φi by showing the numerically computed ratio of
Wronskians in (16a) for all values of R. These calculations use
the long-range potential V lr = −C6/R

6 − C8/R
8 − C10/R

10

for several values of L, where the dispersion coefficients
are C6 = 4.300 × 103, C8 = 4.823 × 105, and C10 = 6.181 ×
107 in atomic units. These values are realistic for collisions of
K + Rb [29].

Figure 2 shows that the calculation of tan φi , at least for
L = 0, converges quickly after R = 1, where the −C8/R

8

and −C10/R
10 terms of the long-range potential become

dominated by the −C6/R
6 term. However, as L increases,

a larger value of R is required to converge this calculation,
and Fig. 2 shows that a converged calculation of tan φi is
not numerically stable for L > 1. Appendix A explores this
instability and determines that, for L > 1, the asymptotic
contribution to each reference wave function from χ− is
eventually dominated by the presence of finite numerical noise,
causing the calculation of tan φi to be unstable. If even φi

cannot be stably computed, calculating the MQDT parameters
is hopeless.

However, Appendix A also shows that this instability
vanishes if ĝ is chosen to asymptotically coincide with χ−
at zero energy—the same choice as in Fig. 1(b). For only this
choice of ĝ, the calculation of φi does not require finding the
asymptotic contribution to f̂(φi=0) and ĝ(φi=0) from χ−. Hence,
in this case, the calculation of tan φi is numerically stable for
all L. In contrast to Fig. 2, Fig. 3 demonstrates that tan φi stably
converges with R by showing the numerically computed ratio
of Wronskians in (16b) for all values of R. These calculations
use the same long-range potential as the calculations in Fig. 2
and include much larger values of L.
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FIG. 3. (Color online) The convergence of tan φi with R is shown
when L = 0, 2, 10, and 20. Here, ĝ is chosen to asymptotically
coincide with χ− at zero energy in the long-range potential V lr =
−C6/R

6 − C8/R
8 − C10/R

10, and Rx = 0.1.

The calculations of tan φi in Fig. 3 converge more rapidly
as L increases. This trend is intuitive because, as L grows,
the classical turning point at zero energy moves inward and
χ− becomes increasingly distinct from all other solutions.
Moreover, these calculations of tan φi are stable out to very
large R � 103. This allows for a more consistent calculation
of the MQDT parameters because the value of R at which φi is
actually determined can equal the value of R that is necessary
for a well-converged calculation of the MQDT parameters.
Although either f̂ or ĝ could asymptotically coincide with
χ− at zero energy, choosing ĝ for this role defines our
standardization because the MQDT parameters acquire very
appealing qualities. The next section explores these qualities.

IV. CALCULATING MQDT PARAMETERS

Having specified φi in (8), the values of the MQDT
parameters A, η, G, and γ follow unambiguously from (12).
Of particular importance is the parameter G. The zero-energy
limit of G,

G = −W (g,ĝ)

W (g,f̂ )

∣∣∣∣
R→∞

Ei→0−−−→ −W (χ−,ĝ)

W (χ−,f̂ )

∣∣∣∣
R→∞

, (17)

is intimately related to the value of φi in (16b). Clearly, if
φi = 0 in (17), the zero-energy limit of G has the exact same
value as tan φi in (16b). Appendix A shows that the evaluation
of (16b) is stable independent of the phase φi given to the
reference wave functions. Therefore, the zero-energy limit of
G is numerically stable. Figure 4 shows the calculation of G at
100 nK as a function of the zero-energy phase φi .

For a given Rx , Fig. 4 shows that there is a unique value of φi

(indicated by the green vertical solid line) for whichG vanishes
at zero energy. This is the choice where ĝ asymptotically
coincides with χ− at zero energy; therefore, G = 0 at zero
energy defines our standardization. As evident from (9)
and (10), the vanishing of G guarantees the maximal linear
independence of f̂ and ĝ at long range. Hence, although a
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FIG. 4. (Color online) The red dots are the MQDT parameter G
shown as a function of tan φi . The vertical lines represent the value
of tan φi when (blue dashed line) f̂ asymptotically coincides with χ+
at zero energy and (green solid line) ĝ asymptotically coincides with
χ− at zero energy. For this calculation, V lr = −C6/R

6 − C8/R
8 −

C10/R
10, where the dispersion coefficients are appropriate for K +

Rb; Ei ≈ 6.547 × 10−4, which corresponds to 100 nK; L = 0; and
Rx = 0.1.

different standardization could guarantee that the zero-energy
limit of G is well behaved (e.g., the blue vertical dashed line
in Fig. 4), our choice of reference wave functions is the only
choice that is maximally linearly independent at long range in
the limit of zero energy.

Applying our standardization, Fig. 5 illustrates the energy
dependence of the various MQDT parameters for the KRb
model potential V lr = −C6/R

6 − C8/R
8 − C10/R

10, where
the dispersion coefficients are the same as in the previous
section. The positive and negative energy parameters are
plotted together by defining the parameter Ki ≡ √|Ei |. The
MQDT parameters are presented in the natural van der
Waals units β = (2μC6/h̄

2)1/4 = 143.9 a0 and Eβ = 152.7
μK. Each panel represents the result for a different partial
wave L; note that a greater energy range is shown for higher
L. In all cases the calculation is numerically stable, even in
the threshold limit. These functions are smooth and hence
easily interpolated. In contrast to [8], our MQDT parameters
are weak functions of energy for all L, and Ksr contains
the additional information required to produce high-L Fano-
Feshbach and shape resonances despite its weak energy and
field dependence.

One striking feature, unique to our parametrization, is that
all parameters vanish as powers of Ei in the Ei → 0 limit.
In this limit they are well approximated by simple analytic
formulas. For alkali-metal atoms, where C8/R

8 and C10/R
10

make small corrections to C6/R
6, these formulas can be

derived using the −C6/R
6 potential alone. Their derivation is

detailed in Appendix B, and the results are summarized below.
These parameters are conveniently parametrized in terms of a
set of generalized, standard scattering lengths āL,

āL =
(

π2−(2L+3/2)

�(L/2 + 5/4)�(L + 1/2)

)2/(2L+1)

. (18)

The threshold behavior of all four MQDT parameters is given
here:

A1/2 k→0−−→ −(āLk)L+1/2, (19a)

η
k→0−−→ (−1)L+1(āLk)2L+1 + 3π�(L − 3/2)

32�(L + 7/2)
k4, (19b)

G k→0−−→ (−1)L+1(āLk)4L+2 − k2

(2L + 3)(2L − 1)
, (19c)

γ
κ→0−−→

{
ā0κ for L = 0,

κ2

(2L+3)(2L−1) for L > 0.
(19d)

These formulas agree well with the numerical results for the
exact long-range potential when Ei � 1.

Expressions such as (18) have been derived before in the
literature. For example, ā0, which is the scattering length of our
reference wave function f̂ , coincides with the semiclassical
scattering length of Gribakin and Flambaum [30] for the
−C6/R

6 potential. Likewise, using an exact solution that was
expressed using continued fractions [31–33], Gao performed
a similar analytic treatment of the near-threshold MQDT
parameters for the −C6/R

6 potential. To do so, he identified
a set of standard constants āsL,Gao that are related to our
equation (18) via āsL,Gao = (āL)2L+1. While the treatments are
equivalent, our parameters āL have units of length. Moreover,
our standard and universal reference wave functions have a
universal form (19b) for the corresponding phase shift.

Gao conceives of a hierarchy of reference wave functions
distinguished by a short-range quantum defect parameter μc

[14]. Our implementation of MQDT introduces alternative
short-range phases φi in (8). Our particular choice for φi gives
our reference wave function f̂ a particular set of scattering
lengths āL. Using Eq. (10) of [33] and the zero-energy limit of
Eq. (33) of [33], this choice corresponds to

μc = 1/2 + L/4. (20)

Equation (20) gives an explicit connection between the analytic
formulas of Gao and our formulation of MQDT for the pure
−C6/R

6 potential.
Moreover, a similar formulation of MQDT [17] has derived

the threshold behavior of three positive energy parameters for
a reference potential with arbitrary scattering length a. These
parameters are easily related to our MQDT parameters for the
special case of L = 0. Expressed in our notation, the results
of [17] read

η(L=0)
k→0−−→ −ak, (21)

A(L=0)
k→0−−→ ā0k[1 + (a/ā0 − 1)2], (22)

G(L=0)
k→0−−→ 1 − a/ā0. (23)

If a = ā0 here, these formulas are consistent with the threshold
behavior of our set of MQDT parameters (19).

Although in Appendix B we explicitly derive the MQDT
parameter threshold behavior for only the −1/R6 potential,
this analysis implies simple extensions of (19) for any −1/Rn

potential. Here, n is any integer (n > 2). The zero-energy
solution χ− is well defined (and known analytically) for any
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FIG. 5. (Color online) The MQDT parameters A (red solid curve), G (blue dashed curve), η (green dotted curve), and γ (black dash-dotted
curve) are shown for the KRb model potential V lr = −C6/R

6 − C8/R
8 − C10/R

10 with L = 0–5. The parameter Ki ≡ √|Ei | is defined merely
for plotting purposes.

potential of this kind,

χ− =
√

RJν

(
R−(2L+1)/2ν

(2L + 1)/2ν

)
R→∞−−−→∝ R−L, (24)

where ν = (2L + 1)/(n − 2). Hence, for any potential asymp-
totically dominated by −Cn/R

n and for all L, our standardiza-
tion uniquely specifies the zero-energy limit of f̂ and ĝ, and the
analysis of Appendix B is repeatable. As our standardization
demands that all MQDT parameters go to zero in the limit
Ei → 0, f̂ and ĝ have maximal linear independence at zero
energy—even for this more general potential. In a future
presentation, we will consider the full theory for arbitrary n

and L.

V. HIGH-PARTIAL-WAVE RESONANCES

Performing a full numerical calculation of scattering ob-
servables allows the results of our formulation of MQDT
to be tested. Here, the Johnson log-derivative propagator
method [34] produces numerically exact solutions to the
coupled Schrödinger equations (2). This method propagates
the log-derivative matrix Y to very long range R ≈ 20,
where it approaches a constant. After this full close-coupling
(FCC) propagation, the asymptotic limit of Y determines all
scattering observables. The FCC calculation is known to be
quite accurate, and it is our standard with which to compare
the accuracy of MQDT.

The prediction of high-L resonances in atomic collisions
often requires many (N 	 1) channels, causing the FCC
calculations to become very time-consuming. The time re-
quired to compute the scattering matrix at a single energy and

magnetic field is proportional to N3. Moreover, resonance
widths decrease quickly with L. Thus, the prediction of
resonance locations and widths requires many long FCC
calculations. However, if the elements of Ksr are weakly
dependent on energy and magnetic field, MQDT describes
the same resonances after only a few iterations of a fraction
of the full calculation. For instance, interpolating Ksr on a
coarse grid in magnetic field greatly increases the numerical
efficiency of calculating Fano-Feshbach resonances.

Consider, for example, the collision of 40K+87Rb
in the lowest hyperfine states |FK,MFK〉 |FRb,MFRb〉 =
|9/2, − 9/2〉 |1,1〉, where a number of Fano-Feshbach reso-
nances have been observed. Using the same model potential
for both the FCC calculation and the calculation of Ksr

allows for a direct comparison between the FCC and MQDT
methods. Our model adopts the accurate, short-range X 1�+
and a 3�+ molecular potentials of [29] that were constructed
by performing a global fit to the position of the L = 0
Fano-Feshbach resonances. For consistency, our model also
adopts the interaction parameters of [29] that describe the
long-range forces. The van der Waals parameters C6, C8, and
C10 describe the long-range dispersion forces; the electron-
exchange interaction is

Eex = AexR
γexe−βexR, (25)

which is added to the triplet molecular state and subtracted
from the singlet molecular state; and the dipole-dipole inter-
action is

Hdd = −α2

2

(
3S2

z − S2)(1/R3 + aSOe−bSO(R−RSO)), (26)
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FIG. 6. (Color online) The eigenphase shifts μλ are shown for the
collision of 40K+87Rb over the range B = 0–1000 G with a collision
energy of 1 μK. For this calculation the log-derivative matrix Y is
matched to solutions in the long-range potential V lr = −C6/R

6 −
C8/R

8 − C10/R
10 at Rm = 45 a0, including channels with L = 0 and

L = 2. The two graphs merely display two different ranges of μ over
the same range of B.

where α is the fine-structure constant.
Beyond Rm, the MQDT and FCC calculations involve

slightly different Hamiltonians. On the one hand, the MQDT
reference wave functions are solutions in the long-range
potential of our choice. Because the anisotropic dispersion
forces dominate at long range, our choice is

V lr = −C6/R
6 − C8/R

8 − C10/R
10. (27)

As a consequence, each channel differs only by a constant
energy set by its hyperfine quantum numbers and subsequent
Zeeman shift. This choice of V lr ignores all other forces and all
couplings between channels beyond Rm. On the other hand,
the FCC calculation considers the full Hamiltonian into the
asymptotic region.

However, Eex is vanishingly small beyond R ≈ 30 a0;
hence, only Hdd is responsible for the difference between
the MQDT and FCC calculations. Hdd is very long range
and creates a coupling between channels, but its inclusion
beyond Rm = 45 a0 makes a negligible contribution to the
elastic cross section in this case. This allows for excellent
agreement between the two calculations. In applications where
such weak longer-range couplings must be included, it should
be straightforward to include them perturbatively, along the
lines formulated in, for instance, [8,35–37].

If one chooses an Rm where all channels are locally
open, typically Rm � 35 a0–50 a0 for alkali-metal atoms, all
resonant behavior is due to physics beyond this range and,
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FIG. 7. (Color online) The elastic cross section for the collision
of 40K+87Rb with a collision energy of 1 μK is shown for the FCC
calculation (black dots), including channels with L = 0 and L = 2.
The FCC calculation is compared to the MQDT calculation (red
curve) with K sr interpolated over a range of 1000 G. This curve
is unchanged if the analytic formulas (19) are used instead of the
numerical values for A, η, and G.

therefore, approximately described by the MQDT parameters.
Hence, the choice of Rm = 45 a0 leads to a smooth Ksr

that is easy to interpolate over a large range of collision
energy and magnetic field. The eigenvalues of Ksr are known
as eigenphase shifts μλ = tan δλ/π . Figure 6 shows these
eigenphase shifts as a function of magnetic field over the range
B = 0–1000 G.

With this same choice of Rm = 45 a0, a very coarse
magnetic field grid of spacing 100 G allows for an accurate
interpolation of Ksr, and MQDT accurately reproduces the
measured Fano-Feshbach resonances in L = 0–2 states [38].
This accuracy and the excellent agreement with the FCC
calculation motivate the use of MQDT to quickly refit the
singlet and triplet scattering lengths, producing our own
accurate scattering model. Our fit includes the experimentally
measured resonance positions of [38] in all L � 2 states. It also
includes the L = 2 resonance at 547.4(1) G reported in [39]
and recently confirmed by [40]. While retaining the value of
C6 = 4.300 × 103 atomic units, varying the scattering lengths
leads to a minimum reduced χ2 between the experimental and
MQDT resonance positions. The optimal scattering lengths
are as = −110.8 a0 and at = −214.5 a0 with χ2

red = 0.83.
Using this retuned Hamiltonian, our model predicts the

position and width of the L = 0–2 Fano-Feshbach resonances
for 40K +87Rb collisions in their lowest hyperfine states. For
example, Fig. 7 shows the MQDT and FCC calculations of the
elastic cross section for overlapping s- and d-wave resonances.
By only calculating Ksr once every 100 G and interpolating
over the range B = 0–1000 G, MQDT reproduces the FCC
calculation of resonance positions with an accuracy of �1 mG.
Moreover, since using MQDT to search for resonances requires
only a magnetic field grid finer than the distance between any
two resonances [41], the method allows enough numerical
efficiency to ensure the discovery of all the Fano-Feshbach
resonances in this range of magnetic field.

Table I lists these resonance positions and widths. Even
though some resonances are very narrow, finding the roots
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TABLE I. All of the Fano-Feshbach resonances in the range B = 0–1000 G for the collision of 40K+87Rb in the state
|FK,MFK 〉 |FRb,MFRb〉 = |−9/2, − 9/2〉 |1,1〉 are calculated using MQDT for a collision energy of 1 μK. These resonance positions Bth

and field widths � are listed here with their associated partial-wave quantum number L and compared with experimentally measured
resonance positions Bex. Note: All magnetic field values are in units of gauss.

Bex Bth −� L Bex Bth −� L

96.06 1.5 × 10−16 2 506.3 4.5 × 10−6 2
108.7 2.3 × 10−13 2 515.7(5) 515.1 0.50 1
124.3 3.1 × 10−9 2 526.5 5.7 × 10−5 1
143.9 2.6 × 10−8 2 531.8 3.1 × 10−5 1
155.9 1.9 × 10−12 1 540.8 1.9 × 10−6 1
168.1 2.7 × 10−7 2 546.6(2) 546.6 3.1 0
171.9 1.1 × 10−11 2 547.4(1) 547.3 6.3 × 10−3 2
178.2 3.7 × 10−6 1 558.5 9.6 × 10−8 2
205.1 2.5 × 10−9 1 568.9 4.0 × 10−6 2
206.8 1.5 × 10−5 0 590.1 1.9 × 10−6 2
215.8 3.9 × 10−9 2 592.9 3.1 × 10−7 2
277.6 4.3 × 10−6 2 621.8 0.13 1
320.3 5.3 × 10−10 1 629.6 2.0 × 10−5 1
356.8 9.5 × 10−5 2 644.0 7.1 × 10−9 1
393.3 5.1 × 10−5 2 658.9(6) 658.9 0.80 0
403.2 1.2 × 10−8 2 663.7(2) 663.8 5.5 × 10−3 2
404.5 0.024 1 690.8 1.8 × 10−6 2
412.2 2.2 × 10−4 2 720.8 6.8 × 10−11 2
421.9 3.6 × 10−12 2 752.5 2.0 × 10−6 1
429.4 2.4 × 10−8 1 754.0 2.5 × 10−14 2
444.0 1.8 × 10−9 2 779.4 2.1 × 10−5 1
455.8 3.9 × 10−5 2 809.7 4.6 × 10−12 1

456.1(2) 456.3 5.6 × 10−3 1 823.2 1.9 × 10−4 0
462.0 0.062 0 892.8 6.3 × 10−10 2
466.3 2.5 × 10−5 2 934.3 6.6 × 10−9 2
473.1 6.7 × 10−9 1 979.9 4.9 × 10−11 2
479.9 2.3 × 10−5 2
483.5 3.9 × 10−8 2

495.6(5) 495.3 0.15 0

of det
(
Ksr

QQ + cot γ
)

determines quantitatively accurate reso-
nance positions [11], where both Ksr and γ are interpolated
with ease. As our model calculates all experimentally mea-
sured resonances close to their positions Bex, the unmeasured
resonance positions of Table I are predictive with uncertainties
on the order of current experimental uncertainties (�1 G). Our
theory predicts a resonance at the position Bth, and fitting the
divergence of the scattering length near the resonance to the
following form determines the width of an L = 0 or L = 2
resonance [38]:

a(B) = abg

(
1 − �

B − Bth

)
, (28)

where abg is the local background scattering length and � is
the field width. Fitting the divergence of the scattering volume
to the same form as Eq. (28) determines the width of an L = 1
resonance.

For high-L resonances beyond L = 2, the resonance widths
in K + Rb collisions become orders of magnitude more
narrow. For example, MQDT predicts the widest of the L = 4
resonances to have a width �1 μG. The time required to
perform a FCC calculation of such narrow resonances makes
the comparison between the MQDT and FCC calculations

challenging. However, predicting the position and width of
high-L resonances remains simple within MQDT. Despite
performing a detailed, fully coupled calculation on a magnetic
field grid of spacing 100 G, our method has found and
characterized features 18 orders of magnitude smaller than
this.

VI. CONCLUSION

A choice of reference wave functions has been identified
that allows MQDT to describe high-partial-wave cold colli-
sions. Our specific standardization of reference wave functions
has produced a numerically stable calculation of high-partial-
wave MQDT parameters that are smooth in energy and
magnetic field. All of these parameters are described by simple
power laws at ultralow energies, and accurate expressions for
these parameters in the threshold regime have been derived
for potentials dominated by −C6/R

6 at long range. As
an example, excellent agreement has been shown between
MQDT and the FCC calculations of ultracold 40K+87Rb
scattering in their lowest hyperfine states. This calculation
has also shown good agreement with experimental measure-
ments of Fano-Feshbach resonances, and all of the L = 0–2
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Fano-Feshbach resonances in the range of B = 0–1000 G have
been reported.
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APPENDIX A: THE INSTABILITY OF φi

Here, we consider the calculation of the phase φi that
defines the MQDT reference wave functions f̂ and ĝ. φi

describes the particular linear combination of f̂(φi=0) and
ĝ(φi=0) that coincides with a wave function of our choice
at zero energy. We choose this wave function according
to its asymptotic behavior and define our reference wave
functions at Rx . Therefore, we can determine φi by numerically
propagating f̂(φi=0) and ĝ(φi=0) from their boundary conditions
at Rx to large R. However, numerical error causes this
propagation to become unstable in the presence of a centrifugal
barrier; hence, the numerical calculation of φi can also become
unstable.

For example, we consider the −1/R6 potential. In this
potential, every zero-energy wave function is known in terms
of the analytically known wave functions (15) at all R. These
wave functions have well-known asymptotic behaviors and
are exact solutions at small R. Therefore, their behavior
at Rx determines φi without any numerical propagation.
Nevertheless, we can still attempt to determine φi numerically
by propagating the wave functions f̂(φi=0) and ĝ(φi=0) from
their boundary conditions at Rx to large R. Then, studying
the deviation of our numerically determined value of φi from
the analytically known value allows us to characterize the
numerical instability of this calculation. Moreover, we identify
a robust method for avoiding this instability that is easily
generalized to any potential that falls off faster than 1/R2

asymptotically.
We rewrite the zero-energy wave functions f̂(φi=0) and

ĝ(φi=0) in terms of the analytic wave functions (15) by defining
a constant 2 × 2 matrix C,

f̂(φi=0) = c11χ+ + c12χ−, (A1a)

ĝ(φi=0) = c21χ+ + c22χ−. (A1b)

If we choose to let f̂ coincide with χ+ at zero energy, we can
derive an expression for tan φi in terms of the elements of C

by using Eq. (16a),

tan φi = c11W (χ+,χ+) + c12W (χ+,χ−)

c21W (χ+,χ+) + c22W (χ+,χ−)
= c12

c22
. (A2)

However, achieving this value of tan φi numerically is not
guaranteed. We can track numerical error by considering the
difference between a particular analytic solution and the same
solution determined numerically. To this end, we expand the
zero-energy wave functions χ+ and χ− in powers of R at large
R,

χ+
R	1−−→ ≈ RL+1 + BRL−3, (A3a)

χ−
R	1−−→ ≈ R−L, (A3b)

where B is a known constant and the normalization of these
wave functions is chosen such that W (χ−,χ+) = 2L + 1. We
then define two numerically determined wave functions χ ′

+ and
χ ′

− that have the same boundary conditions at Rx as the analytic
solutions χ+ and χ−, respectively. Moreover, we demand that
χ+ and χ− have the exact same normalization as their analytic
counterparts asymptotically.

Numerical error causes the wave functions χ ′
+ and χ ′

−
to differ from the analytic solutions in two ways. First,
only the leading-order terms in their asymptotic expansions
agree exactly. Hence, the asymptotic expansion of χ ′

+ has
a coefficient B ′ in its second-highest-order term that differs
slightly from the coefficient B in Eq. (A3a). Thus, we represent
our error by the constant δ ≈ B − B ′. Second, the numerical
wave functions become slightly different linear combinations
of the analytic solutions, such that χ ′

+ gains a contribution
from χ− that is proportional to the error δ. χ ′

− differs from χ−
in analogous ways, and we expand both of the numerical wave
functions in powers of R at large R,

χ ′
+

R	1−−→≈ RL+1 + B ′RL−3 + δR−L, (A4a)

χ ′
−

R	1−−→≈ R−L + δ(RL+1 + BRL−3). (A4b)

The presence of numerical error also changes the wave
functions f̂(φi=0) and ĝ(φi=0). We call these numerically
determined wave functions f̂ ′

(φi=0) and ĝ′
(φi=0), and they lead

to the numerically determined phase φ′
i . We define f̂ ′

(φi=0) and
ĝ′

(φi=0) by their boundary conditions at Rx . Therefore, these
functions are exactly the functions (A1) at Rx , but they take
a slightly different form at large R. We approximate their
large-R behavior as the following:

f̂ ′
(φi=0)

R	1−−→ c11χ
′
+ + c12χ

′
− (A5)

ĝ′
(φi=0)

R	1−−→ c21χ
′
+ + c22χ

′
−. (A6)

Using these wave functions in Eq. (16a) leads to an equation
for tan φ′

i that depends on the product δR2L−3 at large R,

tan φ′
i

R	1−−→ c11W
(
χ+,χ ′

+
) + c12W

(
χ+,χ ′

−
)

c21W
(
χ+,χ ′+

) + c22W
(
χ+,χ ′−

) (A7a)

= c114δR2L−3 − c12(2L + 1)

c214δR2L−3 − c22(2L + 1)
(A7b)

R→∞−−−→ c11

c21
for L > 1 and δ �= 0. (A7c)

For L > 1, the large-R limit of tan φ′
i approaches the wrong

value c11/c21 if δ is nonzero. Indeed, performing the actual
numerical calculation produces this same value of tan φ′

i .
Since the value of tan φi depends on the constants c12 and

c22 and these terms are dominated by numerical error at large
R, we deduce that finding the contribution to f̂(φi=0) and ĝ(φi=0)

from χ− at large R is numerically challenging when L > 1. In
fact, letting either f̂ or ĝ—at zero energy—coincide with any
wave function with a contribution from χ+ leads to an equation
for tan φi that depends on the constants c12 and c22, and the
same numerical instability exists. However, if we instead let f̂

or ĝ coincide with χ− at zero energy, using the numerical wave
functions f̂ ′

(φi=0) and ĝ′
(φi=0) at large R leads to an equation for

tan φ′
i that reduces to the analytic value of tan φi for all L.
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For example, if we let ĝ coincide with χ− at zero energy, we
can derive an expression for tan φi by using the exact values
of f̂(φi=0) and ĝ(φi=0) in Eq. (16b),

tan φi = −c21W
(
χ−,χ ′

+
) + c22W

(
χ−,χ ′

−
)

c11W
(
χ−,χ ′+

) + c12W
(
χ−,χ ′−

) = −c21

c11
. (A8)

Using the numerical wave functions f̂ ′
(φi=0) and ĝ′

(φi=0) at large
R leads to the following equations for tan φ′

i ,

tan φ′
i = −c21W

(
χ−,χ ′

+
) + c22W

(
χ−,χ ′

−
)

c11W
(
χ−,χ ′+

) + c12W
(
χ−,χ ′−

) (A9a)

R	1−−→ −c21 + c22δ

c11 + c12δ
(A9b)

≈ −c21

c11
for all L and δ � 1. (A9c)

Here, tan φ′
i does not depend on R in the region R 	 1, and

tan φ′
i approaches approximately the correct value even if the

numerical error is finite. Of course an accurate value of tan φ′
i

requires the numerical error to be small (δ � c12 and δ � c22),
but the divergence seen in Eq. (A7b) does not appear. In this
case, tan φi does not depend on the constants c12 and c22.
Therefore, finding the contribution to f̂(φ=0) and ĝ(φ=0) from
χ− at large R is not necessary, and the numerical instability of
calculating tan φi vanishes.

APPENDIX B: MQDT THRESHOLD BEHAVIOR

1. Introduction

The MQDT parameters A, η,G, and γ connect the reference
wave functions f̂ and ĝ to well-known solutions in the limit
R → ∞, as described in Eqs. (9)–(11). By considering a
simple long-range potential, we can represent the zero-energy
limits of f̂ and ĝ in terms of analytically known zero-energy
solutions. However, these solutions are inadequate to describe
the large-R behavior of f̂ and ĝ at nonzero energies, so
we find a correction to the zero-energy wave functions via
perturbation theory. With an accurate representation of f̂ and
ĝ at small energies in hand, we derive simple expressions for
the MQDT parameter threshold behavior by matching these
wave functions to either the energy-dependent wave functions
f and g or the function e−κR .

2. Zero-energy solutions

For the simple long-range potential −C6/R
6, we can solve

the Schrödinger equation

−d2ψ

dR2
+ L(L + 1)ψ

R2
− ψ

R6
= Eψ (B1)

analytically at E = 0. For all of Appendix B, R is in units
of the natural length scale β = (2μC6/h̄

2)1/4 of the potential
−C6/R

6, and E is in units of the natural energy scale Eβ =
h̄2/2μβ2, where μ is the reduced mass. We describe particular
solutions to Eq. (B1) at zero energy in terms of two linearly
independent solutions χ+ and χ− defined by their asymptotic

behavior,

χ+ =
√

RJ− 1
4 (2L+1)(1/2R2)

R→∞−−−→ 2L+1/2RL+1

�(3/4 − L/2)
, (B2a)

χ− =
√

RJ 1
4 (2L+1)(1/2R2)

R→∞−−−→ 2−(L+1/2)R−L

�(L/2 + 5/4)
, (B2b)

where J is the Bessel function of the first kind.
For all energies, we define two linearly independent

reference wave functions f̂ and ĝ with the following boundary
conditions at Rx � 1:

f̂ (R) = 1√
k(R)

sin

(∫ R

Rx

k(R′)dR′ + φ

)
at R = Rx,

(B3a)

ĝ(R) = −1√
k(R)

cos

(∫ R

Rx

k(R′)dR′ + φ

)
at R = Rx.

(B3b)

Here, φ is a phase that is constant in R and energy, and k =√
E + 1/R6. The set of equations (B3) and their full radial

derivatives define f̂ and ĝ.
We then demand that ĝ coincides (up to a normalization)

with the solution χ− at zero energy. Hence, we rewrite f̂ and ĝ

in terms of χ+ and χ− at zero energy by defining two constants
of normalization N1 and N2 and a constant phase α,

f̂ (E = 0) = N2 (χ+ + tan αχ−) , (B4a)

ĝ(E = 0) = N1χ−. (B4b)

By considering the small-R limit of our zero-energy solutions
and reference wave functions,

χ+
R�1−−→ 2√

π
R3/2 sin

(
− 1

2R2
− Lπ

4
+ 5π

8

)
, (B5a)

χ−
R�1−−→ − 2√

π
R3/2 cos

(
− 1

2R2
+ Lπ

4
− 5π

8

)
,

(B5b)

f̂ (E = 0)
R�1−−→ R3/2 sin

(
− 1

2R2
+ 1

2R2
x

+ φ

)
, (B5c)

ĝ(E = 0)
R�1−−→ −R3/2 cos

(
− 1

2R2
+ 1

2R2
x

+ φ

)
, (B5d)

we use the sets of equations (B3) and (B4) to determine the
four unknown constants,

N1 =
√

π

2
, (B6a)

φ = − 1

2R2
x

+ Lπ

4
− 5π

8
, (B6b)

tan α = (−1)L+1 sin

(
2L + 1

4
π

)
, (B6c)

N2 = −
√

π

2 sin
(

2L+1
4 π

) . (B6d)

3. Perturbation theory

At zero energy, we know the wave functions f̂ and ĝ

exactly; however, it is not immediately obvious whether or not
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the zero-energy wave functions are good approximations at
large R 	 1 in the limit of E → 0. At small energies E � 1,
both f̂ and ĝ grow with R before reaching their asymptotic
limits, but only f̂ grows at exactly zero energy. Since f̂ has
a contribution from χ+ and χ− at zero energy, matching to
finite-energy wave functions is straightforward. However, ĝ is
purely χ− at zero energy, and the contribution to ĝ from χ+ at
small energies is unknown. In order to match our zero-energy
wave functions onto growing, finite-energy wave functions at
large R, we must find the contribution to ĝ from χ+. This is
accomplished by performing a perturbation in E.

Because we plan to match wave functions at a finite R,
we choose a Green’s function which preserves the boundary
conditions of ĝ at Rx [42],

G(R,R′) =
⎧⎨
⎩

0 if R < R′,
χ+(R)χ−(R′) − χ−(R)χ+(R′)

(N1N2)−1
if R > R′.

(B7)

Hence, there is an integral equation for ĝ at small energies,

ĝ(R,E � 1) = ĝ(R,E = 0) +
∫ R

0
G(R,R′)ĝ(R′,E = 0)dR′

(B8a)

= N1χ−(R) + EN2
1 N2

(
χ+(R)

∫ R

0
χ2

−(R′)dR′

−χ−(R)
∫ R

0
χ+(R′)χ−(R′)dR′

)
, (B8b)

where we have used equation (B4b) to replace ĝ at zero energy.
We solve these integrals analytically and then expand them in
powers of R at large R,

∫ R

0
χ2

−(R′)dR′

R	1−−→ 4

(2L + 3)(2L − 1)π
− 2−(2L+1)R1−2L

(2L − 1)�(5/4 + L/2)2
,

(B9a)∫ R

0
χ−(R′)χ+(R′)dR′

R	1−−→ 4 cos
(

2L+1
4 π

)
(2L + 3)(2L − 1)π

+ 2 sin
(

2L+1
4 π

)
R2

(2L + 1)π
. (B9b)

By using this correction to the zero-energy ĝ and approximat-
ing f̂ with its zero-energy limit, we have complete descriptions
of the reference wave functions at large R in the limit of zero
energy,

f̂
R	1−−→
E→0

N2

(
2L+1/2RL+1

�(3/4 − L/2)
+ tan α

2−(L+1/2)R−L

�(5/4 + L/2)

)
,

(B10a)

ĝ
R	1−−→
E→0

N1
2−(L+1/2)R−L

�(5/4 + L/2)
+ EN2

1 N2

×
(

2L+5/2RL+1

�(3/4 − L/2)(2L + 3)(2L − 1)π

− 2−L+1/2 sin
(

2L+1
4 π

)
R−L+2

�(5/4 + L/2)(2L − 1)π

− 2−L+3/2 cos( 2L+1
4 π )R−L

�(5/4 + L/2)(2L + 3)(2L − 1)π

)
. (B10b)

4. Matching wave functions

The MQDT parameters connect f̂ and ĝ with f , g, and
e−κR . Since we have analytic expressions for all of these wave
functions at large R and small energies, we use Eqs. (9)–(11)
to solve for the threshold behavior of the MQDT parameters.
Moreover, by expanding these wave functions in powers of R

and comparing like terms, we derive simple formulas. We can
use the asymptotic expansions of f̂ and ĝ at small energies
in Eqs. (B10a) and (B10b), but we still need to find similar
expansions for f and g in this same parameter regime: R 	 1
and E → 0.

At large R, we rewrite f and g in terms of spherical Bessel
functions using (10) and (4),

f
R→∞−−−→ kR√

k
[j (kR) cos η − n(kR) sin η] , (B11a)

g
R→∞−−−→ kR√

k
[n(kR) cos η + j (kR) sin η] . (B11b)

Then, the small-argument expansions of the spherical Bessel
functions unveil the behavior of f and g at large R and very
small energies such that kR � 1,

f
R	1−−→
k→0

1√
k

(kR)L+1

(2L + 1)!!
cos η + 1√

k

(2L − 1)!!

(kR)L
sin η,

(B12a)

g
R	1−−→
k→0

− 1√
k

(2L − 1)!!

(kR)L
cos η

(
1 + (kR)2

4L − 2

)

+ 1√
k

(kR)L+1

(2L + 1)!!
sin η, (B12b)

where k = √
E. We see that f has a term proportional to RL+1

and a term proportional to R−L. Hence, we can compare this
function with f̂ term by term. The equation for f in (9),

A−1/2f = f̂ , (B13)

yields two equations for the MQDT parameters A and η,

A1/2 = �(3/4 − L/2)kL+1/2 cos η

N22L+1/2(2L + 1)!!
, (B14a)

sin η = N2 tan α2−(L+1/2)A1/2kL+1/2

�(5/4 + L/2)(2L − 1)!!
, (B14b)

where matching powers of RL+1 leads to Eq. (B14a) and
matching powers of R−L leads to Eq. (B14b).

From (B14) we find that tan η ∝ k2L+1. Thus, for small k,
we use the small-angle approximation, sin η ≈ η and cos η ≈
1, and define the generalized scattering length āL,

āL =
(

π2−(2L+3/2)

�(L/2 + 5/4)�(L + 1/2)

)2/(2L+1)

. (B15)

032706-12



QUANTUM DEFECT THEORY FOR HIGH-PARTIAL-WAVE . . . PHYSICAL REVIEW A 87, 032706 (2013)

We then rewrite our expressions for A and η in terms
of āL,

A1/2 = −(āLk)L+1/2, (B16a)

η = (−1)L+1(āLk)2L+1. (B16b)

Here, we have used the relations (2n − 1)!! = 2n�(1/2 +
n)/

√
π , where n is an integer, and sin (πz) = π/�(1 − z)�(z)

with z = (2L + 1)/4. For L > 1 and small k, we know
the phase shift is dominated by a long-range phase shift
proportional to k4 [43], but the derivation above yields
only the short-range contribution because we are match-
ing wave functions under the centrifugal barrier. Since we
know the long-range contribution analytically, we simply
correct our expression for η by adding these contributions
together,

η = (−1)L+1(āLk)2L+1 + 3π�(L − 3/2)

32�(L + 7/2)
k4. (B17)

The length scale āL helps to greatly reduce the number
of unnecessary constants in the derivation of the remaining
MQDT parameters G and γ . Hence, we rewrite our wave
functions in terms of āL. At large R, the zero-energy solutions
become

χ+
R	1−−→ − 1

N2

√
āL

(R/āL)L+1

(2L + 1)!!
, (B18a)

χ−
R	1−−→ 1

N1

√
āL

(2L − 1)!!

(R/āL)L
, (B18b)

and we have simple expressions for the zero-energy limits of
f̂ and ĝ at large R,

f̂
R	1−−→
E→0

−√
āL

(R/āL)L+1

(2L + 1)!!
+ (−1)L

√
āL

(2L− 1)!!

(R/āL)L
, (B19a)

ĝ
R	1−−→
E→0

√
āL

(2L − 1)!!

(R/āL)L

(
1 + ER2

4L − 2
+ (−1)LE

(2L+ 3)(2L− 1)

)

− E

(2L + 3)(2L − 1)

√
āL

(R/āL)L+1

(2L + 1)!!
. (B19b)

We derive the threshold behavior of the MQDT parameter
G by using the equation for g in (9),

A1/2g = ĝ + Gf̂ . (B20)

In this equation, we substitute ĝ and g with their expansions
in (B19b) and (B12b), respectively, and replace A by its
threshold value in Eq. (B16a). Thus, in the limit of large R and
very small, positive energy such that kR � 1, we evaluate the
left-hand side (LHS) and right-hand side (RHS) of Eq. (B20)
separately,

A1/2g
R	1−−→
k→0

√
āL

(2L − 1)!!

(R/āL)L

(
1 + (kR)2

4L − 2

)

+ (−1)L(āLk)4L+2√āL

(R/āL)L+1

(2L + 1)!!
, (B21a)

ĝ + Gf̂
R	1−−→
k→0

√
āL

(2L − 1)!!

(R/āL)L

(
1 + (kR)2

4L − 2

+ (−1)Lk2

(2L + 3)(2L − 1)
+ (−1)LG

)

−√
āL

(R/āL)L+1

(2L + 1)!!

(
k2

(2L + 3)(2L − 1)
+ G

)
,

(B21b)

where E = k2. Hence, the first two terms on the LHS cancel
exactly with the first two terms on the RHS, leading to the
following equation:

(−1)L(āLk)4L+2 (R/āL)L+1

(2L + 1)!!

= − (R/āL)L+1

(2L + 1)!!

(
k2

(2L + 3)(2L − 1)
+ G

)
+ (−1)L

× (2L − 1)!!

(R/āL)L

(
k2

(2L + 3)(2L − 1)
+ G

)
. (B22)

In the limit of large R 	 1, the RL+1 terms on the RHS
dominate the R−L terms for all L and all k, independent of G;
therefore, neglecting the terms of order R−L in this equation
gives the threshold behavior of G,

G = (−1)L+1(āLk)4L+2 − k2

(2L + 3)(2L − 1)
. (B23)

We derive the threshold behavior of γ in a way similar to
the derivation of G. Here, instead of matching to g, we need to
match the small-energy limit of f̂ and ĝ to the function e−κR

at large R. We again try to match wave functions at large R

and very small energies such that κR � 1. Using Eq. (11), we
define a constant of proportionality D,

tan γif̂i + ĝi
R	1−−→ De−κiR. (B24)

Then, using (B19) for f̂ and ĝ and using the κR � 1 expansion
of e−κR , we arrive at the following equation:

D

∞∑
n=0

(−κR)n

n!

= −√
āL

(R/āL)L+1

(2L + 1)!!

(
− κ2

(2L + 3)(2L − 1)
+ tan γ

)

+√
āL

(2L − 1)!!

(R/āL)L

(
1 − (κR)2

4L − 2
− (−1)Lκ2

(2L + 3)(2L − 1)

+ (−1)L tan γ

)
, (B25)

where E = −κ2.
For L = 0, we take the expansion of e−κR out to first order

in κ (n = 1) and neglect terms of order κ2,

D(1 − κR) = √
ā0 (1 + tan γ − tan γR/ā0) . (B26)

Matching constant terms and terms of order R leads to the
following two equations with two unknowns:

D = √
ā0 (1 + tan γ ) , (B27a)

−Dκ = − tan γ /
√

ā0. (B27b)
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Hence,

D = tan γ√
ā0κ

, (B27c)

tan γ = 1

1 − ā0κ
, (B27d)

and we have a simple formula for tan γ in the threshold limit
κ � 1 when L = 0,

tan γ = ā0κ for L = 0. (B28)

For L > 0, we immediately see that matching powers of R in
Eq. (B25) is problematic due to the terms of order R−L on the
RHS. Therefore, instead of matching in the limit κR � 1, we
simply let the wave functions take their asymptotic forms as
R → ∞, where κR 	 1 even though κ � 1. That is, e−κR →

0, and f̂ and ĝ are still well approximated by their E → 0
limits in (B19). As R becomes very large, these wave functions
are dominated by their contributions from RL+1. Even the term
in ĝ proportional to R−L+2 is dominated by RL+1 for L > 0,
and Eq. (B24) takes a simple form,

0 = −√
āL

(R/āL)L+1

(2L + 1)!!

(
− κ2

(2L + 3)(2L − 1)
+ tan γ

)
.

(B29)

Hence, we have the following simple formulas for the threshold
behavior of γ :

γ =
⎧⎨
⎩

ā0κ for L = 0,

κ2

(2L + 3)(2L − 1)
for L > 0.

(B30)
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