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by high-energy particle impact
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We have evaluated the dominant contribution of the electron correlations to the single K-shell ionization cross
section of heliumlike atomic systems by impact of high-energy electrons. This study is performed consistently
within the framework of nonrelativistic perturbation theory. The results obtained are also applicable for the
case of high-energy collisions with arbitrary charged particles whose mass is much less than that of the target.
The formula for cross section is represented in the form of a universal scaling. A comparison of our numerical
calculations with available experimental data is made.
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I. INTRODUCTION

The single ionization of inner-shell electrons by the electron
impact is one of the fundamental processes which still
attracts considerable interest in collision theory, experimental
measurements, and various applications [1–7]. To describe the
ionization cross sections, one usually employs either sophis-
ticated numerical approaches or empirical and semiempirical
fitting formulas. Significant efforts have been also devoted
to investigations of the scaling behavior of ionization cross
sections with respect to the incident electron energy [8–13].
However, a consistent theoretical consideration of the problem,
which would allow one to deduce the universal scaling laws
accurately describing the ionization processes for different
atomic targets within the wide energy range from the ionization
threshold to asymptotic high energies, is still absent in the
literature.

The aim of this paper is to study the universal scalings
for weakly bound two-electron targets, which can be obtained
within the framework of nonrelativistic perturbation theory.
We start with the approximation of noninteracting electrons,
which employs the complete basis set of the Coulomb wave
functions for the discrete and continuous spectra (Furry
picture). In the nonrelativistic problem, the strength of the
electron-nucleus interaction is characterized by the small
parameter αZ � 1, where α is the fine-structure constant and
Z is the nuclear charge. In particular, the characteristic velocity
of a bound inner-shell electron is αZc, where c is the speed of
light. In the following, we shall use the relativistic units (h̄ = 1,
c = 1), which significantly simplify all formulas. A K-shell
electron is also characterized by the averaged momentum
η = mαZ and the energy E1s = −I , where m is the electron
mass and I = m(αZ)2/2 is the ionization potential. The
electron-electron interaction is treated within the framework of
perturbation theory, which appears as a series expansion with
respect to the small parameter 1/Z � 1. The latter represents
the ratio of the strength of the electron-electron interaction
to the electron-nucleus one. Obviously, the highest accuracy
of theoretical predictions, which are obtained to leading
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orders of perturbation theory with respect to parameters αZ

and 1/Z, can be achieved for atomic targets with moderate
values of Z. The generalization of the results to the case of
heavier targets and relativistic energies requires accounting
for the relativistic corrections over the parameter αZ (see, for
example, Refs. [14–18]). The extension of the formulas to the
case of light targets requires accounting for the correlation
corrections over the parameter 1/Z [19,20].

Let us assume that the incident electron has the energy
Ep = p2/(2m) and the momentum p = mv at infinitely large
distances from the nucleus. To study the universal scalings, it is
natural to introduce the dimensionless quantities. For incident
electrons, these are the dimensionless momentum k = p/η =
v/(αZ) and energy ε = Ep/I = v2/(αZ)2, which are related
to the dimensionless velocity of the projectile calibrated in
units of the averaged velocity of a K-shell electron. Note that
the quantity ξ = 1/k is Sommerfeld’s parameter. In ionization
processes, it is also convenient to distinguish between the
near-threshold (ξ � 1) and high-energy (ξ � 1) ranges. The
theoretical description near the ionization threshold is always
a complicated technical problem since it requires consistently
accounting for all bindings in the colliding system. At high
energies, the theoretical description is simplified since some
bindings become unimportant and therefore can be neglected
due to the additional small parameter ξ � 1.

For hydrogenlike ions characterized by small parameters
αZ and 1/Z, the K-shell ionization cross section deduced to
leading order of the perturbation theory can be cast in the
following form:

σ+
1s = σ0

Z4
Q1s(ε), (1)

where σ0 = πa2
0 = 87.974 Mb and a0 = 1/(mα) is the Bohr

radius. The universal function Q1s(ε) does not depend explic-
itly on the value of Z. In Fig. 1, we present two theoretical
curves for the function Q1s(ε). In the first calculation, which is
justified for high-energy electron impact (ε � 1), the incident
and scattered electrons are described by the plane waves (Born
approximation). The atomic electrons (bound and ionized
ones) are described by the Coulomb wave functions, which
accurately take into account the electron-nucleus interactions.
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FIG. 1. The universal function Q1s(ε) dependent on the dimen-
sionless energy ε of the incident electron. Dotted line, calculation
within the Born approximation; dashed line, exact calculation with
the Coulomb wave functions. Experimental data: H atom (circles with
dots) [25].

In fact, this curve appears from the energy distribution obtained
by Bethe in analytical form for the case of the hydrogen
atom [21–24]. The second calculation is performed by using
the Coulomb wave functions for all electrons involved in the
ionization process [24]. This result is justified for arbitrary
nonrelativistic energies 1 � ε � 2(αZ)−2, including the near-
threshold range. As can be seen, for the total cross section (1),
the near-threshold and high-energy domains match each other
already at about ε � 5. In the Born approximation, the cross
section is underestimated near the threshold.

In order to test the accuracy of the theoretical results, we
compare them with measurements made on hydrogen atoms
[25], where the perturbation theory is formally not applicable
since the parameter 1/Z = 1 is not small. Surprisingly enough,
the cross section calculated to leading order reproduces the
correct order of magnitude. The disagreement between theory
and experiment reaches about 40% at most. The discrepancy
is due to two- and three-photon exchange corrections, which
are omitted in the theoretical calculations. At ε � 20, cross
section (1) already has true asymptotic behavior; that is, the
higher-order correlation corrections are small at the high-
energy regime. However, this is an exceptional peculiarity of
hydrogenlike atomic systems since in such targets there is one
slow electron only.

In the case of heliumlike ions being in the ground state,
the single ionization cross section obtained to leading order of
perturbation theory reads

σ+ = 2σ+
1s , (2)

where σ+
1s is given by Eq. (1). The factor 2 accounts for

two K-shell electrons in the target. Formula (2) holds for
nonrelativistic atomic systems with nuclear change Z � 1. In
the following, we shall calculate the dominant correction with
respect to the correlation parameter 1/Z, which generalizes
Eq. (2) for the case of small values of Z � 2.

II. FORMULATION OF PROBLEM

Let us assume that the incident electron has asymptotic
momentum p and energy Ep = p2/(2m), while the scattered
electron is characterized by asymptotic momentum p1 and
energy Ep1 = p2

1/(2m). If p � η holds, the continuum wave
function is approximated as ψ p(r) � ei( p·r) (Born approxi-
mation). The total ionization cross section is known to result
mainly from the kinematics, where the asymptotic momentum
of ejected electron is estimated as p2 ∼ η, but p1 ∼ p � η

and, correspondingly, ψ p1 (r) � ei( p1·r). Then the interaction
of the fast projectile with an atomic electron can be represented
as the following potential:

U (r) =
∫

ψ∗
p1

(r ′)V (r,r ′)ψ p(r ′)d r ′ = D(q)ei(q·r). (3)

Here V (r,r ′) = α/|r − r ′| is the operator of the electron-
electron Coulomb interaction, D(q) = 4πα/q2, and q = p −
p1 is the recoil momentum transferred to the atom. In fact,
Eq. (3) is valid only if the exchange interaction between
the projectile and atomic electron can be neglected. In the
case of high-energy electron scattering, such an interaction is
associated with large momentum transfer and is suppressed by
a factor of ∼(η/p)2 in the amplitude of the process.

In the Born approximation, the total amplitude for single
ionization of a two-electron atom reads

A = 2 〈	f |U |	i〉, (4)

where 	i,f (r1,r2) are the two-electron wave functions of the
initial and final states, respectively. The factor 2 takes into
account the single-particle property of operator (3) and the
symmetry of the wave functions. That is, it is sufficient to
consider the interaction of the projectile with a single atomic
electron only.

In the following, we shall take into account the Coulomb
interaction between atomic electrons (correlations) in the
initial and final atomic states. To zeroth-order approximation
with respect to the correlation interaction, the wave functions
	i,f � 	

(0)
i,f are given by products of single-particle wave

functions in the Coulomb field of the nucleus. For a heliumlike
ion in the ground state, we have

	
(0)
i (r1,r2) = ψ1s(r1)ψ1s(r2), (5)

	
(0)
f (r1,r2) = 1√

2
[ψ p2 (r1)ψ1s(r2) + ψ1s(r1)ψ p2 (r2)]. (6)

The explicit expressions for the single-electron Coulomb wave
functions read [22]

ψ1s(r) = N1s e−ηr , (7)

ψ p2 (r) = Np2 ei( p2·r)F (−iξ2,1, − iρ2), (8)

where N2
1s = η3/π , N2

p2
= 2πξ2/(1 − e−2πξ2 ), ρ2 = p2r +

( p2 · r), ξ2 = η/p2, η = mαZ is the characteristic momentum
of a K-shell electron, and F (a,b,z) is the regular confluent
hypergeometric function. Function (8) describes the contin-
uum state, in which at infinity there are a plane wave and
an incoming spherical one. Note, however, that due to the
complex conjugation, the ionization amplitude contains the
outgoing spherical waves.
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FIG. 2. Feynman diagrams describing the single ionization of
a heliumlike ion to zeroth-order approximation with respect to the
correlation interaction.

Equation (4) is given by

A � A(0) = 2
〈
	

(0)
f

∣∣U ∣∣	(0)
i

〉 =
√

2 〈ψ p2 |U |ψ1s〉. (9)

The ionization amplitude (9) can be represented by the Feyn-
man diagram depicted in Fig. 2(a) and has been thoroughly
investigated in the literature [21–24]. In explicit form, it reads

A(0) =
√

2 16πηN1sNp2D(q)M0, (10)

M0 = [q2 − (1 + iξ2)( p2 · q)]
[( p2 − q)2 + η2]iξ2−2

[q2 − (p2 + iη)2]iξ2+1
. (11)

The exchange diagram, which is given by Fig. 2(b), is of minor
importance in the case of high-energy electron scattering.

In order to get the universal scaling, we make the follow-
ing substitutions: q → κ = q/η, p2 → ξ−1

2 = p2/η = √
ε2,

Ep → ε = Ep/I , and Epl
→ εl = Epl

/I (l = 1,2). Then the
energy-conservation law reads ε − 1 = ε1 + ε2. Formula (10)
results in cross section (2) with the universal function Q1s(ε),
which is given by

Q1s(ε) = 29

ε

∫ (ε−1)/2

0

dε2

1 − e−2πξ2

∫
κ2

κ1

dκ

κ
3

∫ π

0
dθ sin θ |M0|2.

(12)

The dimensionless function M0 is related to Eq. (11) by M0 =
η−4M0. The limits of integration over the dimensionless
momentum transfer κ are defined according to κ1 = qmin/η =
(1 + ε2)/κ2 and κ2 = qmax/η = √

ε + √
ε − ε2 − 1, where

qmin = p − p1 and qmax = p + p1. The integration over the
angle θ between the momenta p2 and q can be performed
analytically (see, for example, Refs. [21–24]):∫ π

0
dθ sin θ |M0|2 = 2κ

2

3w3
(3κ

2 + 1 + ε2)e−ϕ, (13)

w = (κ2 + 1 − ε2)2 + 4ε2, ϕ = 2√
ε2

cot−1

{
κ

2 + 1 − ε2

2
√

ε2

}
.

(14)

The range of the principal value of cot−1(z) lies between 0 and
π .

Now we shall construct the wave functions 	i,f within the
framework of the first-order perturbation theory with respect to
the correlation interaction, namely, 	i,f = 	

(0)
i,f + 	

(1)
i,f . The

first-order corrections to the wave functions are found from
the following equations [26,27]:

	
(1)
i = (

E
(0)
i − H1 − H2

)−1
(1 − Pi) V 	

(0)
i , (15)

	
(1)
f = (

E
(0)
f − H1 − H2 + i0

)−1
V 	

(0)
f . (16)

Here E
(0)
i = 2E1s , with E1s being the single-electron energies

in the initial bound state described by 	
(0)
i ,Pi = |	(0)

i 〉〈	(0)
i | is

the projection operator on this state, H1 and H2 are the single-
particle Hamiltonians for an electron in the Coulomb field of
the nucleus, and E

(0)
f = E1s + Ep2 , where Ep2 = p2

2/(2m) is
the energy of the escaping electron.

The ionization amplitude is refined as follows: A = A(0) +
A(1). The first-order corrections are given by

A(1) = 2
〈
	

(0)
f

∣∣U ∣∣	(1)
i

〉 + 2
〈
	

(1)
f

∣∣U ∣∣	(0)
i

〉
=

√
2 [Aa + Ab + Ac + Ad ], (17)

where

Aa = 〈ψ p2ψ1s |UGR(E1s)V |ψ1sψ1s〉, (18)

Ab = 〈ψ p2ψ1s |V G(Ep2 )U |ψ1sψ1s〉, (19)

Ac = 〈ψ1sψ p2 |UG(Ec)V |ψ1sψ1s〉, (20)

Ad = 〈ψ1sψ p2 |V G(Ep2 )U |ψ1sψ1s〉. (21)

Here G(E) = (E − H1)−1 denotes the single-particle
Coulomb Green’s function with energy E. The reduced
Green’s function GR(E1s), corresponding to energy E1s of
the K-shell electron, is given by

GR(E1s) = lim
E′→E1s

{
G(E′) − |ψ1s〉〈ψ1s |

E′ − E1s

}
. (22)

In Eq. (20), the intermediate energy is defined as follows: Ec =
2E1s − Ep2 . The amplitudes (18)–(21) can be presented by the
Feynman diagrams depicted in Figs. 3(a)–3(d), respectively.
Figures 3(a) and 3(c) describe the interaction between atomic
electrons in the initial state, while Figs. 3(b) and 3(d) account
for the interaction in the final state. The corresponding
contributions are evaluated analytically in Sec. III.

It should be noted that Figs. 3(a)–3(d) can be considered as
the diagrams which account for the interelectron interaction
in the three-electron system up to second-order perturbation
theory. Then there are also the additional Feynman diagrams,
which take into account the twofold interaction of the projectile
with atomic electrons [see Figs. 3(e)–3(g)]. However, the
contribution of these diagrams is suppressed since the Green’s
function for the ionizing particle involves high energy. The
corresponding estimate is made in Sec. III D.

III. EVALUATION OF AMPLITUDES

A. Amplitude Aa

In the following, we shall evaluate the matrix elements in
the momentum representation. Then the operators U and V

correspond to the photon propagators D(q) = 4πα/q2 and
D( f ) = 4πα/ f 2, respectively, where q is the momentum
transferred to the atomic electron by the projectile, while
f is the exchange momentum of the atomic electrons inter-
acting with each other. The analytical expression for matrix

032705-3



A. I. MIKHAILOV, A. V. NEFIODOV, AND G. PLUNIEN PHYSICAL REVIEW A 87, 032705 (2013)

FIG. 3. Feynman diagrams describing the single ionization of
a heliumlike ion by high-energy electron impact to next-to-leading
order of the perturbation theory. In (a), the electron propagator with
dot corresponds to the reduced Coulomb Green’s function.

element (18) is given by

Aa = D(q)
∫

〈ψ p2 | f 1 + q〉〈 f 1|GR(E1s)| f ′
1〉〈 f ′

1 + f |ψ1s〉

×F ( f )D( f )
d f 1

(2π )3

d f ′
1

(2π )3

d f
(2π )3

, (23)

F ( f ) =
∫

〈ψ1s | f 2〉〈 f 2 − f |ψ1s〉 d f 2

(2π )3
. (24)

In the momentum representation, the single-electron
Coulomb wave functions can be expressed as follows [28,29]:

〈 f 2 − f |ψ1s〉 = N1s

(
− ∂

∂η

)
〈 f 2|Viη| f 〉, (25)

〈ψ p2 | f 1 + q〉 = Np2

(
− ∂

∂ν

)
Ît 〈k|Viχ | f 1〉|ν→0 , (26)

Ît = 1

2πi

∮ (0+,1+) dt

t

( −t

1 − t

)iξ2

, (27)

where k = p2(1 − t) − q, iχ = p2t + iν, and ξ2 = η/p2. The
integration contour in integral operator (27) is a closed curve
enclosing once counterclockwise the points 0 and 1. After
taking the derivative in Eq. (26), parameter ν should tend to
zero. In Eqs. (25) and (26), the matrix elements are defined by

〈 f ′|Viμ| f 〉 = 4π

( f ′ − f )2 + μ2
. (28)

Inserting expressions (25) and (26) into Eqs. (23) and (24),
one obtains

Aa = N1sNp2D(q)
∂2

∂η∂ν
Ît

∫
F ( f )D( f )

×〈k|ViχGR(E1s)Viη|− f 〉 d f
(2π )3

, (29)

F ( f ) = N2
1s

(
− ∂

∂μ

)
〈 f |Viμ|0〉|μ=2η . (30)

In Eq. (30), after taking derivative over μ, one should set
μ = 2η. Using the operator identity

− ∂

∂μ
ViμViη = − ∂

∂η
ViμViη = Vi(μ+η), (31)

one can perform the integration over the intermediate momen-
tum f in Eq. (29). Then we have

Aa = N3
1sNp2

(4πα)2

q2

∂2

∂μ∂ν

1

μ2
[J (η) − J (μ + η)] , (32)

J (β) = Ît 〈k|ViχGR(E1s)Viβ |0〉. (33)

Equation (33) can be evaluated by using the method
suggested in Refs. [30,31]. The general expression for the
matrix element, which involves the Coulomb Green’s function,
is given by

〈k2|Viη2G(E)Viη1 |k1〉 = −im

∫ 1

0

dx

�
(exp)〈k2|V�+iη2 |k1x〉,

(34)

� =
√(

p2 − k2
1x

)
(1 − x) − η2

1x, (35)

(exp) = exp

{
iη

∫ 1

x

dx

x�

}

=
(

k1 + iη1 − p

k1 + iη1 + p

k1x + � + p

k1x + � − p

)iξ

, (36)

where p = √
2mE + i0 and ξ = η/p.

By virtue of Eqs. (22) and (34), the first part of matrix
element (33) containing the Coulomb Green’s function can be
written as follows:

〈k|ViχG(E′)Viβ |0〉 = −m

∫ 1

0

dx

�1
(exp)1〈k|Vi(χ+�1)|0〉, (37)

�1 =
√

p′2(1 − x) + β2x, (38)

(exp)1 = exp

{
η

∫ 1

x

dx

x�1

}
= x−ζ

(
�1 + p′

β + p′

)2ζ

, (39)

where p′ = √
2m|E′| and ζ = η/p′. The second part of matrix

element (33), which corresponds to the contribution due to the
counterterm in Eq. (22), reads

〈k|Viχ |ψ1s〉〈ψ1s |Viβ |0〉
E′ − E1s

= −4πN2
1s

〈k|Vi(χ+η)|0〉
(β + η)2�

, (40)

where the infinitesimally small shift � = E1s − E′ is assumed
to be positive.

Since the dependence on the variable t appears in k and χ

only, the contour integral in Eq. (33) can be taken by using the
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residue theorem. It yields

J (β) = 4π lim
�→+0

{
−m

∫ 1

0

dx

�1
(exp)1�(�1) + 4η3�(η)

(β + η)2�

}
,

(41)

�(z) = [(q − p2)2 + (z + ν)2]iξ2−1

[q2 + (z + ν − ip2)2]iξ2
. (42)

Now we introduce the dimensionless parameter δ =
�/(2I ), where I = η2/(2m) is the binding energy of the
K-shell electron. For simplicity, we also redefine Eq. (41)
according to the relation J (β) = 4πmJ (β). Then we obtain

J (β) = lim
δ→0

{
−

∫ 1

0
x−ζ f (x)dx + 4η�(η)

(β + η)2δ

}
, (43)

f (x) = 1

�1

(
�1 + p′

β + p′

)2ζ

�(�1), (44)

where p′ = η
√

1 + 2δ and ζ = 1/
√

1 + 2δ. In Eq. (43), the
integral term contains the pole singularity ∼1/δ and a finite
contribution at δ → 0. Integrating over parts yields

∫ 1

0
x−ζ f (x)dx = f (1)

ρ
− 1

ρ

∫ 1

0
xρf ′(x)dx (45a)

= f (0)

ρ
−

∫ 1

0
f ′(x) ln xdx. (45b)

Here ρ = 1 − ζ � δ(1 − 3δ/2), and the prime over f (x)
denotes the derivative with respect to x. In Eq. (45b), the
integral term remains finite at δ → 0. Accordingly, it is
convenient to introduce the notation g(x) for the function f (x)
at δ = 0:

g(x) = lim
δ→0

f (x) = 1

L

(
L + η

β + η

)2

�(L), (46)

L =
√

η2(1 − x) + β2x. (47)

In the limit δ → 0, the term outside the integral takes the form

f (0)

ρ
= �(p′)

ρp′

(
2p′

β + p′

)2ζ

→
(

1

δ
+ 3

2
+ 2u + 2w

)
g(0),

(48)

g(0) = 4η�(η)

(β + η)2
, u = 1

2

β − η

β + η
− ln

2η

β + η
, (49)

w = η(iξ2 − 1)η1

(q − p2)2 + η2
1

− ηξ2(p2 + iη1)

q2 − (p2 + iη1)2
, (50)

where η1 = η + ν. Substituting Eqs. (45b) and (48) into
Eq. (43), one observes that the pole terms cancel each other.
Accordingly, we arrive at the following expressions:

Aa = N ∂2

∂μ∂ν

1

μ2
[J (η) − J (μ + η)]|μ=2η,ν→0 , (51)

J (β) = −
(

3

2
+ 2u + 2w

)
g(0) +

∫ 1

0
g′(x) ln xdx. (52)

The normalization factor N is equal to N =
(4π )3α2mN3

1sNp2/q2. After taking derivatives in Eq. (51),

one should set μ = 2η and take the limit ν → 0. The function
g′(x) denotes the derivative of Eq. (46) with respect to x.

B. Amplitude Ab

The amplitude Ab accounts for the interaction between
the atomic electrons (or, more precisely, between the bound
K-shell electron and the slow ionized electron) in the final
state and can be presented as follows:

Ab = D(q)
∫

〈ψ p2 | f 1 − f 〉〈 f 1|G
(
Ep2

)| f ′
1〉〈 f ′

1 − q|ψ1s〉

×F ( f )D( f )
d f 1

(2π )3

d f ′
1

(2π )3

d f
(2π )3

(53)

= N1sD(q)

(
− ∂

∂τ

) ∫
〈ψ p2 | f 1 − f 〉F ( f )D( f )

×〈 f 1|G
(
Ep2

)
Viτ |q〉 d f 1

(2π )3

d f
(2π )3

∣∣∣∣
τ=η

, (54)

where the function F ( f ) is defined by Eq. (24). Due to
relation (30), we can write

1

f 2
F ( f ) = N2

1s

(
− ∂

∂μ

)
1

μ2
〈 f |(Viλ − Viμ)|0〉|λ→0,μ=2η.

(55)

Here we have introduced a screened Coulomb potential with
a Yukawa shape. This is done in order to avoid ambiguities
related to the infrared divergency, which appears in the series
expansion of perturbation theory for the case of a continuous
spectrum in the Coulomb field. However, it is well known that
all logarithmically divergent terms are summed in ionization
amplitude up to an overall singular phase factor such as
exp [iξ2 ln (λ/2p2)], where ξ2 = η/p2, and therefore do not
contribute to the cross section [32–36]. Substituting Eq. (55)
into Eq. (54) yields

Ab = �̂μτ

∫
〈ψ p2 | f 1 − f 〉〈 f |(Viλ − Viμ)|0〉

× 〈 f 1|G
(
Ep2

)
Viτ |q〉 d f 1

(2π )3

d f
(2π )3

(56a)

= �̂μτ 〈ψ p2 |(Viλ − Viμ)G
(
Ep2

)
Viτ |q〉, (56b)

�̂μτ = 4παN3
1sD(q)

∂2

∂μ∂τ

1

μ2
. (57)

Here the derivatives should be evaluated at points μ = 2η

and τ = η. The screening parameter λ is assumed to have an
infinitesimally small value.

In Eq. (56b), the matrix element can be further transformed
by using formula (34):

〈ψ p2 |VizG
(
Ep2

)
Viτ |q〉 = −im

∫ 1

0

dx

�
(exp)〈ψ p2 |V�+iz|qx〉,

(58)

� =
√(

p2
2 − q2x

)
(1 − x) − τ 2x + i0, (59)

(exp) = x−iξ2

(
(qx)2 − (p2 + �)2

q2 − (p2 + iτ )2

)iξ2

, (60)
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where p2 = √
2mEp2 and ξ2 = η/p2. The positive imaginary

infinitesimally small addition in the expression for � fixes the
appropriate branch of the multivalued function. In Eq. (58), the
matrix element is evaluated by using the integral representation
for wave function (26). Then we obtain

〈ψ p2 |V�+iz|qx〉 = 4πNp2	(z), (61)

	(z) = [(qx − p2)2 − (� + iz)2]iξ2−1

[(qx)2 − (p2 + � + iz)2]iξ2
. (62)

Substituting Eqs. (58) and (61) into Eq. (56b) yields

Ab = −iN ∂2

∂μ∂τ

1

μ2

∫ 1

0

dx

�
(exp) [	(λ) − 	(μ)]

= AI
b + AII

b , (63)

where the normalization factor N is similar to that in Eq. (51).
After taking the derivatives, one should set μ = 2η and τ =
η. The second part of the amplitude, AII

b , does not depend
on the screening parameter λ and is suitable for numerical
calculations.

Let us consider the first integral in Eq. (63) in more detail.
One can write

AI
b = −iN ∂2

∂μ∂τ

1

μ2
K(λ) = iN

4η3

∂

∂τ
K(λ)|λ→0,τ=η, (64)

K(λ) =
∫ 1

0

dx

�
(exp)	(λ)

=
{∫ ν

0
+

∫ 1

ν

}
dx

�
(exp)	(λ) =

2∑
l=1

Kl(ν,λ). (65)

In Eq. (65), we have partitioned the interval of integration
by a small quantity ν, which is assumed to satisfy to the
following inequality: λ � ν � 1. Since the integral K1(ν,λ)
is divergent at the lower limit of integration at λ = 0, we keep
the dependence on parameter λ. Then one obtains

K1(ν,λ) = �(τ )

p2

∫ ν

0
dxx−iξ2 (x − iλβ)iξ2−1

= �(τ )

p2

{
ln

ν

λβ
+ ψ(1) − ψ(1 − iξ2) + iπ

2

}
,

(66)

where

�(τ ) = aiξ2−1(τ )

biξ2 (τ )
, β = 2p2

a(τ )
, (67)

a(τ ) = (q − p2)2 + τ 2, b(τ ) = q2 − (p2 + iτ )2. (68)

Here ψ(z) is the digamma function, ψ(1) = −γE , and γE �
0.5772 is the Euler’s constant. In Eq. (66), the leading terms
with respect to the small parameter λ/ν are taken into account.

In the integral K2(ν,λ) one can set λ = 0. Thus we have

K2(ν,0) =
∫ 1

ν

dx

�
(exp)	(0) = �(τ )

∫ 1

ν

dx

x�

= �(τ )

p2

{
ln

4p2
2

νb(τ )
− iπ + O(ν)

}
. (69)

Due to Eqs. (66) and (69), formula (65) reads

K(λ) = �(τ )

p2

{
ln

2p2

λ
+ ln

a(τ )

b(τ )
+ ψ(1) − ψ(1−iξ2)− iπ

2

}
.

(70)

Taking the derivative over τ at the point τ = η yields

AI
b = −M0

N
η3

{
1

2

(1 + iξ2)a(η) − iξ2b(η)

q2 − (1 + iξ2)( p2 · q)

+ iξ2

(
ln

2p2

λ
+ ln

a(η)

b(η)
+ ψ(1) − ψ(1 − iξ2) − iπ

2

)}
,

(71)

where M0 is given by Eq. (11). As will be shown later, the
logarithmic divergency over the screening parameter λ cancels
out in the expression for the cross section.

C. Amplitudes Ac and Ad

The amplitudes Ac and Ad , which describe the contribu-
tions of the exchange diagrams, can be evaluated in a similar
manner as that in the previous subsections. However, now the
final expressions become more complicated. The results are
represented in the form of twofold integrals:

Ac = N
2

∂3

∂τ∂μ∂ν

∫ 1

0

dx

�2
(exp)2

∫ 1

0

dy

L1
P1, (72)

Ad = −N
2

∂3

∂τ∂μ∂ν

∫ 1

0

dx

�
(exp)

∫ 1

0

dy

L2
P2. (73)

Here

�2 =
√

(γ 2 + q2x)(1 − x) + μ2x, (74)

(exp)2 = x−ζ1

(
(qx)2 + (γ + �2)2

q2 + (γ + μ)2

)ζ1

, (75)

L1 =
√

(qx)2y(1 − y) + (�2 + ν)2y, (76)

P1 = [(qxy − p2)2 + (L1 + τ )2]iξ2−1

[(qxy)2 + (L1 + τ − ip2)2]iξ2
, (77)

L2 =
√

−(qx)2y(1 − y) + (� + iμ)2y, (78)

P2 = [(qxy − p2)2 − (L2 + iν)2]iξ2−1

[(qxy)2 − (p2 + L2 + iν)2]iξ2
, (79)

where N = (4π )3α2mN3
1sNp2/q2, γ = √

2m|Ec|, and ζ1 =
η/γ . The functions � and (exp) are defined by Eqs. (59)
and (60), respectively. After taking the derivatives with respect
to τ , μ, and ν, one should set τ = μ = ν = η. Equations (72)
and (73) do not contain any singularities and are convenient
for numerical calculations.

D. Estimate for the contribution of diagrams with twofold
interaction between projectile and atomic electrons

Let us estimate the contribution of the diagram in Fig. 3(e).
The projectile is assumed to have a high energy Ep � I and
a large momentum p � η. In this case, the ionizing electron
can be described in the intermediate state by the free Green’s
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FIG. 4. (Color online) The energy distributions for different values of the dimensionless energy ε of the incident electron. Red dotted line,
separate contribution of the Feynman diagram in Fig. 3(a); green dash-dotted line, contribution of the diagram in Fig. 3(b); blue dash-dot-dotted
line, contribution of the diagram in Fig. 3(c); cyan dashed line, contribution of the diagram in Fig. 3(d); black solid line, total contribution of
all diagrams.

function G0(Ep) with an error of about ξ = η/p = αZ/v. The
analytic expression for the diagram in Fig. 3(e) is given by

Ae =
∫

�( f )D( f )G0( p − f ′)D( f ′)F ( f ′)
d f

(2π )3
, (80)

�( f ) =
∫

〈ψ p2 | f 1 − f 〉〈 f 1|ψ1s〉 d f 1

(2π )3
, (81)

G0( p − f ′) = 2m

p2 − ( p − f ′)2 + i0
� m

( p · f ′)
∼ 1

vη
,

(82)

where f ′ = q + f . The function F ( f ′) is given by Eq. (24).
Estimate (82) is obtained under the assumption that inte-
gral (80) is saturated at f ∼ q ∼ η.

Any one of the diagrams depicted in Figs. 3(a)–3(d) can be
taken for comparison. We choose, for example, the diagram in
Fig. 3(b), whose contribution to the amplitude of the ionization
process is given by Eq. (53). Using the spectral expansion for

FIG. 5. The universal function Q(ε) vs the dimensionless energy
ε (solid line). The single-electron universal function Q1s(ε) is also
given for comparison (dotted line, Born approximation; dashed line,
calculation with the Coulomb wave functions).

the Coulomb Green’s function yields the following estimate:

〈 f 1|G
(
Ep2

)| f ′
1〉 ∼ 〈 f 1|ψ1s〉〈ψ1s | f ′

1〉
Ep2 − E1s

, (83)

where Ep2 − E1s ∼ I . After substitution of Eq. (83) into
Eq. (53), the integral over the intermediate momentum f ′

1
yields

F (q) = 16η4

(q2 + 4η2)2
∼ 1. (84)

Then one can obtain

Ab ∼ 1

αZη

∫
�( f )D( f )F ( f )D(q)

d f
(2π )3

. (85)

Therefore, within the high-energy domain, the ratio of ampli-
tudes is estimated according to

Ae

Ab

∼ αZ

v
� 1. (86)

IV. IONIZATION CROSS SECTION

The differential cross section for single K-shell ionization
is related to the amplitude A = A(0) + A(1) as follows:

dσ+ = 2π

v
|A|2 d p1

(2π )3

d p2

(2π )3
δ(Ep1 + Ep2 − Ep − E1s)

(87a)

= 2dσ+
1s + dσ+

cor. (87b)

Equation (87a) defines the distributions over energy and
ejection angles of the fast and slow electrons. The elements of
phase volumes for the fast and slow electrons ejected into the
solid angles d�1 and d�2, respectively, can be written as

d p1 = mp1dEp1d�1 = 2π
m

p
dEp1qdq, (88)

d p2 = mp2dEp2d�2 = 2πmp2dEp2 sin θdθ, (89)
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FIG. 6. A comparison between theoretical and experimental cross sections for the helium isoelectronic sequence. Perturbation theory
to leading order: dotted line, Born approximation; dashed line, calculation with Coulomb wave functions. Perturbation theory, taking into
account the dominant correlation contribution: solid line, Born approximation. Experimental data: for He, solid circles, [37]; squares, [38];
open circles, [39]; stars, [40]; triangles, [41]; for Li+, stars, [42]; downward triangles, [43]; solid circles, [44]; open circles, [45]; upward
triangles, [46]; for B3+, squares, [47]; for C4+, solid triangles, [47]; open triangles, [48]; open circles, [49]; for N5+, open circles, [47]; solid
circles, [48]; for O6+, open squares, [48]; solid squares, [49]; for Ne8+, open downward triangles, [48]; solid downward triangles, [50]; for
Ar16+, stars, [48].

where θ is the angle between q and p2. In Eq. (87b), the first
term corresponds to the leading order of perturbation theory,
while the second (interference) term describes the dominant
correlation correction.

Let us now again introduce the dimensionless variables
by the following substitution: q → κ = q/η and p2 →
ξ−1

2 = p2/η = √
ε2. Then the energy distribution for the

correlation correction to the ionization cross section is
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given by

dσ+
cor

dε2
= σ0

Z5
F (ε,ε2), (90)

F (ε,ε2) = 211

ε(1 − e−2πξ2 )

∫
κ2

κ1

dκ

κ
3

∫ π

0
dθ sin θRe(M∗

0M1),

(91)

where σ0 = πa2
0 , a0 = 1/(mα), and the integration limits are

the same as in Eq. (12). The dimensionless function M1

is related to the amplitude [Eq. (17)] as follows: A(1) =√
2 η−7NM1. As easily seen from Eq. (91), due to the real

part, the singular terms of the amplitude Ab [see Eq. (71)] do
not contribute to the cross section. The function F (ε,ε2) does
not depend explicitly on the particular value of Z.

Integrating Eq. (90) over the energy of ejected electrons
yields

σ+
cor = σ0

Z5
Q(ε), (92)

Q(ε) =
∫ (ε−1)/2

0
F (ε,ε2)dε2. (93)

The function Q(ε) is universal. Finally, the total cross section
for single K-shell ionization of heliumlike ions can be written
as follows:

σ+ = σ0

Z4

(
2Q1s(ε) + Q(ε)

1

Z

)
, (94)

where the universal function Q1s(ε) is given by Eq. (12).
Formula (94), which is our main result, generalizes Eq. (2)
to the case of light two-electron targets. Since the correla-
tion correction simulates the screening effect, it improves
significantly the theoretical predictions obtained within the
framework of approximation of independent atomic electrons
(noninteracting with each other).

V. NUMERICAL RESULTS AND DISCUSSION

In Fig. 4, the energy distribution, Eq. (91), is presented
for two values of the energy ε of incident electrons. Similar
to the case of the leading order of perturbation theory, near
the ionization threshold, the energy dependence is rather
weak. Significant contributions to the cross section σ+

cor arise
from ejection of electrons with arbitrary energy sharing. At
high energies ε � 1, the function F (ε,ε2) becomes greatly
nonuniform, being localized within the edge range of energies
ε2 � 1. The major correlation contribution to the ionization
cross section is due to the amplitude Ab, which accounts for
the interaction between atomic electrons in the final state.

In Fig. 5, the universal function Q(ε) [Eq. (93)] is calculated
versus the dimensionless energy ε, including the ionization
threshold. Although the use of the Born approximation should
be legitimate only within the asymptotic nonrelativistic range
1 � ε � 2(αZ)−2, by analogy with the case of the leading
order of perturbation theory (compare the dotted and dashed
curves in Fig. 5), one can expect that proper accounting for the
influence of the atomic nucleus on the wave functions of the

ionizing electron will not change significantly the magnitude
of the next-to-leading-order correlation correction.

In Fig. 6, the theoretical function Z4σ+/σ0 is compared
with available experimental data for the helium isoelectronic
sequence with the nuclear charge Z within the range 2 �
Z � 18. Since in the lowest order of perturbation theory
the Coulomb binding energies differ significantly from the
ionization thresholds observed experimentally for targets with
Z � 2, we calibrate the incident electron energies Ep by the
Coulomb ionization potential I but shift the experimental
curve as a whole by the quantity 1 − Iexp/I in order to
fit the theoretical and experimental thresholds. This shift is
crucial just within the near-threshold energy range, where our
calculations are not accurate enough. The ionization potential
Iexp is overadjusted by higher-order correlation corrections:

Iexp = I

⎛
⎝∑

n�0

εnZ
−n − 1

⎞
⎠ , (95)

where I = m(αZ)2/2, ε0 = 2, ε1 = −5/4, ε2 = 0.3153, and
ε3 = −0.0174 [51]. Formula (95) reproduces the experimental
thresholds for heliumlike targets with small values of Z � 2.
In general, the cross sections should be deduced at the
same level of accuracy, taking into account higher-order
terms of nonrelativistic perturbation theory. However, this
problem is presently not solved. In the case of neutral helium,
the significant deviation of experimental results from the
theoretical prediction (94) is due to both the effect of the
nuclear field on the wave functions of ionizing electron and
the higher-order correlation corrections, which are neglected
in this work. For heavier targets, the agreement between theory
and experiment is quite satisfactory.

VI. SUMMARY

We have deduced formulas for the dominant correlation
correction to the single K-shell ionization cross sections
of heliumlike ions by high-energy electron impact. The
atomic targets are assumed to be characterized by the small
parameters 1/Z � 1 and αZ � 1. The study is performed by
using nonrelativistic perturbation theory with respect to the
interelectron interaction. The infrared divergency is isolated
analytically in the ionization amplitude. The singularities
are shown to cancel out in the expression for the cross
section. The correlation correction appears mainly due to the
interaction between atomic electrons in the final state. The
ionizing electron is described within the framework of the
Born approximation. Accordingly, the results obtained are
also applicable for arbitrary charged projectiles, which are
much lighter than the atomic nucleus. The cross section is
represented in the form of universal scaling.
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