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The five longest tune-out wavelengths for the potassium atom are determined using a relativistic structure
model which treats the atom as consisting of a single valence electron moving outside a closed shell core. The
importance of various terms in the dynamic polarizability in the vicinity of the 4pJ , 5pJ , and 6pJ transitions are
discussed.
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I. INTRODUCTION

The dynamic polarizability of an atom gives a measure
of the energy shift of the atom when it is exposed to an
electromagnetic field [1,2]. For an atom in any given state,
one can write

�E ≈ − 1
2αd (ω)F 2, (1)

where αd (ω) is the polarizability of the quantum state at
frequency ω, and F is a measure of the strength of the ac
electromagnetic field. The limiting value of the dynamic po-
larizability in the ω → 0 limit is the static dipole polarizability.

The dynamic polarizability will go to zero for certain
frequencies of the applied electromagnetic field. The wave-
lengths at which the polarizability goes to zero are called the
tune-out wavelengths [3,4]. Atoms trapped in an optical lattice
can be released by changing the wavelength of the trapping
laser to that of the tune-out wavelength for that atom. Very
recently, tune-out wavelengths have been measured for the
rubidium and the potassium atoms [5,6]. The advantage of
a tune-out wavelength measurement is that it is effectively
a null experiment; it measures the frequency at which the
polarizability is equal to zero. Therefore it does not rely on a
precise determination of the strength of an electric field or the
intensity of a laser field.

In the present manuscript a calculation of the five longest
tune-out wavelengths for the potassium atom is presented. The
method applied is a fully relativistic version of a nonrelativistic
semiempirical fixed core approach that has been successfully
applied to the description of many one- and two-electron atoms
[7–10]. An extensive discussion is made about those parts of
the oscillator strength sum rule that have the largest influence
in the determination of the tune-out wavelengths.

II. FORMULATION

The calculation methodology is as follows. The first step
involves a Dirac-Fock (DF) calculation of the K+ ground state.
The single particle orbitals are written as linear combinations
of analytic basis functions. The functions chosen are the S-
spinors introduced by Grant and Quiney [11,12]. S-spinors
can be regarded as relativistic generalizations of the familiar
Slater-type orbital.

The effective interaction of the valence electrons with the
core is then written

H = cα · p + βmc2 + Vcore(r), (2)

where m is the electron mass, c is the speed of light, p is the
momentum operator, α and β are 4 × 4 matrices of the Dirac
operators [12]. The core operator is

Vcore(r) = −Z

r
+ Vdir(r) + Vexc(r) + Vp(r). (3)

The direct and exchange interactions of the valence electron
with the DF core were calculated exactly. The �-dependent
polarization potential Vp was semiempirical in nature with the
functional form,

Vp(r) = −
∑

�j

αcoreg
2
�j (r)

2r4
|�j 〉〈�j |. (4)

The factor αcore is the static dipole polarizability of the core
and g2

�j (r) = 1 − exp(−r6/ρ6
�j ) is a cutoff function designed to

make the polarization potential finite at the origin. The cutoff
parameters ρ�j were tuned to reproduce the binding energies
of the ns ground state, and the np and nd excited states and
are listed in Table I.

The effective Hamiltonian for the valence electron was
diagonalized in a large L-spinor basis [11]. L-spinors can be
regarded as a relativistic generalization of the Laguerre-type
orbitals that are often used when solving the Schrödinger
equation [7]. This basis can be enlarged towards completeness
without any linear dependence problems occurring. There
is effectively no error due to the incompleteness of the
basis set in the present calculation. The present relativistic
configuration interaction plus core polarization calculations
typically used 50 positive energy and 50 negative energy
L-spinors for each (�,j ) symmetry. This approach is named
the relativistic configuration interaction plus core polarization
approach (RCICP). The nonrelativistic approach from which
the method is derived is called the configuration interaction
plus core polarization (CICP) method [7]. For the purpose
of comparison, we present results of calculations using the
all-order single-double implementation of relativistic many-
body perturbation theory [13,14] (MBPT-SD). The area of
commonality between the RCICP and MBPT-SD approaches
is that both calculations have minimal numerical uncertainties.
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TABLE I. The cutoff parameters ρ�j of the core polarization
potential.

� J ρ�j (units of a0)

s 1/2 2.1360
p 1/2 2.0324

3/2 2.0289
d 3/2 2.3610

5/2 2.3633

The two methods use different approximations to treat the
interaction with the core and core-valence correlations, but
the subsequent calculations within their respective theoretical
frameworks have effectively no significant errors due to basis
set incompleteness.

III. RESULTS

A. Energies

Table II gives the energies of some of the low-lying states
of potassium. One of the interesting aspects of the table
concerns the spin-orbit splitting of the 5pJ and 6pJ states.
The polarization potential parameters ρ1,1/2 and ρ1,3/2 were
tuned to give the correct spin-orbit splitting of the 4pJ states.
Making this choice resulted in the spin-orbit splittings for
the 5pJ and 6pJ states also being very close to experiment.
Similarly, tuning the ρ2,3/2 and ρ3,5/2 parameters to give the
correct 3dJ spin-orbit splitting also resulted in the spin-orbit
splittings for the 4dJ and 5dJ levels also in agreement with
experiment.

B. Dipole matrix elements

Table III gives the reduced matrix elements for a number of
the low-lying transitions of the potassium atom. These matrix
elements were computed with a modified transition operator

TABLE II. Theoretical and experimental energy levels (in
Hartree) for some of the low-lying states of K. The energies are
given relative to the energy of the K+ core. The experimental data
were taken from the National Institute of Science and Technology
(NIST) tabulation [15].

J Present Experiment

4s 1/2 −0.1595191 −0.1595165
4p 1/2 −0.1003515 −0.1003516

3/2 −0.1000886 −0.1000886
5s 1/2 −0.0636441 −0.0637124
3d 5/2 −0.0613971 −0.0613972

3/2 −0.0613867 −0.0613867
5p 1/2 −0.0469469 −0.0469687

3/2 −0.0468616 −0.0468832
4d 5/2 −0.0346107 −0.0346862

3/2 −0.0346058 −0.0346813
6s 1/2 −0.0344071 −0.0344418
6p 1/2 −0.0273728 −0.0273861

3/2 −0.0273345 −0.0273476

[8,16,17], e.g.,

r = r − [1 − exp(−r6/ρ6)]1/2 αdr
r3

. (5)

The cutoff parameter used in Eq. (5) was 2.176 a0, the average
of the s, p, and d cutoff parameters (note, the weighting of
the s was doubled to give it the same weighting as the two
p and d orbitals). These matrix elements are compared to
the MBPT-SD matrix elements [13,18]. Some reduced matrix
elements derived from experiment are also given [13]. It should
be noted that there are some small differences between the most
recent MBPT-SD reduced matrix elements [13] and earlier
work using this method [19].

The agreement between the RCICP and MBPT-SD cal-
culations for the larger matrix elements is very good. The
two calculations agree to better that 1% for the 4s-4p,
4p-5s, 5p-6s, and 3d-4p transition manifolds. The same
level of agreement is achieved for the nonrelativistic CICP
matrix elements. The CICP matrix elements are taken from
earlier calculations of dispersion coefficients for the atomic
pair involving potassium [7,20–22]. The agreement between
the CICP, RCICP, and MBPT-SD matrix is not so good
for transitions with much smaller matrix elements such as
4s → 6pJ .

The ratio of the line strengths for the 4s → 4pJ transition
would be exactly 2.0 in a nonrelativistic model. Experiment
and theory both indicate that the difference of the 4s-4p

transition ratio from 2.0 is very small. The current calculation
and the MBPT-SD calculation indicate that the matrix element
ratio is slightly smaller than 2.0. However, the ratio differs
substantially from 2.0 for the 4s → 5pJ and 4s → 6pJ

transitions. The main cause for the deviation of the ratio from
2.0 is the slightly different wave function for the spin-orbit
doublet arising from the slightly different energies [27]. We
have done nonrelativistic calculations and have been able
to reproduce the ratios given in Table III by simply tuning
the polarization potential to separately give the experimental
binding energies of each spin-orbit doublet.

C. Polarizabilities and tune-out wavelengths

The computations of the static polarizabilities utilized the
RCICP matrix elements but with the excitation energies for the
4pJ , 5pJ , and 6pJ set to be those of experiment. The dynamic
polarizability is defined as

α(ω) =
∑

n

f0n

(ε2
0n − ω2)

, (6)

where f0n is the oscillator strength for the dipole transition. For
low frequencies, the dynamic polarizability can be expanded:

α(ω) = α(0) + S(−4)ω2 + · · · , (7)

where α(0) is the static dipole polarizability calculated at ω =
0 and S(−4) is calculated using the oscillator strength sum
rule,

S(−4) =
∑

n

f0n

ε4
0n

. (8)

Polarizabilities for the potassium ground state from different
sources are listed in Table IV. The present RCICP calculation
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TABLE III. Comparison of reduced dipole matrix elements (a.u.) for the principal transitions of potassium with
experimental values and other calculations.

Transition RCICP MBPT-SD [13,18,19,23] CICP Expt.

4s-4p1/2 4.1030 4.098 4.1017 4.102(5) [24]
4.106(4) [25]

4s-4p3/2 5.8016 5.794 5.8006 5.800(8) [24]
5.807(7) [25]

4s-5p1/2 0.2634 0.271(5) 0.2696
4s-5p3/2 0.3886 0.398(8) 0.3812
4s-6p1/2 0.0756 0.084 0.0791
4s-6p3/2 0.1162 0.128 0.1118
4p1/2-5s 3.8879 3.885(8) 3.9058
4p3/2-5s 5.5384 5.54(1) 5.5236
5s-5p1/2 9.4967 9.49(3) 9.4918
5s-5p3/2 13.410 13.40(4) 13.423
5p1/2-6s 8.7766 8.79(2) 8.8088
5p3/2-6s 12.490 12.50(2) 12.458
4p1/2-3d3/2 7.9662 7.97(3) 7.9812 7.979(35) [13]
4p3/2-3d3/2 3.5731 3.57(1) 3.5693 3.578(16) [13]
4p3/2-3d5/2 10.719 10.72(3) 10.708 10.734(47) [13]
4p1/2-4d3/2 0.1403 0.112(14) 0.1246
4p3/2-4d3/2 0.0529 0.040(6) 0.0557
4p3/2-4d5/2 0.1553 0.115(15) 0.1672
3d3/2-5p1/2 7.1687 7.16(10) 7.1476
3d3/2-5p3/2 3.1934 3.19(5) 3.1965
3d5/2-5p3/2 9.5743 9.57(10) 9.5895
5p1/2-4d3/2 17.040 17.04(6) 17.076
5p3/2-4d3/2 7.6432 7.64(3) 7.6367
5p3/2-4d5/2 22.932 22.93(8) 22.910
|〈4p3/2‖D‖4s〉|2
|〈4p1/2‖D‖4s〉|2 1.99935 1.9987 [5] 2.0 2.0005(40) [5]

1.999(4) [24]
2.002(3) [25]
2.01 [26]

|〈5p3/2‖D‖4s〉|2
|〈5p1/2‖D‖4s〉|2 2.17787 2.17964 2.0 2.15 [26]

|〈6p3/2‖D‖4s〉|2
|〈6p1/2‖D‖4s〉|2 2.35799 2.31894 2.0 2.28 [26]

gave essentially the same polarizability, 290.1 a3
0 as its

nonrelativistic CICP predecessor. The nonrelativistic CICP
model had its valence energies tuned to experimental energies
[in this case, the (2J + 1) weighted energy of any spin-orbit
doublet], just like the present calculation. The 4s-4pJ radial
matrix elements are dominated by a long-range form of
the wave function, and that is practically the same for the
CICP and the relativistic RCICP calculations. The present

TABLE IV. Static dipole polarizabilities (in a.u.) for potassium.
A short description of the details behind some of the polarizabilities
can be found in Ref. [2].

α1 103α2

Theory: Present RCICP 290.1 5.000
Theory: CICP [7] 290.0 5.005
Theory: MBPT-SD [19] 289.3 5.018
Theory: RCCSD [30] 301.28 5.018
Expt.: E × H [31] 293(6)
Expt.: Interferometer [28] 290.8(1.4)
Hybrid: Sum rule [29] 290.2(8)

RCICP calculation agrees with experiment [28,29] within the
experimental uncertainties.

The relativistic coupled cluster calculation (RCCSD) [30]
gives a dipole polarizability that is about 3% larger than
experiment.

The core polarizability is given by a pseudo-oscillator
strength distribution [7,32,33]. The distribution is tabulated in
Table V. The distribution is derived from the single-particle
energies of the Hartree-Fock core. Each separate (n,�) level is
identified with one transition with a pseudo-oscillator strength
equal to the number of electrons in the shell. The excitation

TABLE V. Pseudospectral oscillator strength distribution for the
potassium core. Energies are given in a.u..

n εn fn

1 133.6890020 2.0
2 14.6459330 2.0
3 11.6752580 6.0
4 1.90477720 2.0
5 1.11041710 6.0
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TABLE VI. Breakdown of contributions to the potassium ground-state polarizability at different wavelengths.

λ (nm) ∞ 768.97075 405.9173 404.7217 344.9099 344.7861
ω (a.u.) 0 0.059252386 0.11224787 0.11257945 0.13210218 0.13214964

4s-4p1/2 94.8454 −32032.4796 −36.4876 −36.1911 −23.7987 −23.7774
4s-4p3/2 188.7902 32025.7787 −73.5278 −72.9282 −47.9006 −47.8575
4s-5p1/2 0.2054 0.2842 38.5906 −364.9459 −0.5438 −0.5424
4s-5p3/2 0.4469 0.6180 65.4323 468.0690 −1.1901 −1.1870
4s-6p1/2 0.0144 0.0181 0.0519 0.0527 33.7885 −49.5664
4s-6p3/2 0.0340 0.0426 0.1221 0.1240 33.7302 117.0156
Remainder valence 0.2426 0.2528 0.2957 0.2963 0.3712 0.3717
αcore 5.4708 5.4852 5.5229 5.5232 5.5433 5.5434
Total 290.050 0 0 0 0 0

energy is set by adding a constant to the Koopman energies
and tuning the constant until the core polarizability from
the oscillator strength sum rule is equal to the known core
polarizability. In the present case, the K+ core polarizability
was set to 5.47 a.u. [34,35].

The tune-out wavelengths all tend to be close to the
wavelengths for excitation of the npJ excited states. There are
two scenarios that lead to tune-out wavelengths. In the first, the
tune-out wavelength occurs in the middle of an npJ spin-orbit
doublet. The wavelength will be shorter than the transition
wavelength to the np1/2 state and longer than the wavelength to
the np3/2 state. When this occurs, the dynamic polarizabilities
of the np1/2 and np3/2 states will have the opposite sign and this
will lead to a zero in the total dynamic polarizability occurring
for all spin-orbit doublets. The second scenario leading to a
tune-out wavelength occurs when the wavelength is shorter
than that for excitation of the 4pJ states. When this occurs,
the contribution to the dynamic polarizability from the 4pJ

states becomes negative. This leads to a series of tune-out
wavelengths occurring just below the excitation energies of
the 5p1/2, 6p1/2, 7p1/2, . . .states.

Simplified expressions can be used to describe the dynamic
polarizabilities in the vicinity of the tune-out wavelengths.
The first tune-out wavelength occurs when the wavelength
lies between the 4p1/2 and 4p3/2 resonant wavelengths. The
dynamic polarizability here can be written,

α1(ω) = f4p1/2(
�E2

4p1/2
− ω2

) + f4p3/2(
�E2

4p3/2
− ω2

) + αrem(ω), (9)

where αrem(ω) is the remainder part of dynamic dipole polar-
izability. The energy difference �E4p3/2 can be parametrized
as �E4p3/2 = �E4p1/2 (1 + δ). Parametrizing the line strength
S (the square of the reduced matrix element) as

S(4s → 4p3/2) = S(4s → 4p1/2)(2 + R) (10)

leads to

α1(ω) = f4p1/2(
�E2

4p1/2
− ω2

) + f4p1/2 (2 + R)(1 + δ)
[(

�E4p1/2

)2
(1 + δ)2 − ω2

]

+αrem(ω). (11)

The dipole oscillator strength f4p1/2 is obtained by multiplying
the reduced matrix element with the experimental 4s → 4p1/2

energy difference. The value of R is simply the ratio of
computed line strength coming from the RCICP calculations.

It can be seen from Table VI that the remainder polarizability,
αrem(ω) only makes a small contribution to the total polariz-
ability. The remainder polarizability varies relatively slowly
with wavelength in the vicinity of the tune-out wavelength.

Table VII illustrates the variation in the tune-out wavelength
with respect to variations in R and αrem(ω). The contributions
to the polarizability from the 4p1/2 and 4p3/2 transitions are
5000 times larger than those from every other transition. A
change in αrem(ω) of 1.0 a.u leads to the tune-out wavelength
changing by 0.00002 nm. The tune-out wavelength is much
more sensitive to variations in R. A change in R to −0.005
leads to the tune-out wavelength changing by 0.0016 nm. A
value of R = −0.005 is 3 times larger than the MBPT-SD
value and is seven times larger than the RCICP value of R.

A different parametrization should be used in the vicinity
of the excited states with n > 4.

α1(ω) = α4p(ω) + αrem(ω) + fnp1/2(
�E2

np1/2
− ω2

)

+ fnp1/2 (2 + R)(1 + δ)
[(

�Enp1/2

)2
(1 + δ)2 − ω2

] . (12)

Here the polarizability arising from the 4s → 4pJ transitions
is retained as a separate term since it is much larger than the
remainder.

The tune-out wavelengths in the vicinity of the 5pJ levels
illustrate clearly how the αrem(ω) and R are of different
importance depending on whether the tune-out energy is
located between the 5p1/2 and 5p3/2 levels or before the 5p1/2

level.
Table VI shows that the tune-out wavelength at ener-

gies below the 5p1/2 excitation threshold is caused by the
cancellation of the 5pJ and core contributions with those
coming from the 4pJ levels. This tune-out wavelength is
effectively determined by ratio of the 4p and 5p oscillator
strengths. The contribution of the core is small in absolute
terms, and a 5% uncertainty in the core polarizability will
have a small effect on the tune-out wavelength. The tune-out
wavelength is predominantly determined by the relative size
of the 4s → 4pJ and 4s → 5pJ matrix elements. This can
be seen from Table VII. Increasing the 4s → 5pJ matrix
elements by 3% (roughly the difference with the MBPT-SD
matrix elements) leads to the tune-out wavelength increasing
by 0.077 nm. Changing the value of R by 0.02 leads to the
tune-out wavelength changing by 0.007 nm. It should be noted
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TABLE VII. Values of the tune-out wavelength for the K atom. The experimental transition
wavelengths are taken from [36,37]. The first entry lists the tune-out wavelength as computed with
RCICP matrix elements. The other entries exhibit the changes to the tune-out wavelengths when
changes are made to matrix elements underlying the oscillator strength sums.

Resonance ω (a.u.) λ (nm)

�E4s−4p1/2 0.059164859 770.10836
�E4p3/2 0.059427807 766.70089
R = −0.0006476, αrem(ω) = 6.701 0.059252386 768.97077
αrem(ω) = 5.701 0.059252387 768.97075
R = −0.005 0.059252513 768.96912
MBPT-SD [4] 0.0592524(2) 768.971(3)
Expt. [5] 0.0592523(1) 768.9712(15)
�E4s−5p1/2 0.11254778 404.8356
�E4s−5p3/2 0.11263324 404.5285
R = 0.17787, αrem(ω) = −104.023 0.11224787 405.9173
R = 0.15787 0.1122499 405.9100
|〈5pJ ‖D‖4s〉| × 1.03 0.1122120 405.9943
MBPT-SD [4] 0.11223(1) 405.98(4)
R = 0.17787, αrem(ω) = −103.300 0.11257946 404.7217
R = 0.15787, 0.11257967 404.7210
|〈5pJ ‖D‖4s〉| × 1.03 0.11257898 404.7228
MBPT-SD [4] 0.11258(1) 404.72(4)
�E4s−6p1/2 0.13213040 344.8363
�E4s−6p3/2 0.13216885 344.7359
R = 0.35799, αrem(ω) = −67.5188 0.13210218 344.9099
R = 0.30799, 0.13210256 344.9089
|〈6pJ ‖D‖4s〉| × 1.10 0.13209360 344.9323
MBPT-SD [4] 0.1320933(4) 344.933(1)
R = 0.35799, αrem(ω) = −67.4492 0.13214964 344.7861
R = 0.30799, 0.13214992 344.7853
|〈6pJ ‖D‖4s〉| × 1.10 0.13214825 344.7897

that our definition of R does imply an overall increase in the
total oscillator strength to the 5pJ states.

The tune-out wavelength at the energies between the 5p1/2

and 5p3/2 levels does have some dependence on αrem since
it now incorporates the contribution from the 4s → 4pJ

transitions. A 5% change in the matrix element leads to a
change in the tune-out wavelength of 0.0024 nm; this is
60 times smaller than the effect on the tune-out wavelength
at 405.9173 nm. The sensitivity to a change in the value
of R by 0.02 was only 0.0007 nm. In relative terms, the
tune-out wavelength is more sensitive to the value of R than
|〈5pJ ‖D‖4s〉| in the 5p1/2 to 5p3/2 energy gap, than it is in
the energy region before 5p1/2 excitation.

Table VII also gives the tune-out wavelengths in the vicinity
of the 6pJ levels. Once again the tune-out wavelengths are very
sensitive to the absolute size of the |〈6pJ ‖D‖4s〉| transition
matrix element. A 10% change in the matrix element (the
difference between the RCICP and MBPT-SD calculations)
leads to a change of 0.0234 nm in the tune-out wavelength just
below the 6p1/2 threshold. The considerations that determine
the values of the tune-out wavelengths in the vicinity of the 5pJ

states also apply to the tune-out wavelengths in the vicinity of
the 6pJ states.

Finally, it is noted that the tune-out wavelengths were also
evaluated using the MBPT-SD matrix elements in Table III but
with other aspects of the calculation taken from the RCICP
calculation. The resulting tune-out wavelengths were identical

to the MBPT-SD tune-out wavelengths in Table VII to all
quoted digits.

D. Uncertainties

Part of this manuscript is focused on the prediction of the
tune-out wavelengths, but another and possibly more important
part concerns the extraction of useful atomic structure infor-
mation from an experimental value of the tune-out wavelength.
Knowledge of the npJ tune-out wavelengths permits the
determination of the npJ oscillator strengths to a high degree
of precision.

The most important atomic parameters that contribute
to the long wavelength dynamic polarizability are listed in
Table VIII. These parameters are derived from the RCICP
calculations and uncertainties are estimated by examination of
the difference with experiment or MBPT-SD calculations.

The determination of the 4p1/2 : 4p3/2 line strength ratio is
only weakly dependent on the value of the non-4p terms in
the dynamic polarizability since these terms are small.

Knowledge of the npJ tune-out wavelengths permits the
determination of the npJ oscillator strengths for n > 4 to
a high degree of precision. The polarizability becomes zero
when the contributions to the polarizability from the npJ levels
and the remainder cancel exactly. The biggest terms in the
remainder are α4pJ

and αcore which together constitute 99% of
the remainder. Moreover, both of these terms are known with
a reasonable degree of precision.
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TABLE VIII. Tabulation of atomic parameters, with estimated
uncertainties that can be used as reduced dipole matrix elements
(a.u.) for the principal transitions of potassium with experimental
values and other calculations.

Parameter RCICP

4s-4p1/2 4.1030(7)
4s-4p3/2 5.8016(10)
4s-5p1/2 0.2634(8)
4s-5p3/2 0.3886(100)
4s-6p1/2 0.0756(100)
4s-6p3/2 0.1162(14)
αcore 5.4708(1000)
Score(−4) 4.10(80)
αcore−valence [23] −0.13
αRemainderValence 0.243(111)
SRemainderValence(−4) 2.67(134)

The uncertainties in the experimental 4s → 4pJ line
strengths do not exceed 0.3% and the RCICP transition matrix
element lies between two experimental estimates [24,25].
There is 2% variation between the RCICP and MBPT-SD
estimates of the 4s → 5pJ matrix elements and a 10%
variation between 4s → 6pJ matrix elements. Taken together,
4s → 5pJ and 4s → 6pJ would contribute less than 0.01 a.u.
to the uncertainty of the total polarizability at ω = 0 a.u.

The uncertainty in the core polarizability of 5.47 a.u. itself
is stated to be about 2% [34]. This polarizability was based on
the binding energies of the 4f , 6f , and 9f levels of potassium
using spectral data from 1955 [38]. There is scope for an
improvement in the precision of the core polarizability and this
could be easily accomplished by spectroscopic experiments
that measured the energies of the ng levels. The construction
of pseudo-oscillator strength distribution for the K+ core
permits the energy variation of αcore to be incorporated into the
calculation. The uncertainty of 20% was estimated by using
the same procedure to construct the pseudo-oscillator strength
distribution to argon and making reference to a highly accurate
pseudo-oscillator strength distribution [33].

The core-valence term αcore−valence is a term that compen-
sates for Pauli-principle violating excitations from the core
to the valence 4s orbital. This value is sourced from an
MBPT-SD calculation [23] since it is not incorporated in the
RCICP calculation. No uncertainty has been assigned to this
contribution to the polarizability.

The valence remainder term contains contributions from
highly excited discrete transitions as well as contributions
from the continuum. The present value is 0.243 a.u. at ω = 0.
This is more than twice the size of a MBPT-SD estimate
of 0.07 a.u. [23]. However, much of the MBPT-SD valence
remainder is computed in the DF approximation. We have
performed calculations in the DF approximation, and the DF
oscillator strengths embedded in the continuum beyond the
cooper minimum at 0.010 a.u. [39] are typically a factor
of 3 and 4 smaller than the RCICP oscillator strengths at
those energies Nevertheless, the uncertainty in this term has
been conservatively assessed at 50%. Comparisons of the
RCICP and MBPT-SD oscillator strength distributions in
the continuum, and further comparisons with experimental

photoionization cross sections would be helpful in refining the
estimate and uncertainty of this rather small term.

The parameter set and error budget in Table VIII can be
utilized to help convert tune-out wavelengths into oscillator
strengths. There is room for improvement in the parameter
set. Measurements of the tune-out wavelengths near the 5pJ

excitation will result in better estimates of the 5pJ matrix
elements. Parameters obtained from theory do not have to be
exclusively obtained from a single calculation, for example,
some information from Table VIII might be best obtained
from a MBPT-SD calculation while others, e.g., the valence
remainder might be best estimated from the RCICP calculation
or some RCICP/MBPT-SD hybrid.

IV. CONCLUSION

The five lowest tune-out wavelengths for the potassium
atom are computed by a relativistic structure model. A detailed
analysis is performed regarding the contribution that the
different terms make to the polarizability. The results illustrate
the dependence of the tune-out wavelengths on a relatively
small number of atomic parameters.

The lowest energy tune-out wavelength is primarily de-
termined by the ratio of the line strengths for the 4s →
4pJ transitions. The present calculation, and the MBPT-SD
calculation are in agreement with existing experimental data
[5]. The precision of the experiment would need to improve
by an order of magnitude to provide a stringent test of the 4pJ

state line strength ratio. However, Holmgren et al. [5] suggest
that it might be possible to improve the precision by up to 3
orders of magnitude.

The tune-out wavelengths near the 5pJ excited states
are most sensitive to the ratio of the 4s → 4pJ and 4s →
5pJ matrix elements. The remainder term incorporating all
transitions except for the 4s → 5pJ is dominated by the
4s → 4pJ and core polarizabilities which comprise 99.5%
of the remainder polarizability. The tune-out wavelengths
here provide a means to determine the 5s → 5pJ oscillator
strengths to high precision. Measurement of the tune-out
wavelength to a precision of 0.01 nm would lead to oscillator
strengths with a precision better than 1%.

Holmgren et al. [5] suggested that measurements of the
tune-out wavelengths near the 5p1/2 excited states could be
used to determine the core polarizability. We do not agree with
this statement. The remainder terms near the 5pJ excitation
are dominated by α4p(ω) and αcore(ω). The uncertainty in
α4p(ω) at 405 nm would be about 0.3 a.u. and this uncertainty
limits the precision with which the core polarizability could
be measured. The preferred approach is to treat the α4p(ω) and
αcore(ω) polarizabilities as known quantities with relatively
small uncertainties and use measurements of the tune-out
wavelength to extract precision values of the 5pJ oscillator
strengths.
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