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Fixed-phase correlation-function quantum Monte Carlo calculations for ground and excited states
of helium in neutron-star magnetic fields
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We apply the correlation-function quantum Monte Carlo (CFQMC) method to the calculation of the energies
of ground and excited states for helium in neutron-star magnetic fields. The method has been successfully applied
by Jones, Ortiz, and Ceperley to the calculation of helium in white dwarf magnetic fields [Phys. Rev. E 55, 6202
(1997)]. We extend the accessible range of magnetic field strengths by introducing a fixed-phase variant of the
CFQMC method. We find that with growing magnetic field strength the variances increase significantly and put
a limit to the applicability of the method for atoms in strong magnetic fields. The behavior of the variances is
traced back to the logarithmic divergence of the energy of the bosonic ground state with increasing magnetic field
strength. We use basis sets, which account for the growing dominance of the cylindrical symmetry as the magnetic
field is increased and incorporate them into the CFQMC algorithm. These basis sets are taken from Hartree-Fock
calculations, performed using a B-Spline and Landau expansion beyond the adiabatic approximation.
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I. INTRODUCTION

Thermal emission of isolated neutron stars with strong
cosmic magnetic fields (106 to 109 T) and temperatures of
several 105 K was first observed by the ROSAT satellite
in the soft x-ray band (see, e.g., Zampieri et al. [1] for
the complete list of the sources discovered). More recently,
and with higher accuracy, thermal spectra of isolated neutron
stars have been measured using the x-ray satellites Chandra
and XMM Newton. The observation of features in the x-ray
spectra of the neutron-star 1E 1207 has rekindled the interest
in the calculation of atomic data of atoms and ions in
neutron-star magnetic fields since the observed features could
have an atomic origin. The features could provide important
information on the chemical composition of the neutron-star
surface, the surface gravity from the line broadening, the
mass-to-radius ratio from the gravitational redshift of the lines,
and the strength of the surface magnetic field.

However, calculations at such huge magnetic field strengths
are very hard since the problem of solving the multielectron
Schrödinger equation is aggravated by the fact that the
magnetic-field effects must be considered nonperturbatively.
At neutron-star magnetic field strengths the magnetic field
effects are of the same order or even larger than those of
the Coulomb field, angular momentum is no longer a good
quantum number, and the familiar atomic shell structure has
completely collapsed. Different methods have been used in
the literature to tackle the problem, ranging from rigorous
mathematical estimates over density-functional and discrete-
variable methods to different self-consistent field approaches.
A comprehensive list of references to work over the past
two decades has been given in our paper on quantum Monte
Carlo calculations for ground states of medium-heavy atoms
in neutron-star magnetic fields [2] (Refs. [1–38] there).

In the present work we adapt the CFQMC method to
neutron-star magnetic fields strengths and develop a fixed-
phase CFQMC variant to overcome some limitations of the
original method. We find that for helium the method is
applicable up to a magnetic field strength of β ≈ 40, with
β = B/B0 and B0 = 4.70103 × 105 T, thus extending the

range of magnetic field strengths accessible to the CFQMC
method by a factor of 10.

The paper is structured as follows. First, in Sec. II we
recapitulate the original released-phase CFQMC (RPCFQMC)
method and develop the fixed-phase CFQMC (FPCFQMC)
method. In Sec. III we describe the trial and guiding functions
we used in our calculations. Section IV is devoted to the
application of the original and the fixed-phase method to
the calculation of ground and excited states of helium in
magnetic fields of strengths β = 0.4–40. We compare the
results of FPCFQMC to those of RPCFQMC and to results in
the literature. Finally, we discuss the reason for the problems
occurring when further increasing the magnetic field strength,
before we draw conclusions in Sec. V.

II. CORRELATION-FUNCTION QUANTUM MONTE
CARLO METHOD: ESSENTIALS

For the readers’ convenience we briefly recapitulate the
essential features of the correlation-function quantum Monte
Carlo method. A detailed presentation of the method can be
found in the original works of Ceperley and Bernu [3] and
Jones et al. [4].

The aim is to calculate ground and excited states of a many-
body Hamiltonian Ĥ . For this purpose one chooses a basis of
m linearly independent trial wave functions {fi(�x)} which are
approximations to the lowest m energy states of the system
(the vector �x denotes the position vector in the 3N dimensional
configuration space of the N particles). For reasons becoming
clear later, a time dependency of the basis is introduced—for
the moment it suffices to think of it as being constant at time
τ = 0.

In the function space spanned by this basis the exact
eigenfunctions {|�i〉} of the Hamiltonian can be approximated
by the expansion

|�̃i(τ )〉 =
m∑

j=1

dij (τ )|fj (τ )〉, (1)

032515-11050-2947/2013/87(3)/032515(7) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.55.6202
http://dx.doi.org/10.1103/PhysRevE.55.6202
http://dx.doi.org/10.1103/PhysRevA.87.032515
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with the energies of the approximations {|�̃i(τ )〉} given by the
Rayleigh coefficients

�i(τ ) = 〈�̃i(τ )|Ĥ |�̃i(τ )〉
〈�̃i(τ )|�̃i(τ )〉 . (2)

The expansion coefficients dij (τ ) of the approximations of the
exact eigenstates are determined by minimizing the Rayleigh
coefficients, which leads to a generalized eigenvalue problem

m∑
j=1

Hkj (τ )dij (τ ) = �i(τ )
m∑

j=1

Nkj (τ )dij (τ ), (3)

with the Hamiltonian matrix Hkj (τ ) := 〈fk(τ )|Ĥ |fj (τ )〉 and
the overlap matrix Nkj (τ ) := 〈fk(τ )|fj (τ )〉. MacDonald’s
theorem [5] states that the eigenvalues obtained—the Rayleigh
coefficients �i—are upper bounds on the energies of the m

lowest states.
As MacDonald’s theorem is valid for any basis of m

trial functions, we can improve the basis by evolving it in
imaginary time τ , thus dampening admixtures of higher energy
components relative to the m lowest energy states

|fi(τ )〉 = e−τĤ/2|fi(0)〉, (4)

with {|fi(0)〉} being the known trial functions. This is similar to
the procedure of the diffusion quantum Monte Carlo (DQMC)
method and explains the introduction of the (imaginary) time
dependence in advance.

To reduce statistical fluctuations in the Monte Carlo
evaluation of the 6N dimensional integrals defining the overlap
and the Hamiltonian matrix one introduces, as usual, a guiding
wave function ψG and the importance sampled trial functions
Fi = fi/ψG. The representation of the matrices in position
space

Nkj (τ ) =
∫

d �xd �x ′F ∗
k (�x ′)G(�x ′,�x; τ )Fj (�x)ψ2

G(�x),

(5)
Hkj (τ ) =

∫
d �xd �x ′F ∗

k (�x ′)G(�x ′,�x; τ )Ej (�x)Fj (�x)ψ2
G(�x)

leads to the importance sampled Green’s function

G(�x ′,�x; τ ) = ψG(�x ′)〈�x ′|e−τĤ |�x〉ψ−1
G (�x) (6)

and the local energy of the j th basis function Ej (�x) =
Ĥfj (�x)/fj (�x).

The form of the matrices explains the term “correlation-
function quantum Monte Carlo” of the approach: Let ψ2

G(�x) be
the probability that a random walk begins at �x and G(�x ′,�x; τ )
the transition probability that it ends at �x ′ after time τ ; then the
matrix Nkj (τ ) can be considered as the autocorrelation function
of the vector {Fi(�x)} in time, and Hkj (τ ) is the correlation
between Fi(�x) and Ei(�x)Fi(�x). The time-difference τ , the
correlation time, is also called projection time.

A. Released phase CFQMC

As the Green’s function of the importance sampled
imaginary-time Schrödinger equation (a drift-diffusion equa-
tion with a source term and an imaginary paramagnetic

term)

∂f

∂τ
= 1

2
�f − 1

2
div(f �F ) + 1

2
f ψ−1

G �ψG − (V − EOffs)f

−1

2
�A2f + i

(
�A · gradf − 1

2
f �A · �F

)
(7)

is unknown, but the Green’s functions of the individual terms
are available, a short-time approximation of the Green’s
function can be obtained according to Trotter’s theorem [6]
with the partial propagators

Gd (�x ′,�x; �τ ) = (2π�τ )−3N/2e[�x ′−�x− 1
2 �τ �F (�x)]2/2�τ ,

Gs(�x ′,�x; �τ ) = e−�τ {[EL(�x)+EL(�x ′)]/2−EOffs}, (8)

GA(�x ′,�x; �τ ) = e−i(�x ′−�x)· �A[(�x+�x ′)/2],

which account for the drift diffusion, the source term, and the
para- and diamagnetic terms, respectively. The local energy of
the guiding function EL does not have any contributions from
the vector potential �A, which is accounted for by GA, thus

EL(�x) = ψ−1
G

[ − 1
2� + V (�x)

]
ψG(�x). (9)

The so-called quantum force �F (�x) = 2ψ−1
G (�x)∇ψG(�x) enters

as the drift and EOffs describes an energy offset introduced
for convenience. The symmetric gauge of �A is used, and
V includes electron-electron, electron-nucleus forces and the
spin energies.

The short-time approximation of the Green’s function

G(�x ′,�x; τ ) ≈
∫

· · ·
∫

d �x1 · · · d �xl−1

l∏
i=1

G̃
(�x ′,�x; �τ

)
, (10)

with

G̃(�x ′,�x; �τ ) = GdGsGA (11)

is substituted in (5) and Gd is interpreted as a transition density
generating a random walk.

To obtain a Monte Carlo interpretation and estimators of
the matrices one constructs a random walk of length l along
a trajectory [�x0 = �x,�x1, . . . ,�xl = �x ′] according to Gd , as in
the DQMC method, with a time step �τ between successive
points. Each step of the trajectory is an estimate of one of the
integrals over configuration space. Thus the matrices can be
estimated as the average over the whole walk

nkj (p�τ ) = 1

2(l − p)

l−p∑
n=1

Wn,n+p[F ∗
k (�xn)Fj (�xn+p)

+F ∗
k (�xn+p)Fj (�xn)],

(12)

hkj (p�τ ) = 1

4(l − p)

l−p∑
n=1

Wn,n+p

×{F ∗
k (�xn)Fj (�xn+p)[Ej (�xn+p) + E∗

k (�xn)]

+F ∗
k (�xn+p)Fj (�xn)[E∗

k (�xn+p) + Ej (�xn)]},
with the complex weights

Wn,n+p =
n+p∏

i=n+1

G̃(�xi,�xi−1; �τ )/Gd (�xi,�xi−1; �τ ) (13)
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representing the accumulated weights between points sep-
arated by p time steps on the trajectory. We have used
Hermiticity of Ĥ to include as much information as available
in the estimate.

B. Fixed-phase CFQMC

It turns out that the partial propagator GA increases the
noise of the method, which enters in the estimate of the
matrices of which eigenvalues are to be determined. To develop
a more stable CFQMC variant, the fixed-phase approach
of [7] is applied to the CFQMC method, thus making it an
approximation, but with the advantage that GA is eliminated.
By decomposing the wave function into modulus and phase
ψ(�x) = |ψ(�x)|exp[iϕT (�x)], and taking the real part of the
imaginary-time Schrödinger equation, one arrives at the fixed-
phase equation for the modulus of the wave function{ − 1

2� + 1
2 [∇ϕT (�x) + �A(�x)]2 + V (�x) − EOffs

}|ψ | = E|ψ |,
(14)

with the fixed trial phase function ϕT (�x). Introducing impor-
tance sampling and simulating this equation one finds the
lowest energy for a given trial phase [7]. The term in brackets
defines the fixed-phase Hamiltonian ĤFP. Local energy is
calculated using the fixed-phase Hamiltonian with respect to
the modulus of the wave function

EL = ĤFP|ψ |
|ψ | = Re

Ĥ [|ψ | exp(iϕT )]

|ψ | exp(iϕT )
. (15)

Because the imaginary paramagnetic term does not appear
in (14) and is implicitly accounted for by the choice of the
trial phase, the partial propagator GA is dropped from the
propagators (8), while Gd and Gs are retained. The vector
potential �A has the form of a source term and is taken into
account by Gs with the local energy as defined in (15).

III. CHOICE OF THE TRIAL AND GUIDING FUNCTIONS

We use basis states in a Landau expansion adapted to strong
magnetic fields of neutron stars. The basis functions fk are
Slater determinants with single particle orbitals of the form

ψ(ρ,ϕ,z) =
NL∑
n=0

Pn(z)�n(ρ,ϕ), (16)

where for any magnetic field strength the z-dependent ex-
pansion coefficients Pin are determined using self-consistent
2D Hartree-Fock-Roothaan (2DHFR) calculations. This ansatz
is complete for a given symmetry subspace with the only
drawback being the truncation to a maximum of NL + 1 = 31
Landau functions �n. This ansatz is an improvement on the
ansatz presented in [8] and on the ansatz used in the DQMC
calculations for ground states of the elements up to neutral
iron in strong magnetic fields [2]. Because of the high spin-flip
energy of 2β, the electron spins are all aligned antiparallel to
the magnetic field direction and the spin degree of freedom can
completely be accounted for by an energy shift incorporated
into the potential V . In the limit of infinite magnetic field
strength, the exact solution just includes the zeroth Landau
function (this is called adiabatic approximation for high, but

finite field strengths), therefore this ansatz is particularly well
suited for high magnetic field strengths.

For the walks to be capable of sampling all relevant ranges
of position space, the guiding function has to reflect the ground
state plus all excited states to be calculated. The guiding
function has to be real to avoid phase cancellation between
different states. To lower variance, the guiding function must
not have any nodes the walk could encounter, otherwise the
term fi/ψG in the estimates of the matrices would diverge.
We use a slightly modified version of the guiding function of
Jones et al. [4]

ψG(�x) = C

⎡
⎣c0

m

m∑
i=1

N∏
j=1

ρi(�xj ) +
m∑

i=1

ci |fi(�x)|2
⎤
⎦

1
2

, (17)

which includes the single state electron density

ρi(�xj ) =
N∑

k=1

|ψi,k(�xj )|2 (18)

to make the guiding function node-free. In (18) ψi,k is the kth
single state wave function given in (16) forming the Slater
determinant of the ith trial function. The trial functions and
single state wave functions are normalized, and the constant

C =
(

c0N
N +

m∑
i=1

ci

)− 1
2

(19)

takes care of the normalization of the guiding function. The
remaining constants c0 and ci are adjusted by hand to modify
the amount of overlap with any given state and thus to balance
the variance of the results for the corresponding states. In
agreement with [9] we obtained best results if c0 was chosen
such that for approximately 10% of configurations the first
term in (17) yields a larger value than the second.

IV. APPLICATION TO NEUTRAL He ATOMS IN STRONG
MAGNETIC FIELDS

We employed ensemble sizes of typically a few thousand
walkers, each of which was used at each projection time to
(a) sum up a global estimate of the H and N matrices, and
(b) to estimate the eigenvalues for each walk separately. The
eigenvalues λ(τ ) of the summed-up matrices in step (a) are
shown in the figures. The bias entering the method because
of the nonlinear process of finding eigenvalues was at least
two orders of magnitude smaller than the standard deviation.
The separately estimated eigenvalues λ̄i(τ ) in step (b) were
used to estimate the standard deviation. We estimated the bias
b(τ ) for each state and each projection time with the general
relation [3]

b(τ ) =
[

Nw∑
i=1

λ̄i(τ )/Nw − λ(τ )

]
/(Nw − 1) (20)

as the deviation of the average of the eigenvalues of Nw

successful walks from the eigenvalues of the summed-up
matrices. “Successful” means that only walks leading to a
positive definite overlap matrix for the considered projection
time can be taken into account. Only the matrices of successful
walks were used in the summed-up matrices.
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FIG. 1. (Color online) Fixed-phase and released-phase (inset)
correlation-function quantum Monte Carlo calculation for the second
excited state of the (πz = +,Lz = −1) symmetry subspace of neutral
helium in a magnetic field of strength β = 8. In this range the variance
is too high for the released-phase method to gain results. See the text
for an interpretation of the released-phase result. The fixed-phase
calculation has the same parameters and the same sequence of
random numbers as the released-phase (inset). The statistical noise is
significantly lower, one notes a fast relaxation to the true energy,
which thus can be obtained successfully. The black line is the
eigenvalue corresponding to the state, estimated at projection times
each 0.005 hartree−1. The green area marks the estimated ±1σ area.
The horizontal blue line is the variational quantum Monte Carlo
energy of the two-dimensional Hartree-Fock-Roothaan trial function
the correlation-function quantum Monte Carlo method starts from
within its ±1σ area of confidence. The calculation was carried out
with 12 million correlation-function quantum Monte Carlo steps per
walker with �τ = 10−4 hartree−1, an equilibration of 800 000 VQMC
steps per walker, an ensemble of 2560 walkers and the c parameters
for the guiding function being {0.2,1.5,2.25,3.375}. Estimates of the
eigenvalues have been generated every 0.005 hartree−1, the line serves
as a guide to the eye.

Compared to the DQMC method much longer walks were
needed to equilibrate the ensemble to a stochastical represen-
tation of the guiding function, because it is composed of trial
functions of quite different spatial extents. The ensemble has to
reflect small structures of the ground state and at the same time
has to cover the whole space occupied by the highest excited
state. Comparison of the CFQMC result at zero projection time
with the VQMC energy of the trial function is a measure for
the quality of equilibration. It was also necessary to drastically
increase the number of steps in the CFQMC calculations
compared to DQMC calculations to avoid unsuccessful walks
which result in unusable nonpositive definite estimates of the
overlap matrix because of high statistical noise.

A. RPCFQMC and FPCFQMC results

We carried out calculations with the RPCFQMC method
and were able to reproduce the results of Jones et al. [4], but it
was not possible to extend the range of magnetic field strengths
above the range considered by Jones et al. In particular, it
was not possible to gain meaningful results for helium above
βZ ≈ 1 with few exceptions in the case Lz = 0, though our trial

functions are known to become more and more accurate the
higher the magnetic field strength is. For the lowest magnetic
field strengths accessible with our trial functions βZ = 0.1, the
RPCFQMC method yields good results, but variance increases
with increasing magnetic fields, until it becomes so high that
the method is not capable of producing convergence at βZ � 1.

An example is depicted in the inset of Fig. 1 for βZ = 2.
The eigenvalues do not show any convergence to the resulting
energy, the obviously wrong estimate of the standard deviation
is a sign that only a few walkers from the same limited
configuration space volume are contributing to the result, while
the estimates of the overlap matrices of the other walkers are
not positive definite because of statistical noise. The peaks in
standard deviation signal a walker for which the overlap matrix
becomes nonpositive definite after some projection time.
Shortly before this happens, the estimated eigenvalue of the af-
fected walker shows high fluctuations and destroys the estimate
of the standard deviation. Afterwards, it is ignored completely.

The same calculation using the fixed-phase CFQMC
method is shown in Fig. 1. We chose the phase of the highest
excited 2DHFR trial function of each calculation as our trial
phase, because this state is the one with the largest spatial
extent. The noise is reduced by a large amount, and with
the FPCFQMC method it is possible to extend the range of
accessible magnetic field strengths to β ≈ 40. Comparison of
the results with the RPCFQMC method shows agreement in
the range accessible to both methods within statistical error.
This means that the trial phase is exact within the statistical
limit. To test the greater stability of the fixed-phase method
compared to the released phase, we plotted intermediate results
of a calculation to examine the convergence properties of the
methods. Figure 2 shows an example. Clearly the FPCFQMC
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FIG. 2. (Color online) Convergence properties of the fixed-phase
correlation-function quantum Monte Carlo method (top) compared
with the released-phase method (bottom). The figure shows a
calculation for the ground state of the (πz = −,Lz = 0) symmetry
subspace for neutral helium at β = 21.27. Intermediate results taken
at 2 million steps, 6 million steps, and 12 million steps are shown.
The horizontal line is the variational quantum Monte Carlo result of
the two-dimensional Hartree-Fock-Roothaan trial function used.
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TABLE I. CFQMC energies (−ECFQMC) of helium of the (πz = +,Lz = −1) subspace in Hartree with 1σ standard deviations in relation
to the last given digit in parentheses. The last three columns show VQMC energies of the Hartree-Fock trial functions we used. The electron
configuration of each state is given by its field-free quantum numbers and the (−m,ν) quantum numbers. Note that computational effort was
increased for β � 8.

FPCFQMC RPCFQMC 2DHFR
1s2p−1 1s3p−1 1s4p−1 1s2p−1 1s3p−1 1s4p−1 1s2p−1 1s3p−1 1s4p−1

β 0010 0012 0014 0010 0012 0014 0010 0012 0014

0.4 2.833(3) 2.483(1) 2.412(1) 2.827(2) 2.481(1) 2.413(1) 2.7599(7) 2.4159(6) 2.3474(6)
0.8 3.309(2) 2.8003(8) 2.7179(9) 3.304(2) 2.8000(8) 2.717(1) 3.2670(6) 2.7663(5) 2.6854(5)
1.2 3.693(2) 3.0636(8) 2.9731(7) 3.687(2) 3.0631(8) 2.9733(9) 3.6567(6) 3.0384(5) 2.9488(5)
2.0 4.309(2) 3.4915(7) 3.3913(8) 4.303(2) 3.4903(6) 3.3906(7) 4.2798(7) 3.4746(5) 3.3738(5)
2.8 4.806(2) 3.8413(7) 3.7333(7) 4.798(2) 3.8419(8) 3.7335(7) 4.7741(6) 3.8265(5) 3.7210(5)
4.0 5.416(2) 4.2750(6) 4.1602(7) 5.407(3) 4.2739(6) 4.1603(6) 5.3856(6) 4.2629(6) 4.1479(5)
8.0 6.8820(4) 5.3268(2) 5.1986(2) 6.8554(8) 5.3166(8) 5.1902(6)
20.0 9.5019(8) 7.2152(2) 7.0719(2) 9.475(2) 7.206(2) 7.063(1)
21.27 9.7088(4) 7.3652(2) 7.2212(2) 9.686(2) 7.360(2) 7.217(2)
28.0 10.6913(7) 8.0764(2) 7.9271(2) 10.670(2) 8.068(2) 7.918(1)
40.0 12.1056(3) 9.1010(2) 8.9456(2) 12.092(3) 9.095(2) 8.941(2)

method does not only show a converged result over the whole
projection time, but also the convergence to this result is steady.
The RPCFQMC methods shows nearly random behavior for
τ > 0.1.

The comparison of fixed-phase with released-phase
CFQMC results (see Tables I–IV) reveals overlap of the 1σ

range for all results except the ground state of the (+, − 1)
symmetry subspace, for which one finds overlap of the 2σ

ranges only, and two results from the (−,0) subspace. The
subspaces with Lz = 0 often show identical results for all
digits given, which can be expected, because the trial functions
are real and the complications arising from GA (which
nevertheless is still present in the released-phase variant) can
be considered less severe.

However, the general behavior of the CFQMC method, that
variance increases with increasing magnetic field strength,
remains unchanged. We assume that the reason for this
behavior is that the variance σ 2

k is governed by the exponential
of the energy difference between the state k in question and
the bosonic ground state [3]

lim
p→∞ σ 2

k (p�τ ) � 1

l − p
Cke

2p�τ (Ek−E0). (21)

The bosonic ground state is the absolute ground state of
the considered Hamiltonian and is symmetric under particle
exchange.

The bosonic ground state (or in general, the state with the
lowest energy) enters the variance because of the long-time
limit of the Green’s function

lim
τ→∞ G(�x ′,�x; τ ) = ψG(�x ′)

ψG(�x)
e−τ (E0−EOffs)�0(�x ′)�∗

0 (�x), (22)

which is taken into account by the weights. The bosonic ground
state is denoted as �0 and its energy E0. One can derive
this spectral decomposition by starting from (6) and inserting
the spectrum of the Hamiltonian twice. In the imaginary-time
evolution, the bosonic ground state decays slowest.

In our application one obtains the bosonic ground state by
putting both electrons into the lowest single-particle hydrogen

orbital with same spin. The fermionic ground state is the first
excited state of the Hamiltonian, as one electron has to be lifted
to the first excited single particle hydrogen state to conform to
the Pauli principle for fermions. Both states are tightly bound
and their energies diverge logarithmically in the limit of infinite
magnetic field strength, but with a different prefactor. The
energy difference between the fermionic and bosonic ground
state increases proportional to

√
β as can be seen in Fig. 3. For

excited states within a symmetry subspace, one electron has to
be lifted to a hydrogenlike state, with an energy converging to
a constant value in the limit of infinite magnetic field strength,
therefore the energy difference increases even faster.
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FIG. 3. (Color online) Energies of the bosonic (absolute) and
the fermionic ground state over increasing magnetic field strength.
The bosonic ground state has the (field-free) electronic configuration
1s2, the fermionic 1s2p−1, which is the ground state of helium for
the displayed range of magnetic field strength. One easily sees the
increasing difference proportional to

√
β, which poses a problem on

the CFQMC method, as this energy difference increases variance. For
excited fermionic states, energy difference is even larger. Results for
individual magnetic field strengths were calculated using DQMC, the
lines serve as guides to the eye.
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TABLE II. CFQMC energies (−ECFQMC) of helium of the (πz = −,Lz = −1) subspace in Hartree with 1σ standard deviations in relation to
the last given digit in parentheses. A < sign marks cases in which the calculation was not converged fully, so only an upper limit was obtained.
The last three columns show VQMC energies of the Hartree-Fock trial functions we used. The electron configuration of each state is given by
its field-free quantum numbers and the (−m,ν) quantum numbers. Note that computational effort was increased for β � 8.

FPCFQMC RPCFQMC 2DHFR
1s3d−1 1s4d−1 1s5d−1 1s3d−1 1s4d−1 1s5d−1 1s3d−1 1s4d−1 1s5d−1

β 0011 0013 0015 0011 0013 0015 0011 0013 0015

0.4 2.555(2) 2.4324(8) 2.396(2) 2.553(2) 2.4332(8) 2.396(3) 2.4863(8) 2.3682(6) 2.3322(6)
0.8 2.89(1) 2.74(1) 2.70(1) 2.894(2) 2.7424(7) 2.700(3) 2.8596(7) 2.7094(5) 2.6674(5)
1.2 3.171(2) 2.9987(7) 2.954(1) 3.170(2) 2.9996(7) 2.954(2) 3.1445(6) 2.9758(6) 2.9283(5)
2.0 3.618(2) 3.4187(7) 3.3703(8) 3.616(2) 3.4191(8) 3.370(1) 3.5993(7) 3.4035(6) 3.3550(5)
2.8 3.978(2) 3.7632(7) 3.7119(9) 3.976(2) 3.7642(8) 3.712(1) 3.9625(7) 3.7499(6) 3.6994(5)
4.0 4.423(2) 4.1908(7) 4.137(1) <4.419(2) 4.1912(7) 4.137(1) 4.4086(7) 4.1797(6) 4.1263(6)
8.0 5.4880(5) 5.2306(2) 5.1736(2) 5.478(2) 5.2206(9) 5.1631(8)
20.0 <7.3922(2) 7.1041(2) 7.0432(1) 7.382(2) 7.098(2) 7.037(2)
21.27 <7.5437(4) 7.2538(4) 7.1927(3) 7.534(2) 7.244(2) 7.185(1)
28.0 8.245(2) 7.950(2) 7.890(2)
40.0 8.9770(2) 8.9146(3) 9.272(2) 8.968(2) 8.909(2)

TABLE III. CFQMC energies (−ECFQMC) of helium of the (πz = +,Lz = 0) subspace in Hartree with 1σ standard deviations in relation
to the last given digit in parentheses. The last three columns show VQMC energies of the Hartree-Fock trial functions we used. The electron
configuration of each state is given by its field-free quantum numbers and the (−m,ν) quantum numbers. Note that computational effort was
increased for β � 8.

FPCFQMC RPCFQMC 2DHFR
1s2s 1s3s 1s4s 1s2s 1s3s 1s4s 1s2s 1s3s 1s4s

β 0002 0004 0006 0002 0004 0006 0002 0004 0006

0.4 2.569(2) 2.4385(9) 2.398(5) 2.569(2) 2.4381(8) 2.397(6) 2.497(1) 2.3705(7) 2.3325(7)
0.8 2.865(2) 2.7337(7) 2.697(3) 2.865(2) 2.7337(7) 2.695(6) 2.8283(8) 2.7006(6) 2.6649(6)
1.2 3.120(2) 2.9866(7) 2.948(4) 3.120(2) 2.9866(7) 2.948(6) 3.095(2) 2.9603(6) 2.9234(6)
2.0 3.544(2) 3.4039(6) 3.365(4) 3.544(2) 3.4040(6) 3.364(5) 3.5240(7) 3.3859(6) 3.3473(5)
2.8 3.890(1) 3.7454(6) 3.705(4) 3.889(2) 3.7454(6) 3.705(5) 3.8732(9) 3.7304(6) 3.6920(6)
4.0 4.321(2) 4.1709(6) 4.130(2) 4.321(2) 4.1708(6) 4.129(2) 4.3066(7) 4.1574(7) 4.1170(6)
8.0 5.3690(3) 5.2081(2) 5.1658(2) 5.3684(4) 5.2077(3) 5.1661(4) 5.358(2) 5.198(1) 5.156(1)
20.0 7.2556(2) 7.0799(1) 7.0352(1) 7.248(2) 7.074(2) 7.025(1)
21.27 7.4059(3) 7.2294(2) 7.1844(3) 7.4049(6) 7.2291(5) 7.1841(4) 7.397(2) 7.224(2) 7.178(2)
28.0 8.1166(3) 7.9350(1) 7.88944(9) 8.104(2) 7.924(2) 7.883(2)
40.0 9.1399(2) 8.95312(9) 8.90662(8) 9.131(2) 8.943(2) 8.897(2)

TABLE IV. CFQMC energies (−ECFQMC) of helium of the (πz = −,Lz = 0) subspace in Hartree with 1σ standard deviations in relation
to the last given digit in parentheses. The last three columns show VQMC energies of the Hartree-Fock trial functions we used. The electron
configuration of each state is given by its field-free quantum numbers and the (−m,ν) quantum numbers. Note that computational effort was
increased for β � 8.

FPCFQMC RPCFQMC 2DHFR
1s2p0 1s3p0 1s4p0 1s2p0 1s3p0 1s4p0 1s2p0 1s3p0 1s4p0

β 0001 0003 0005 0001 0003 0005 0001 0003 0005

0.4 2.631(3) 2.4508(9) 2.402(3) 2.631(2) 2.4508(9) 2.402(3) 2.5651(7) 2.3862(7) 2.3396(6)
0.8 2.983(2) 2.7584(9) 2.705(2) 2.984(2) 2.7584(8) 2.705(2) 2.9474(6) 2.7251(6) 2.6726(5)
1.2 3.266(2) 3.0148(7) 2.959(3) 3.263(2) 3.0149(7) 2.958(3) 3.2404(6) 2.9903(5) 2.9336(5)
2.0 3.722(2) 3.4358(7) 3.376(3) 3.722(2) 3.4358(7) 3.376(3) 3.7011(7) 3.4194(5) 3.3591(6)
2.8 4.086(2) 3.7793(7) 3.717(2) 4.086(2) 3.7793(8) 3.717(2) 4.0640(7) 3.7627(6) 3.7037(6)
4.0 4.533(3) 4.2060(9) 4.142(3) 4.532(2) 4.2055(8) 4.142(2) 4.5135(6) 4.1932(6) 4.1303(6)
8.0 5.6034(4) 5.2456(2) 5.1781(2) 5.5994(4) 5.2466(8) 5.1775(2) 5.586(1) 5.235(1) 5.1674(9)
20.0 7.4999(2) 7.11741(9) 7.04725(8) 7.483(2) 7.109(2) 7.038(1)
21.27 7.6503(3) 7.2666(2) 7.1964(2) 7.649(1) 7.2674(6) 7.1963(6) 7.633(2) 7.258(2) 7.193(2)
28.0 7.97174(9) 7.90115(8) 8.343(2) 7.965(2) 7.892(2)
40.0 9.3796(2) 8.98927(9) 8.91805(8) 9.366(2) 8.977(2) 8.909(2)
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TABLE V. Comparison of our results for the states 1s2p−1, 1s3p−1, and 1s4p−1 with work of other groups.

1s2p−1 1s3p−1 1s4p−1

β FPCFQMC Ref. [10] Ref. [11] FPCFQMC Ref. [10] FPCFQMC Ref. [10]

0.4 2.833(3) 2.8301 2.8378(0) 2.483(1) 2.4855 2.412(1) 2.4178
0.8 3.309(2) 3.3016 3.3170(6) 2.8003(8) 2.8006 2.7179(9) 2.7188
1.2 3.693(2) 3.6842 3.0636(8) 3.0630 2.9731(7) 2.9735
2.0 4.309(2) 4.2980 4.3100(44) 3.4915(7) 3.4903 3.3913(8) 3.3909
2.8 4.806(2) 4.7911 4.8058(26) 3.8413(7) 3.8411 3.7333(7) 3.7343
4.0 5.416(2) 5.4000 5.4052(64) 4.2750(6) 4.2742 4.1602(7) 4.1605
8.0 6.8820(4) 6.8666 6.8768(150) 5.3268(2) 5.3261 5.1986(2) 5.1995
20.0 9.5019(8) 9.4882 9.5004(628) 7.2152(2) 7.2156 7.0719(2) 7.0714
28.0 10.6913(7) 10.6816 10.6948(1112) 8.0764(2) 8.0768 7.9271(2) 7.9268
40.0 12.1065(3) 12.1011 12.1086(1582) 9.1010(2) 9.1010 8.9456(2) 8.9451

B. Comparison with other calculations

Table V lists comparisons of our results for the states
1s2p−1, 1s3p−1, and 1s4p−1 with results obtained in a
Hartree-Fock approach by Jones et al. [10]. Recently, Thiru-
malai and Heyl [11] presented results for some helium states
including 1s2p−1 obtained using a two-dimensional Hartree-
Fock method that is especially accurate for small magnetic
field strengths. We present the results of this study as an
additional reference value.

Our results are of comparable or higher accuracy except
for the lowest field strengths. The decreasing accuracy there
can be explained by the truncation error in the single particle
orbitals used in our trial functions, which grows rather large for
βZ � 1. However, we are able to reach much higher accura-
cies in conventional FPDQMC calculations for ground state
energies using these trial functions, as we will show in a
forthcoming publication.

Our results for the states presented in Tables II–IV show a
similar performance when compared to the studies [10] and
[11].

V. CONCLUSIONS

We developed the fixed-phase variant of the CFQMC
method and found it to be much more robust than the
original released-phase CFQMC method, while being equally

exact in our application. The advantage of the FPCFQMC
method compared to the FPDQMC method is that the former
is variational also for excited states. In the FPCFQMC
method, the dependence of the variance on the energy
difference between the energy of the calculated state and the
absolute ground state remains unchanged, which means that
the method is applicable to cases in which this energy
difference is small. The increasing quality of our trial functions
for higher magnetic field strengths cannot compensate for the
growth of the variance. The FPCFQMC method allowed for
the calculation of energies of excited states for helium in
neutron-star magnetic fields up to a magnetic field strength
of approximately β = 40. As the energy difference between
the bosonic and fermionic ground state for higher elements
increases compared to helium, we do not expect the method to
be suitable in these cases. The self-healing DQMC algorithms
recently extended to excited states and magnetic fields [12,13]
seem promising to tackle this problem, with the increased
expense of even longer calculation times.
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2007–2010.

032515-7

http://dx.doi.org/10.1051/0004-6361:20011151
http://dx.doi.org/10.1051/0004-6361:20011151
http://dx.doi.org/10.1103/PhysRevA.76.032501
http://dx.doi.org/10.1103/PhysRevA.76.032501
http://dx.doi.org/10.1063/1.455398
http://dx.doi.org/10.1103/PhysRevE.55.6202
http://dx.doi.org/10.1103/PhysRevE.55.6202
http://dx.doi.org/10.1103/PhysRev.43.830
http://dx.doi.org/10.1090/S0002-9939-1959-0108732-6
http://dx.doi.org/10.1103/PhysRevLett.71.2777
http://dx.doi.org/10.1103/PhysRevLett.71.2777
http://dx.doi.org/10.1103/PhysRevA.78.032515
http://dx.doi.org/10.1063/1.447637
http://dx.doi.org/10.1103/PhysRevA.59.2875
http://dx.doi.org/10.1103/PhysRevA.59.2875
http://dx.doi.org/10.1103/PhysRevA.79.012514
http://dx.doi.org/10.1103/PhysRevB.80.125110
http://dx.doi.org/10.1063/1.4711023
http://www.bw-grid.de/



