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In a previous work, Pohl et al. [Phys. Rev. Lett. 84, 5090 (2000)] have proposed a simple scheme for the
evaluation of photoelectron spectra of clusters subject to a laser field by collecting one-particle wave functions at
a given measuring point close to absorbing boundaries. The scheme gives reliable results for low and moderate
laser fields, but it shows failures for strong laser fields. The formulation relies on the assumption of free-electron
propagation close to the boundaries. The laser field, however, can still be active when the first bunches of outgoing
electrons reach the measuring point, and therefore the free-particle scenario may not hold anymore in case of
high laser intensities. In this paper, hence, we generalize the method by using a model of “free” particles in the
presence of an electromagnetic dipole field. Numerical tests show that this generalized scheme reduces to that of
Pohl et al. for low and moderate laser intensities, whereas it considerably improves the results of the latter for
high intensities, thus extending the applicability of the method.
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I. INTRODUCTION

Photoelectron spectra (PES) constitute a long-standing
basic tool for analyzing the electronic structure of atoms,
molecules, or solids [1–3]. In the one-photon regime, PES
provide an image of the sequence of single-particle levels
which are occupied in the ground state. This has been applied,
e.g., already in the early days of cluster physics to the electronic
structure of cluster anions to track the transition to bulk metal
[4]. Whereas this could be done with photon frequencies in
the range of visible light, the analysis of deeper levels requires
higher frequencies, and hence one finds also UV [5] and x-ray
PES [6]. Nowadays, we dispose of a great variety of coherent
light sources in large ranges of frequency, intensity, and pulse
length, such as the very powerful and versatile free-electron
lasers [7,8], which now even allow for time-resolved studies of
deeply lying core states of atoms embedded in a material [9].
With the great availability of good light sources, studies of
PES are now found in all areas of molecular physics, from
atoms over simple molecules [10] to complex systems as
clusters [11] and organic molecules [12]. In turn, PES now
offer a remarkable tool of investigation of both structural and
dynamical properties of these various atomic systems.

There is hence a general need for a robust theoretical tool
of analysis of PES in various dynamical regimes. Traditional
approaches to compute PES rely on (multi)photon perturbation
theory [13] which is naturally limited to low laser intensities.
A method employing directly fully fledged time-dependent
density-functional theory has been developed a few years ago
in Refs. [14,15] and has been taken up recently in Ref. [16]
for a combined analysis of PES and angular distributions
of emitted electrons. Here, the PES are deduced directly
from numerical simulations of the electronic excitations on
a spatial grid representation allowing exploration of a rather
wide range of dynamical scenarios. The technique has been
applied to a variety of systems for which significant electron
emission can be achieved with still moderate laser intensities
such as free metal clusters [17–19], dimer molecules [16],

and clusters deposited on substrate [20]. However, when high
laser intensities are employed, as often in case of atoms and
molecules with large ionization potentials, the method can
produce unphysical features in the PES. The focus of this
work is hence on generalizing the scheme of Refs. [14,15]
to also treat high laser intensities but, at the same time, still
keeping the simplicity of the framework.

The paper is organized as follows. We start in Sec. II A
with a brief review of the original scheme to evaluate PES
as proposed in Ref. [14]. Using the example of the Na+

9
cluster in a strong laser field, we show that this scheme
produces unexpected spectral features in the PES which call
for a revision of the method. A generalized scheme is hence
proposed, which is based on the solution of the time-dependent
Schrödinger equation for a particle in the presence of a
homogeneous laser field. This implies that we also discuss the
gauge freedom in describing the laser field and which gauge
is most appropriate for the evaluation of PES. The generalized
scheme is then tested in Sec. III for the analytically solvable
case of Gaussian wave packets first and then numerically for a
few realistic test cases. The tests show that the present scheme
reduces to the original scheme of Ref. [14] in the case of low
and moderate laser intensities, whereas it greatly improves the
results of the latter for high laser intensities. We end the paper
with our conclusions and future perspectives.

II. THEORETICAL EVALUATION OF PES

In this section, we first give a brief review of the scheme
for the evaluation of PES introduced in Refs. [14,15]. After
showing that it is not appropriate for high laser intensities,
we propose a generalized scheme that solves the problem. All
schemes discussed here and in the previous papers rely on a
mean-field description where each electron is associated with
a single-electron wave function ψα . We will consider in the
formal discussions one representative state and drop the index
α to simplify notations. Moreover, for sake of simplicity, the
derivations are done for one-dimensional (1D) systems; the

032514-11050-2947/2013/87(3)/032514(10) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.84.5090
http://dx.doi.org/10.1103/PhysRevA.87.032514


DINH, ROMANIELLO, REINHARD, AND SURAUD PHYSICAL REVIEW A 87, 032514 (2013)

generalization to three dimensions (3D) is straightforward and
is detailed in Appendix A.

A. PES scheme for free particles

The PES are efficiently calculated by exploiting the features
of the absorbing boundary conditions [14,15]. We choose a
“measuring point” zM far away from the center and one or
two grid points before the absorbing boundaries. In the region
around zM, we will assume a free-electron dynamics; each
electron is then described by the single-electron wave function
ψ(z,t), which can be considered as a superposition of plane
waves. The ψ is recorded at the measuring point zM during
the time evolution. This delivers the raw information from
which we extract the PES. We give here a brief summary of
the procedure and its motivations.

1. Direct evaluation scheme

The conceptually simplest access to PES proceeds similar to
the experimental setup. The measurement of PES is practically
a momentum analysis of the outgoing wave packet at a remote
side (see, e.g., [21] and references therein). To map this
situation into a theoretical scheme, one assumes that one has a
very large numerical grid and a spatial momentum analyzer far
away from the cluster region. This analyzing region covers a
sufficient span of spatial extension to allow definition of a mo-
mentum in coordinate space. The cluster’s mean field becomes
negligible in this region. If one assumes that here also the laser
field is negligible, then one encounters free-particle dynamics.
This is governed by the time-dependent Schrödinger equation
for a free particle i∂tψ(z,t) = −∇2

2 ψ(z,t), whose solution is

ψ(z,t) =
∫

dk√
2π

ψ̂0(k) ei(kz−ωkt), ωk = k2

2
. (1)

Atomic units h̄ = me = e = 4πε0 = 1 are used here and
throughout the paper. The momentum components ψ̂0(k) carry
the wanted information on the distribution of kinetic energies
ωk . They are filtered by inverse Fourier transformation in
coordinate space:

ψ̂(k,t) =
∫

dz√
2π

e−ikzψ(z,t) = ψ̂0(k)e−iωkt . (2)

In fact, the z integration has to be confined in principle to the
analyzer region which limits the resolution. We can assume
that the region is still large enough in practice to deliver
sufficient resolution. The probability to find an outgoing
particle with momentum k is then given by |ψ̂(k,t)|2 =
|ψ̂0(k)|2. Only outgoing particles reach the analyzing volume
such that the momentum has a unique sign k > 0 which
provides a one-to-one correspondence of k and the kinetic
energy Ekin ≡ ωk . The PES can thus be obtained as

Y(Ekin) ∝ 1√
Ekin

|ψ̂0(k)|2, (3)

where the appropriate energy density ∝E
−1/2
kin is taken into ac-

count. We call this method, built in analogy to the experimental
setup, the “direct scheme.”

2. Frequency analysis at measuring point

The direct scheme, although conceptually simple, is inap-
plicable in realistic cases because it requires huge numerical
boxes and long computation times. This is because we would
need a large extra space for the spatial Fourier analysis. To
overcome this problem, we recover the momentum distribu-
tion, and with it the PES, from the Fourier transform into the
frequency domain

ψ̃(zM,ω) =
∫

dt√
2π

eiωtψ(zM,t). (4)

We insert the free wave packet (1) for ψ(zM,t) and obtain

ψ̃(zM,ω) =
∫

dk√
2π

eikzM

∫
dt√
2π

ei(ω−ωk )t ψ̂0(k)

=
∫

dk eikzM δ(ω − ωk)ψ̂0(k)

=
∫

dk

k
eikzM δ(k −

√
2ωk)ψ̂0(k)

= ψ̂0(
√

2ωk)√
2ωk

eizM
√

2ωk , (5)

where we exploited the fact that k > 0 to allow the unique
correspondence k = √

2ωk . From Eq. (5), it becomes clear
that we can use ψ̃(zM,ω) in place of ψ̂0(k) to calculate the
PES. Again, we identify Ekin ≡ ωk and obtain the PES yield
YzM (Ekin) as

YzM(Ekin) ∝
√

Ekin|ψ̃(zM,Ekin)|2. (6)

Equation (6) is the scheme originally proposed in Refs. [14,15].
We have checked the method in extensive 1D wave-packet
calculations and compared it to the “direct” scheme (3). Both
methods yield the same results, while the above-sketched
frequency analysis at a “measuring point” is orders of
magnitude faster. We call this scheme deduced from frequency
analysis the “raw recipe” to distinguish it from the generalized
case presented later on.

The above derivation was done for the case of one spatial
dimension. The same steps can be done for three-dimensional
wave packets (for details, see Appendix A) leading to a yield
∝|ψ̃(rM,Ekin)|2.

3. Example of application and problem

Although the simple scheme based on Eq. (6) has been
applied with success to a variety of dynamical scenarios
in clusters, our recent attempts to compute the PES of
small covalent organic molecules have raised some questions
concerning its general applicability. For high laser intensities,
we find an unexpected shoulder in the PES at large kinetic
energies. These patterns were then also found for the simple
test case of Nan clusters with jellium background when
going to sufficiently large laser field strengths. This excludes
pseudopotentials, local or nonlocal ones, as the source of the
trouble. The problem seems to reside in the scheme to evaluate
the PES.

Figure 1 demonstrates the problem for the case of Na+
9 .

The spherical jellium model is used for the ionic background.
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FIG. 1. (Color online) Ionization properties of Na+
9 with jellium

background under the influence of laser pulses having frequency
ωlas = 0.1 Ry, pulse length Tpulse = 12 fs, and intensities I =
1013 W/cm2 (green or light gray lines) and I = 1014 W/cm2 (brown
or dark gray lines), computed in a cylindrical box of 176 × 88a2

0 with
spherical absorbing bounds covering at least 16 grid points. The laser
field was given effectively in the v gauge. Bottom: time evolution of
ionization. Top: photoelectron spectra Y	rM

(Ekin) [see Eq. (A3)].

Valence electrons are described by the time-dependent local-
density approximation (TDLDA) using the energy functional
of Ref. [22] and an average-density self-interaction correction
(ADSIC) [23]. Two cases are considered for comparison: one
with still moderate laser intensity (I = 1013 W/cm2), and
another one in the high intensity regime (I = 1014 W/cm2). In
the latter regime, more than half of the cluster’s electrons are
stripped off, as shown in the bottom panel of Fig. 1. The top
panel shows the PES for both cases. For a moderate intensity
I , it is already seen that the multiphoton peaks are washed
out [14]. What remains is the typical monotonous decrease.
The case of high intensity differs: up to Ekin ≈ 1.8 Ry, we
see the typical pattern of a monotonous decrease of the
envelope with some fluctuations. For Ekin > 1.8 Ry, however,
we observe a new maximum, a broad shoulder of high-energy
electrons; this is unexpected and most probably unphysical. In
the following, we clarify the origin of such a shoulder and we
generalize the method to compute PES to a wider range of laser
intensities.

B. PES scheme for free particles plus laser field

In Sec. II A, we have deduced the recipe for evaluating PES
under the assumption that the potential is negligible at the
measuring point. Although this may hold for the typical mean
field of a system, we can not easily exclude the presence of the
laser field at this point because the laser field is of extremely
long range (wavelength much larger than system size in the
dipole approximation that we use here). Of course, one could
take very large boxes, so that the laser would have died at
a time when the emitted electrons reach the measuring point
zM. This would avoid a temporal overlap between the laser
and the collected outgoing wave and validate the simple recipe.
However, this would enormously increase the computational
time, if not inhibit a calculation at all. We have hence to deal
with the situation where the laser is still active at the measuring
point. To do this, we extend the above considerations to the case
of a “free” particle plus laser field in the dipole approximation.
This is still analytically solvable and leads to a generalized
scheme using a simple phase correction. We again confine
the considerations to the 1D case. The extension to 3D is
straightforward.

1. Hamiltonian and choice of the gauge

We are now considering a free electron in the presence of
an external electromagnetic field governed by the Hamiltonian

Ĥ (r,t) = 1

2

[
p̂ + A(r,t)

c

]2

− 
(r,t), (7)

where A is the vector potential and 
 the scalar potential. The
external laser field is described in the limit of long wavelengths
and neglecting magnetic effects (electronic velocities are very
small at any time). There remains the gauge freedom in
choosing A and 
. Most commonly used are the space gauge
(x gauge) and the velocity gauge (v gauge). In the former one,
the laser field is described, within the dipole approximation,
by a scalar potential only:

A(x)(r,t) = 0, 
(x)(r,t) = −E0f (t)z. (8)

The laser polarization is chosen here along the z axis, E0 is
the maximum field amplitude, and f (t) denotes the carrier
envelope of the laser pulse. In the velocity gauge instead, the
laser field enters the Hamiltonian as a vector potential only:

A(v)(r,t) = −cE0F (t) ez, 
(v)(r,t) = 0, (9)

F (t) =
∫ t

−∞
dt ′ f (t ′). (10)

Note that the vector potential in dipole approximation
is spatially constant. Both gauges are equivalent. They
are connected by a gauge transformation (for details, see
Appendix B).

If there is no temporal overlap between laser signal and
outgoing wave at zM, then each gauge produces the same
results for the PES. However, in case of overlap, the choice of
gauge becomes relevant. One of the goals of this paper is to
identify which gauge is most suitable for evaluating PES.
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2. Solution of the Schrödinger equation with field

We start from the Schrödinger equation of a free particle
with the external field in v gauge [see Eq. (9)], which provides
the simplest analytical solution. It reads as, in momentum
space,

1
2 [k − E0F (t)]2 ψ̂ (v)(k,t) = i ∂t ψ̂

(v)(k,t),

for which the solution is

ψ̂ (v)(k,t) = exp(−iωkt + ikδq − iδ	) ψ̂
(v)
0 (k), (11a)

with

ωk = k2

2
, (11b)

δq(t) = E0

∫ t

0
dt ′ F (t ′), (11c)

δ	(t) = E2
0

2

∫ t

0
dt ′ F (t ′)2. (11d)

Through the gauge transformation (B3) (see Appendix B), the
solution of the Schrödinger equation in the x gauge can be
easily obtained from the solution (11a) in the v gauge as

ψ̂ (x)(k,t) = exp (−iωKt + iKδq − iδ	) ψ̂
(v)
0 (k), (12a)

with

K = k + E0F (t), (12b)

ωK = K2

2
, (12c)

where δq and δ	 are given in Eqs. (11c) and (11d), respec-
tively.

Before proceeding, one should note that the gauge transfor-
mation allows one to decouple the gauge used in the analysis
from that used in the dynamical solution. In practice, the x

gauge is more efficient in dynamical propagation since the
field operator (8) in the x gauge is purely local.

3. Direct evaluation scheme

One can easily verify that when the PES is calculated using
the direct evaluation scheme, i.e., in terms of the wave function
in momentum space, both (11a) and (12a) deliver the same
result displayed in Eq. (3). As mentioned above, this scheme
is computationally too expensive; we will hence extract the
needed information from the wave function in frequency space,
as illustrated in the following.

4. Frequency analysis at the measuring point

We start from the solution of the Schrödinger equa-
tion for an electron in a laser field in the v gauge. The
wave function being sampled then reads as ψ (v)(zM,t) =∫

dk√
2π

eikzM ψ̂
(v)
0 (k) e−iωkt+ikδq−iδ	 . Trying to directly apply

the time-frequency transformation runs into trouble due to
the nontrivial time dependencies induced by the factors
δq(t) and δ	(t). A solution is simply to counterweight the
disturbing phase factors by a phase-correction factor eiϕ before
the transformation. The PES is then calculated from the
frequency Fourier transform of this “phase-augmented” (PA)
wave function

ψ̃ (PA)(zM,ω) =
∫

dt√
2π

eiωt eiϕψ (v)(zM,t), (13a)

with the phase

ϕ(t) = −
√

2ω δq(t) + δ	(t). (13b)

This wave function will deliver an approximate PES, as it
can be understood from the following analysis. By inserting
the k-space solution (11a), one can express the wave function
(13a) as

ψ̃ (PA)(zM,ω) =
∫

dt√
2π

ei[ωt−√
2ω δq(t)+δ	(t)]

∫
dk√
2π

exp[−iωkt + ikδq(t) − iδ	(t) + ikzM] ψ̂
(v)
0 (k)

=
∫

dk√
2π

eikzMψ̂
(v)
0 (k)

∫
dt√
2π

exp[−i(ω − ωk)t + i(k −
√

2ω)δq(t)]︸ ︷︷ ︸
D(ω,k)

.

Further analytical evaluation is hindered by the time depen-
dence of δq(t). For a rough estimate of its effects, we consider
the Taylor expansion δq(t) ≈ δq ′t + δq ′′t2/2 + · · · . At first
order in t , we obtain D(ω,k) = δ(ω − k2

2 + (k − √
2ω)δq ′),

which can be resolved to k = √
2ω; for higher orders, this

is not strictly the case anymore. One gets, therefore, only an
approximate relation k ≈ √

2ω, or Ekin = ω equivalently. This
suggests that the PES can be calculated as

YzM (Ekin) ∝
√

Ekin

∣∣ψ̃ (PA)(zM,Ekin)
∣∣2

. (14)

Our tests show that this is reliable for moderate field strengths
and/or slow field oscillations, whereas it fails for too strong or
too quickly oscillating fields.

The additional move in this generalized evaluation is to
augment the original recipe by the phase-correction factor eiϕ .
The factor becomes negligible for weak laser fields, or for
fields which do not interfere in time with the emitted particle
flow; it becomes, instead, important in the other cases. As will
be demonstrated in the next section, this allows us to apply
the recipe in a wider range of laser intensities and carrier
envelopes. In order to distinguish it from the original scheme
(6), coined the “raw” scheme, we call the generalized form
(14) the “phase-augmented” (PA) scheme.

We run into insurmountable trouble if we try to develop a
generalized scheme on the basis of the solution (12a) in the
x gauge because here even the instantaneous momentum K ,
as given in Eq. (12b), depends on time. This is another strong
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Direct
recipe : Compute

ψ(zM, t)
k−FT−→ ψ(k, t) −→ Y =

1√
Ekin

ψ(k, t)
2

=
1√
Ekin

ψ0(k)
2

Raw recipe
in v−gauge :

Compute
ψ(x)(zM, t)

gauge

transf.
−→ ψ(v)(zM, t) ω−FT−→ ψ(v)(zM, ω) −→ YzM =

√
Ekin ψ(v)(zM, ω)

2

PA ←
−

PA recipe
in v−gauge : eiϕψ(v)(zM, t) ω−FT−→ ψ(PA)(zM, ω) −→ YzM =

√
Ekin ψ(PA)(zM, ω)

2

FIG. 2. Summary of the recipes for the reconstruction of photoelectron spectra discussed in this paper. “FT” stands for “Fourier
transformation”.

indication that the v gauge is the appropriate starting point for
evaluating the PES (as was already argued in Refs. [14,24]).
This will be confirmed in the next section with a practical
example.

We summarize the different recipes for the reconstruction
of PES explored in this paper in Fig. 2. Note that the wave
functions are written in 1D. Mind also that the k transform is
to be taken over a large interval on a remote site.

III. TEST OF THE GENERALIZED SCHEME

In this section, we test the performance of the generalized
scheme (14). We first apply it to an exactly solvable model
(free Gaussian wave packet), and then to the more realistic
case of a Na+

9 cluster. In both cases, we consider the temporal
profile f (t) of the laser pulse in the form

f (t) = sin(ωlast) sin2

(
π t

Tpulse

)
θ (t) θ (Tpulse−t), (15)

where ωlas is the laser frequency, Tpulse the duration of the laser
pulse, and θ denotes the Heaviside function. We have chosen
for the envelope a smooth sin2 profile which combines high
spectral selectivity and finite extension.

A. Analytical test case: Gaussian wave packet

As a first test case, we consider a Gaussian wave packet
whose propagation can be described analytically, even in the
presence of a (homogeneous) laser field (see Appendix C). The
analytical solution, carried forth to far distance and beyond
the lifetime of the laser field, allows a direct (and exact)
evaluation of the PES by filtering the momentum components
by Fourier transformation from coordinate to momentum
space, according to Eq. (3). Thus, we can test the PES analysis
in frequency space, namely the raw scheme (6) and the PA
scheme (14), against the exact result given by the direct scheme
(3). In the following, we analyze three different scenarios:
(i) low laser intensity and overlap between laser pulse and
flow signal at the measuring point; (ii) high laser intensity and
overlap between laser pulse and flow signal at the measuring
point; (iii) high laser intensity and no overlap between laser
pulse and flow signal at the measuring point.

1. Evaluation of PES with the direct scheme

We consider a one-dimensional system with a Hamiltonian
consisting of the free kinetic energy plus the external laser
field, as it was discussed in Sec. II B. The initial wave function
reads as, in momentum space,

ψ̂0(k) =
(

μ0

π

)1/4

eiq0(p0−k) exp

(
− μ0

2
(k − p0)2

)
. (16)

Propagation in the laser field as given by Eq. (11a) is described
through a time-dependent phase factor which reduces to the
trivial exp(−iωkt) once the laser pulse is over. Such a phase
factor is irrelevant for the spatial Fourier transformation. Thus,
the direct evaluation (3) yields the PES

Y(Ekin) ∝
√

1

Ekin
|ψ̂0(

√
2Ekin)|2

=
√

1

Ekin

(
μ0

π

)1/2

e−μ0(
√

2Ekin−p0)2
. (17)

2. Evaluation of PES with the phase-augmented scheme

The phase-augmented analysis of PES can be worked out
analytically, along the line shown in Eq. (13a), which yields the
exact result (17). For a more practical test, we have computed
the wave packet in coordinate space explicitly as ψ (x)(zM,t) or
ψ (v)(zM,t) and applied the raw as well as the phase-augmented
analysis numerically.

We use a wave packet with the following parameters: p0 =
1a−1

0 , q0 = 0, μ0 = 100 a0. This roughly mocks up the spatial
extension (about 10 a0) of a typical electronic wave function
in a moderate size (some tens of atoms) sodium cluster. The
associated momentum p0 in turn typically corresponds to
about twice the Fermi momentum in such systems, thus again
typical of the dynamics of laser irradiation scenario.

For the laser pulse [Eq. (15)], we take ωlas = 0.11 Ry =
1.4 eV, Tpulse = 8000 Ry−1 = 384 fs, and various field
strengths E0 where the relation between E0 and laser
intensity is I = 1014 W/cm2 ↔ E0 = 0.109 Ry/a0, I =
1012 W/cm2 ↔ E0 = 0.0109 Ry/a0, I = 1010 W/cm2 ↔
E0 = 0.00109 Ry/a0. The measuring point was taken at
zM = 1000 a0 or 2000 a0. The first choice yields a temporal
overlap between laser pulse and flow signal at zM, whereas
the second choice decouples them.
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FIG. 3. (Color online) Photoelectron spectra from wave-packet
analysis for a weak intensity I = 1010 W/cm2. We use the raw scheme
(6) and compare analysis from the wave function in the v (brown
or dark curve) and x gauge (green or light gray line). The direct
evaluation of PES from momentum distribution of the wave packet
as given in Eq. (17) is also shown (black thick line).

3. Low intensity, temporal overlap with laser pulse

The case of low intensity and overlap of wave packet with
laser pulse at the measuring point is illustrated in Fig. 3, where
we compare the evaluation of PES for the x gauge versus the v

gauge for a case of weak laser field where the phase correction
ϕ in Eq. (13a) is negligible such that we can effectively use
the “raw recipe” (6). It becomes clear that the result from
the wave function in the x gauge is unphysical. The source
of the problem lies in the extra contribution exp [iE0F (t)zM]
in the wave function in the x gauge [see Eq. (B3)]. As soon
as the momentum p = p(t) changes even slightly in time, the
possibly large zM can amplify such a small oscillation and
induce dramatic phase oscillations which, in turn, produce
a large contribution to the PES. This contribution, however,
must be unphysical because it sensitively depends on the
choice of the measuring point. Clearly, the v gauge is the
preferred choice for the evaluation of PES. This was already
expected from the analytical considerations in Sec. II B4. We
will henceforth exclusively use the v gauge. Of course, a
numerical solution of the Schrödinger equation in coordinate
space is often much simpler in the x gauge. In such a case,
one can still use the x gauge for the solution and then use the
gauge transformation (B3) to bring it into the v gauge. This is
the path actually followed in Sec. III B.

4. High intensity, temporal overlap with laser pulse

Figure 4 illustrates the second scenario. Here, we use the
v gauge throughout and compare the raw scheme (6) with
the PA scheme (14). The lowest panel shows the laser profile
(15) together with the squared wave function |ψ(zM,t)|2 at
the measuring point. This signals a critical situation where
the laser is fully active while the wave packet is passing by
the measuring point. The three upper panels show results for
different intensities. The raw recipe still works acceptably
well for the moderate intensity I = 1012 W/cm2, but becomes
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FIG. 4. (Color online) Photoelectron spectra from wave-packet
analysis. Lower panel: the laser pulse envelope (dashed line) and
the probability density |ψ(zM,t)|2 at the measuring point (full line).
Upper panels: PES analysis at zM in the v gauge from raw (green
or light gray curve) and PA (brown or dark gray line) schemes for
three laser intensities as indicated in each panel. For comparison, the
momentum distribution of the wave packet from the direct scheme as
given in Eq. (17) is also shown (black thick curve).

032514-6



CALCULATION OF PHOTOELECTRON SPECTRA: A MEAN- . . . PHYSICAL REVIEW A 87, 032514 (2013)

grossly misleading for higher intensities. Again, in order to
scale these values to typical physical systems, let us consider
the case of small sodium clusters, later computed in this
work. A laser intensity in the 1012 W/cm2 range leaves the
system to a large extent still “intact”, while intensities in
the 1013−14 W/cm2 may easily lead to a complete stripping
of electrons from such clusters. The PA scheme (14) visibly
improves the performance. The results become reliable up to
I = 1013 W/cm2 and remain somehow qualitatively correct
for the highest intensity. It is thus much more preferable to use
the phase-augmented form (14) for the evaluation of the PES.

5. High intensity, no temporal overlap with laser pulse

Figure 5 shows results from the third scenario, where the
measuring point has been moved farther away to zM = 2000 a0

which decouples the laser pulse from the wave packet’s signal.
The case of highest intensity I = 1014 W/cm2 is shown. As
expected, the raw recipe in the v gauge yields the same result
as the PA one in the same gauge, and both nicely agree with
the result obtained within the direct scheme. Moreover, the
x gauge (not shown here) yields precisely the same result
as the v gauge. Thus, all distinctions and considerations are
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FIG. 5. (Color online) As in Fig. 4, but for a situation where the
laser pulse does not overlap with the wave packet at the measuring
point (see bottom panel). Only the case of strongest laser intensity is
shown.

unnecessary in the case where laser pulse and particle flow do
not overlap.

B. Realistic test cases

As a first realistic test case, we come back to the introduc-
tory example of Fig. 1, namely, the cluster Na+

9 . We take the
laser with a typical infrared frequency and two rather large
intensities. The axial symmetry of this and of the following
example allows us to perform the calculations in cylindrical
coordinates. Figure 6 shows the results for the raw and the
PA recipes. The raw PES in the upper panel repeats the case
of Fig. 1 showing the unexpected high-energy shoulder. The
PA PES makes a dramatic difference. It shows a reasonable,
almost monotonous, decrease of the envelope. Only at about
2.5 Ry, the decrease turns into a rather weak slope which
may be unrealistic as we come here into a region of very
low yield where unwanted background may spoil the analysis.
Mind nevertheless that this background is about five orders of
magnitude suppressed as compared to low-energy signals. The
next lower intensity (lower panel) already shows reasonable
pattern with the raw scheme. The PA scheme brings some
improvement as it removes the glimpse of a shoulder at about

10-6

10-5

10-4

10-3

10-2

10-1

 0  0.5  1  1.5  2  2.5  3  3.5  4

P
E

S 
  [

ar
b.

 u
ni

ts
]

Ekin  [Ry]

I=1013 W/cm2

ωlas=0.1 Ry

Tpulse=12 fs

"raw"
"PA"

10-5

10-4

10-3

10-2

10-1

 1

P
E

S 
  [

ar
b.

 u
ni

ts
]

Na9
+ jellium

I=1014 W/cm2

ωlas=0.1 Ry

Tpulse=12 fs

FIG. 6. (Color online) Ionization properties for Na+
9 with jellium

background under the influence of a laser pulse having frequency
ωlas = 0.1 Ry, pulse length Tpulse = 12 fs, and intensity as indicated
in each panel, computed in a cylindrical box of 176 × 88a2

0 with
spherical absorbing bounds covering at least 16 grid points. The laser
field was given effectively in the v gauge. The raw results (green or
light gray curves) are given by Eqs. (6), while the PA results (brown
or dark gray curves) are complemented by the phase factor (13a).
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FIG. 7. (Color online) Ionization properties for the C4 chain under
the influence of a laser pulse having frequency ωlas = 0.1 Ry, pulse
length Tpulse = 12 fs, and intensity as indicated. The laser field was
given effectively in the v gauge. The raw results (green or light gray
curve) are given by Eqs. (6), while the PA results (brown or dark gray
line) are complemented by the phase factor (13a).

1.1 Ry. As already observed in the analytic case of a Gaussian
wave packet, lower intensities perform already well with the
raw scheme and the difference brought in from the PA scheme
is negligible.

Figure 7 shows a next test case result for the C4 chain,
treated with nonlocal pseudopotentials of Goedecker type
[25] and, again, the electronic energy-density functional of
Ref. [22]. The unphysical shoulders obtained with the raw
scheme are even more developed than in the case of Na+

9 ,
and their successful removal by the PA scheme is impressive.
This is a clear demonstration of the gain achieved by the PA
scheme (14).

The tests show that the phase-augmented recipe allows
an analysis of PES for higher laser intensities than before,
typically at least more than one order of magnitude. It will, of
course, also be limited by the approximations involved, such
as k = √

2ω in Eq. (13a), or the fact that only the laser field is
present at the measuring point. Very little can be said in general
because the limitations depend on the details of the actual test
case, as the ionization potential of the cluster, possible resonant
amplification, or size of the numerical box. The discussion of
the PA recipe in Sec. II B4 gives an idea about an estimate
related to the curvature of the phase δq. But, the most practical
test is to run a calculation for different box sizes. Artifacts will
be signified by a strong box dependence. It remains a topic
for further research to gather more experience with cases of
failure.

IV. CONCLUSIONS

In this work, we have investigated a scheme for a nonpertur-
bative evaluation of photoelectron spectra (PES) in connection
with time-dependent density-functional theory treated on a
coordinate-space grid. We have extended an existing, simple
evaluation scheme to the regime of high laser intensities. The
original method (raw scheme) was based on the assumption of
freely propagating outgoing waves at a measuring point close

to absorbing boundaries. This requires negligible potentials
at the measuring point. For high laser intensities, however,
this assumption of free-electron motion becomes questionable.
In order to extend the applicability of the scheme for
evaluating PES to stronger fields, we have considered the
motion of a free particle plus an external laser field in dipole
approximation. This case is still analytically solvable and
the analytical solution allows us to deduce a generalized
scheme for evaluating PES. It consists in augmenting the wave
function collected at the measuring point by an appropriate
phase factor accounting for the time-dependent laser field.
The coincidence of the laser field with the outgoing electron
wave at the measuring point requires that we also investigate
the effect of gauge transformations on the results and ponder
the question of the most appropriate choice of gauge. We have
found that the appropriate gauge for evaluating PES is clearly
the v gauge (velocity gauge). Still, the most practical way
to produce the wave functions in the v gauge is to compute
them first in the x gauge (space gauge) and to apply then the
appropriate gauge transformation.

The generalized scheme (“phase-augmented” recipe) has
been tested in an analytical model of Gaussian wave packets
and in a few realistic examples. A major result is that the
original scheme for PES is valid for low and moderate
laser fields (about 1012 W/cm2 for the test case Na+

9 ). It
remains valid in the case that the particle flow arrives at the
measuring point after the laser pulse has died out (in this
case for all intensities). The generalized scheme was shown
to considerably extend the range of applicability. The gain
was particularly dramatic for the example of the C4 chain.
Moreover, we have been able to check laser intensities up to
1014 W/cm2 for our realistic test cases, which all involved a
low laser frequency of 0.1 Ry. Higher laser frequencies reduce
the effective intensity (Keldysh criterion). Thus, even higher
intensities may be used for higher frequencies.

After the promising tests reported in this work, this
generalized scheme for evaluating PES is ready to be used
in more demanding situations such as molecular systems with
large ionization potentials, e.g., N2, C60, or typical organic
molecules, for which experimental data already exist.
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APPENDIX A: THE RAW RECIPE IN 3D

As in 1D, we assume for the 3D case free propagation and
purely outgoing waves at the measuring point rM. The solution
of the one-particle time-dependent Schrödinger equation in
free space reads as

ψ(r,t) =
∫

d3k√
(2π )3

g(k) ei(k·r−ωt). (A1)

Analogously to the 1D case, we calculate the unperturbed
wave function ψ̂0(k) from the Fourier transform in frequency
space of ψ(r,t), assuming that only wave vectors k = k er
with k > 0 contribute, where er is the direction of the outgoing
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radial wave. This yields

ψ̂0,	r (k) ∝ ψ̃(r,ω), (A2)

where 	r is the solid angle related to the r direction.
Considering rM as the measuring point, we compute the PES
in direction 	rM as

Y	rM
(Ekin) ∝ |ψ̃(rM,Ekin)|2. (A3)

The above analysis yields the fully energy- and angular-
resolved PES. The angular-averaged PES would then be at-
tained by angular integration with proper solid-angle weights.
It has nevertheless to be emphasized that the resulting angular
dependence in the laboratory frame depends on the orientation
of the molecule (or cluster). Actual ensembles in the gas
phase do not contain molecules in well-defined orientation but
represent rather an equidistribution of all possible orientations.
Typical examples are the many recent measurements of
angular-resolved PES in cluster physics (see, e.g., [26–30]).
An appropriate orientation averaging has to be performed
before one can compare Y	rM

(Ekin) with experimental data.
The practical procedures for that are outlined in Refs. [31,32].
Orientation averaging, however, is beyond the scope of this
paper and will be ignored in the following.

APPENDIX B: CHANGING GAUGE

In Sec. II B1, we have introduced the x gauge with the
fields (8) and the v gauge with the fields (9). Both gauges
are equivalent. They are connected by a gauge transformation
which in general reads as


′ = 
 + χ̇

c
, (B1a)

A′ = A − ∇χ, (B1b)

ψ ′ = ψ exp

(
iχ

c

)
, (B1c)

where χ is a differential, but otherwise arbitrary, function of
z and t . Let us assume that we take the v gauge as a starting
point: the laser field is described by the potentials in Eq. (9). If
we want to gauge transform the vector potential into the scalar
potential, then ∇χ = A(v), from where

χ = −cE0F (t)z ⇒ 
(x) = χ̇

c
= −E0f (t)z. (B2)

The complementing transformation for the wave functions
reads as

ψ (x) = ψ (v) exp[−iE0F (t)z], (B3)

which relates the wave function ψ (x) as computed by time
propagation under the action of the scalar potential (8), and
ψ (v) for the case with the vector potential (9). It is obvious that
this phase factor is crucial in the present PES analysis, while
it can easily be ignored for local observables as, e.g., dipole
momentum or net ionization.

The phase transformation allows one to decouple the gauge
used in the analysis from that used in the time evolution.
Assume that we solve the Schrödinger equation using the
potentials (9). This immediately yields the wave function ψ (v)

in the v gauge. The same wave function could be obtained by

using Eq. (8) and applying the reverse transformation (B3) to
recover ψ (v) from the ψ (x) as obtained by propagation. In fact,
this is the most efficient way to evaluate ψ (v) as the operator
(8) is purely local. It is to be noted that the transformation
(B3) is relevant for the PES only if the outgoing wave reaches
the measuring point zM at a time where the signal F (t) is
still active. If the outgoing wave and the signal can avoid to
coincide, each gauge yields the same result.

APPENDIX C: SOLUTION OF THE SCHRÖDINGER
EQUATION FOR THE WAVE-PACKET MODEL

We provide the analytical solution of the wave-packet
propagation in the x gauge. This is simpler and the v gauge is
easily regained by the phase transformation (B3). The starting
point is the following Schrödinger equation:[

p̂2

2
+ E0zf (t)

]
ψ (x)(z,t) = i∂tψ

(x)(z,t), (C1a)

ψ (x)(z,0) = ψ
(x)
0 (z), (C1b)

f = ∂tF. (C1c)

The ansatz for the solution is given by

ψ (x)(z,t) =
(

μ0

π μ∗(t)μ(t)

)1/4

× exp

(
ip(t)z− [z−q(t)]2

2μ(t)
− i	(t)

)
(C2)

with μ(t) = μ0 + iξ t . The other time-dependent parame-
ters are determined substituting (C2) in the time-dependent
Schrödinger equation and comparing term by term. In order to
achieve this we first build the necessary derivatives:

i∂tψ

ψ
= − i

2

ξ 2t

μ0
2 + ξ 2t2

− ṗz + iq̇

μ
(z − q)

−ξ

2

(z − q)2

μ2
+ 	̇,

p̂ψ =
(

p + i

μ
(z − q)

)
ψ,

p̂2ψ

2ψ
= p2

2
+ ip

μ
(z − q) + μ0 − iξ t

2(μ0
2 + ξ 2t2)

− 1

2

(z − q)2

μ2
,


ψ

ψ
= −E0zf (t).

Identifying term by term, we obtain the following equations
for the parameters

(z − q)2 : ξ = 1, (z − q) : q̇ = p,

z : ṗ = −E0 f (t), t : ξ 2 = ξ,

z0 : 	̇ = p2

2
+ μ0 − iξ t

2(μ0
2 + ξ 2t2)

+ iξ 2t

2(μ0
2 + ξ 2t2)

from which one gets

μ = μ0 + it, (C3a)

p = p0 − E0F (t), F (t) =
∫ t

0
dt ′ f (t ′), (C3b)
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q = q0 + p0t − E0

∫ t

0
dt ′ F (t ′), (C3c)

	 = 	0 + 1

2

∫ t

0
dt ′

(
p2 + μ0

μ0
2 + t2

)
= 	0 + p0

2

2
t − p0E0

∫ t

0
dt ′ F (t ′)

+ E0
2

2

∫ t

0
dt ′ F 2(t ′) + 1

2
atan

(
t

μ0

)
. (C3d)

Using now the gauge transformation (B3), the wave function
in the v gauge becomes

ψ (v)(z,t) =
(

μ0

π (μ0
2 + t2)

)1/4

eip0z

× exp

(
− [z − q(t)]2

2(μ0 + it)
− i	(t)

)
. (C4)
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[26] J. Pinaré, B. Baguenard, C. Bordas, and M. Broyer, Eur. Phys.

J. D 9, 21 (1999).
[27] J. Wills, F. Pagliarulo, B. Baguenard, F. Lpine, and C. Bordas,

Chem. Phys. Lett. 390, 145 (2004).
[28] O. Kostko, C. Bartels, J. Schwobel, C. Hock, and B. v Issendorff,

J. Phys.: Conf. Ser. 88, 012034 (2007).
[29] C. Bartels, C. Hock, J. Huwer, R. Kuhnen, J. Schwöbel, and
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