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Polarizabilities, Stark shifts, and lifetimes of the In atom
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We evaluate the polarizabilities of the 5p1/2, 6s, 6p1/2, and 6p3/2 states of In using two high-precision
relativistic methods: the linearized coupled-cluster approach, where single, double, and partial triple excitations
of the Dirac-Fock wave function are included to all orders of perturbation theory, and an approach that combines
the configuration interaction and the coupled-cluster method. An extensive comparison of the accuracy of these
methods is carried out. The uncertainties of all recommended values are evaluated. Our result for the 6s-5p1/2

Stark shift is in excellent agreement with a recent measurement [Ranjit et al., Phys. Rev. A 87, 032506 (2013)].
Combining our calculation with this precision measurement allows us to infer the values of the 6p1/2 and 6p3/2

lifetimes in In with 0.8% accuracy. Our predictions for the 6p3/2 scalar and tensor polarizabilities may be
combined with the future measurement of the 6s-6p3/2 Stark shift to accurately determine the 5dj -6pj ′ matrix
elements.
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I. INTRODUCTION

An indium atom represents an excellent system to compare
the accuracy of different high-precision theoretical methods
since it may be considered both a monovalent system (assum-
ing a closed 5s2 core) and a trivalent system. In this work, we
use both the linearized coupled-cluster (CC) approach, where
single, double, and partial triple excitations (LCCSDpT) of
the Dirac-Fock wave function are included to all orders, and a
method combining the configuration interaction (CI) and the
CC method (CI + all order).

The monovalent LCCSDpT method has been applied to
a large number of neutral and ionized monovalent systems
and yielded very accurate predictions for a number of atomic
properties (see review [1] and references therein). It has been
used for a variety of applications, ranging from the study
of fundamental symmetries [2,3] to the study of degenerate
quantum gases and quantum information [4]. This method has
been tested against all high-precision alkali and monovalent
ion experimental values, which allowed us to establish a
systematic procedure to evaluate its uncertainties even when
no experimental data exist [5].

The CI + all-order method was recently developed
for the treatment of more complicated systems [6]. It has
been tested on a variety of divalent systems [7–11] and
applied to Tl [12]. However, there are far fewer experimental
benchmarks on the properties of divalent and trivalent systems
in comparison with alkalis. A recent high-precision (0.27%)
measurement of the 6s-5p1/2 Stark shift in In [13] provides
an excellent opportunity to compare the accuracy of the
CI + all-order and LCCSDpT approaches and test the pro-
cedure for evaluation of the uncertainties of theoretical data.
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In turn, the combination of the Stark shift measurement [13]
and our calculations allows us to infer the values of the 6p1/2

and 6p3/2 lifetimes in In with 0.8% accuracy. It is extremely
difficult to achieve such a high accuracy via direct lifetime
measurements. Moreover, we predict the values of the 6p3/2

scalar and tensor polarizabilities, which can soon be tested
against the future measurement of the 6s-6p3/2 Stark shift [13]
and will allow to determine the 5d-6p matrix elements.

Precise knowledge of In properties is of interest for the
study of fundamental symmetries, including parity violation
and the search for the permanent electric-dipole moment,
since it is similar to Tl (also group IIIB). Understanding of
the theoretical and experimental uncertainties in In can be
used in Tl studies. Both electric dipole moment [14] and
parity-violation studies [15,16] had been carried out in Tl. The
theory accuracy in Tl is still below the experimental accuracy,
hindering further parity violation studies using this system.
A recent controversy regarding the calculated values of the
Tl electric dipole moment enhancement factor is discussed in
detail in [12].

In-like ions are excellent candidates for the search for
variation of the fine-structure constant α. Despite very high
ionization energies, certain ions have transitions that lie in the
optical range due to level crossing and are very sensitive to
α variation [17]. In-like ions are particulary well suited for
the experimental search for such transitions [18]. In fact, an
In-like isoelectronic sequence has by far the largest number
of ions with long-lived metastable states, transitions with
wavelengths between 170 and 3000 nm and high sensitivity
to α variation, and stable isotopes [18]. One of the main
obstacles for experimental work in this direction is the lack
of any experimental data for these systems and the difficulty
of accurate theoretical predictions. Testing the CI + all-order
method on neutral In provides important information on the
accuracy of this approach for further studies of In-like ions.

032513-11050-2947/2013/87(3)/032513(7) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.87.032506
http://dx.doi.org/10.1103/PhysRevA.87.032513


M. S. SAFRONOVA, U. I. SAFRONOVA, AND S. G. PORSEV PHYSICAL REVIEW A 87, 032513 (2013)

II. METHOD

We use two relativistic high-precision approaches for all
calculations in this work. The first method (LCCSDpT)
has been extremely successful in predicting properties of
alkali-metal atoms and other monovalent ions [1]. It can also
be applied to In by treating the 5s2 shell as a part of the
[1s22s22p63s23p63d104s24p64d105s2] core. The disadvan-
tage of this approach is its inability to explicitly treat three-
particle states, such as 5s5p2. However, the LCCSDpT method
produced results for the 6p1/2-7s and 6p1/2-7p1/2 Stark shifts
[19] of Tl, which is a similar group IIIB system, in excellent
agreement with experiments [20,21]. For convenience, we
refer to the LCCSDpT approach as the CC method in the
text and tables below.

The CI + all-order method (we also refer to it as CI + All
in the text and tables below) was developed in [6]. It allows
us to treat In as a three-particle system, so all three electrons
above the 4d10 shell are considered valence. In this approach,
the CC method is first used to accurately describe core-core
and core-valence correlation and to incorporate them into
the effective Hamiltonian. Therefore, the core-core and core-
valence sectors of the correlation corrections for systems with
few valence electrons are treated with the same accuracy
as in the all-order approach for monovalent atoms. Then
the CI method is used to treat valence-valence correlations.
Since the CI space includes only three electrons, it can
be made essentially complete. This method allows us to
include correlation corrections to the wave functions in a more
complete way than the CC approach does. In particular, it is
capable of accurately accounting for the configuration mixing.

The CI + all-order method yielded accurate wave functions
for calculations of atomic properties, such as lifetimes, polar-
izabilities, and hyperfine-structure constants, for a number of
divalent systems and Tl [6–12]. However, the various types of
corrections to the effective dipole operator Deff are included in
a more complete way in the CC approach at present. Therefore,
both approaches are complementary and the difference in the
results can serve as an estimate of the uncertainties.

First, we compare the In energy levels calculated using
the CC and CI + all-order methods with experiment [22] in
Table I. The CC values include the part of the third-
order energy not included by the LCCSD method and the
Breit interaction to second order. The CI + all-order method
includes the Breit interaction on the same footing as the
Coulomb interaction, which would include some higher order
Breit corrections. The Breit correction is small; however, it
significantly improves the accuracy of the 5s5p2 4PJ triplet
splitting. Both calculations are carried out with lmax = 6 partial
waves in all intermediate sums in the many-body expressions
and include extrapolation for the contributions of partial waves
with l > 6.

In CC calculations, extrapolation is carried out to second
order using a separate code. This second-order calculation
shows that the total contribution of l > 6 partial waves is
close to the contribution of the single l = 6 partial wave.
This empirical observation is used to estimate the contribution
of higher order partial waves in the CI + all-order approach.
We find that while both methods give energy levels in
very good agreement with experiment, the CI + all-order

TABLE I. Comparison of the CC and CI + all-order (CI + All)
energies of In levels with experiment [22]. Three-electron binding
energies are given in the first row. Energies in other rows are given
relative to the ground state. Corresponding relative differences of
these two calculations from experiment are given in the column la-
beled “Diff.” The 5s26p 2P o

1/2-5s26s 2S1/2 and 5s25d 2D5/2-5s26p 2P o
3/2

transition energies are listed in the last row.

State Expt. CC Diff. CI + All Diff.

5s25p 2P o
1/2 425060 425719 0.15%

2P o
3/2 2213 2168 2.02% 2195 0.82%

5s26p 2P o
1/2 31817 31468 1.10% 31805 0.04%

2P o
3/2 32115 31769 1.08% 32104 0.03%

5s27p 2P o
1/2 38861 38513 0.90% 38911 − 0.13%

2P o
3/2 38973 38625 0.89% 39023 − 0.13%

5s26s 2S1/2 24373 23862 2.10% 24272 0.41%
5s25d 2D3/2 32892 32563 1.00% 32836 0.17%

2D5/2 32916 32754 0.49% 32863 0.16%
5s5p2 4P1/2 34978 35299 − 0.92%

4P3/2 36021 36346 − 0.90%
4P5/2 37452 37770 − 0.85%

5s27s 2S1/2 36302 35928 1.03% 36284 0.05%
�(6p1/2-6s) 7444 7606 −2.18% 7531 −1.16%
�(5d5/2-6p3/2) 800 985 −23% 759 5.16%

results systematically agree better with the experimental
values.

III. POLARIZABILITIES

The static polarizability of a state with total angular
momentum J , its projection M , and energy E can be expressed
as a sum over unperturbed intermediate states,

α(J,M) = 2
∑

n

|〈J,M|Dz|Jn,M〉|2
En − E

, (1)

where Jn and En are the total angular momenta and the energies
of the intermediate states.

The static polarizability α(J,M) can be conveniently
decomposed into scalar and tensor parts according to

α = α0 + α2
3M2 − J (J + 1)

J (2J − 1)
, (2)

where the scalar (α0) and tensor (α2) polarizabilities can be
expressed as [23]

α0 = 2

3(2J + 1)

∑
n

|〈J ||D||Jn〉|2
En − E

(3)

and

α2 = 4

(
5J (2J − 1)

6(2J + 3)(2J + 1)(J + 1)

)1/2

×
∑

n

(−1)J+Jn

{
J 1 Jn

1 J 2

} |〈J ||D||Jn〉|2
En − E

. (4)

For an open-shell atom, α0 may be separated into a
contribution from the valence electrons, αv

0 , a contribution
from the core electrons, αc, and a core modification due to the
presence of the valence electrons, αvc. We calculate the core
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and αvc terms using the random phase approximation (RPA) in
both approaches. The valence parts are calculated differently
in the CC and CI + all-order methods.

In the CC approach, the valence polarizability of the single-
electron valence state |w〉 is calculated using the sum-over-
states method,

αv
0 = 2

3(2jw + 1)

∑
k

〈k‖D‖w〉2

Ek − Ew

, (5)

where jw is the total angular momentum of state |w〉 and
〈k‖D‖w〉 are the single-electron reduced electric-dipole ma-
trix elements and sum over k runs over all intermediate excited
states allowed by the electric-dipole transition rules [24].

In the CI + all-order approach, the valence part of the
polarizability is determined by solving the inhomogeneous
equation of perturbation theory in the valence space, which is
approximated as [25]

(E − Heff)|γ,M ′〉 = (Deff)q |γ,J,M〉, (6)

where γ incorporates all other quantum numbers except J

and M . The wave function |γ,M ′〉, where M ′ = M + q, is
composed of parts that have angular momenta of J ′ = J,J ±
1. The construction of the effective Hamiltonian Heff using
the all-order approach is described in [6]. The effective dipole
operator Deff includes RPA corrections.

While we do not use the sum-over-state approach in
the calculations of the polarizabilities in the CI + all-order
method, it is useful to calculate several dominant contributions
to polarizabilities by combining the CI + all-order values of the
E1 matrix elements and energies according to the sum-over-
states formula (5). This allows us to compare dominant terms
and total remainders calculated by the CC and CI + all-order
methods.

We compare the contributions to the 6s and 5p1/2 polar-
izabilities α0 calculated by two approaches in Table II. The
CC and CI + all-order reduced electric-dipole matrix elements
and the contributions to the polarizability α0 are listed in
the columns labeled “CC” and “CI + All,” respectively. The
experimental energies listed in column ”�E” are used to
calculate the dominant contributions for consistency and to
improve the accuracy. We find generally very good agreement
of the CC and CI + all-order results, with the exception of the
5p1/2-6d3/2 and the 5p1/2-7d3/2 cases. These matrix elements
are small and have very large correlation corrections. The
uncertainties in the CC contributions are evaluated using the
well-defined approach descried in detail in [5]. It involves
calculation of the spread of four different CC calculations
of increasing accuracy for each matrix element. The results
labeled “Other” in the “CI + All” column are obtained by
subtracting the separately listed dominant terms from the final
valence value.

We note that the core contribution in the CC approach is
substantially larger then that in the CI + all-order approach
since the 5s shell is included in the core in the CC method
but not in the CI + all-order one. The uncertainty of the CC
core + vc term is evaluated as the difference of the Dirac-
Hartree-Fock (DHF) and RPA total core + vc values. The
uncertainties in the tail are determined based on the difference
in the RPA versus all-order values for terms with n = 9–12.

TABLE II. Contributions to the 6s and 5p1/2 static polarizabilities
are listed (in a3

0 ) in columns labeled “α0.” The experimental energies
(in cm−1) and the theoretical electric-dipole reduced matrix elements
(in a.u.) used to calculate the dominant contributions are listed in the
columns labeled “�E” and “D”. The CC and CI + all-order electric-
dipole matrix elements and the polarizability contributions are listed
in the columns labeled “CC” and “CI + All,” respectively.

�E D α0

Contribution Expt. CC CI + All CC CI + All

6s polarizability
5p1/2 −24373 1.911 1.885 −11.0(6) −10.7
6p1/2 7444 6.110 6.081 367(12) 364
7p1/2 14488 0.683 0.648 2.4(4) 2.1
8p1/2 17454 0.277 0.265 0.3(1) 0.3
(9–12)p1/2 0.17(3)
(n > 12)p1/2 0.14(5)
5p3/2 −22160 2.935 2.899 −28(1) −28
6p3/2 7742 8.529 8.491 687(24) 681
7p3/2 14600 1.131 1.084 6.4(1.0) 5.9
8p3/2 17508 0.489 0.479 1.0(2) 1.0
(9–12)p3/2 0.6(1)
(n > 12)p1/2 0.6(2)
Other 23
Core 29.6(4.0) 3.2
vc 0.0 0.0
Main 1024.9 1015.5
Remainder 31.1 26.2
Total 1056(27) 1042

5p1/2 polarizability
6s 24373 1.911 1.885 11.0(6) 10.7
7s 36302 0.548 0.534 0.61(3) 0.57
8s 40637 0.297 0.297 0.16(1) 0.16
(9–12)s 0.13(3)
(n > 12)s 0.7(2)
5d3/2 32892 2.623 2.577 15.3(1.5) 14.8
6d3/2 39049 1.001 0.865 1.9(2) 1.40
7d3/2 41836 0.537 0.308 0.5(1) 0.17
(8–12)d3/2 0.6(2)
(n > 12)d3/2 6.1(4.0)
Other 31.6
Corea 29.6(2.5) 3.22
vc −5.0 −0.15
Main 29.4 27.7
Remainder 32.1 34.6
Total 61.5(5.6) 62.4

aThe uncertainty is the sum of the core and vc uncertainties.

As an additional comparison between the two approaches,
we group eight contributions to the 6s polarizability [6s −
(5–8)p1/2,3/2] together and list them in the row “Main.”
The contributions from six terms (6s, 7s, 8s, 5d3/2, 6d3/2,
and 7d3/2) are grouped together in the row “Main” for the
5p1/2 polarizability. These main terms are subtracted from the
totals to obtain the contributions from the remaining terms.
These terms are listed in the rows labeled “Remainder.” The
difference of the remainder part for the 6s polarizability
appears to indicate a lower value of the core polarizability
when 5s2 is included in the core. Overall, there is good
agreement of both the main and the remainder parts between
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TABLE III. Contributions to the 6p1/2 static polarizability are
listed (in a3

0 ) in columns labeled “α0”. The experimental energies (in
cm−1) and the theoretical electric-dipole reduced matrix elements (in
a.u.) used to calculate the dominant contributions are listed in the
columns labeled “�E” and “D”. The CC and CI + all-order matrix
elements and the polarizability contributions are listed in the columns
labeled “CC” and “CI + All,” respectively. The contributions from the
terms 6s, 7s, 8s, 5d3/2, 6d3/2, and 7d3/2 are grouped together in the
row “Main”.

�E D α0

Contribution Expt. CC CI + All CC CI + All

6s −7444 6.110 6.081 −367(12) −363
7s 4485 6.289 6.239 645(5) 635
8s 8820 1.294 1.317 14 14
(9–12)s 5(1)
(n > 12)s 4(1)
5d3/2 1075 10.095 9.893 6933(140) 6659
6d3/2 7232 6.470 6.477 423(65) 424
7d3/2 10019 2.861 2.848 60(7) 59
(8–12)d3/2 35(11)
(n > 12)d3/2 35(6)
Other 81
Core 30(4) 3.2
Main 7709(154) 7429
Remainder 108(13) 84
Total 7817(155) 7513
Recommended 7817(300)

the two calculations. The final values for the 6s and 5p1/2

polarizabilities, the 6s-5p1/2 Stark shift, and their uncertainties
are discussed in the next section.

Contributions to the 6p1/2 and 6p3/2 polarizabilities of In
(in a3

0) are listed in Tables III and IV, respectively. The tensor
polarizability α2 of the 6p3/2 state is given in Table IV. These
tables are structured in exactly the same way as Table II.
The results of both CC and CI + all-order calculations are
given. The only difference is the listing of the 5s5p2 4P5/2

contribution to the 6p3/2 polarizability. The contributions of
the 5s5p2 4PJ state to all other polarizabilities considered here
were found to be negligible.

We find a 3.9% difference between the CC and the CI + all-
order values for both scalar 6pj polarizabilities and a 3.1%
difference between the values of the tensor α2 polarizability
for the 6p3/2 state. These differences are caused by the
2% difference in the values of the 6p1/2-5d3/2, 6p3/2-5d3/2,
and 6p3/2-5d5/2 matrix elements which dominate the 6pj

polarizability values. This 2% difference is consistent with
the expected accuracy of the CI + all-order method for these
transitions. We evaluate the accuracy of the CC values to be
of the order of 1%. The uncertainty evaluation is carried out
differently for these three transitions owing to a convergence
problem of the all-order equations for 5d states. We performed
the calculations with three and five iterations in the LCCSD
approximation and in the LCCSDpT approximation and
carried out the scaling procedure (described, for example,
in Ref. [1]) using these four different starting points. The
spread of the resulting scaled values is 0.7%. Since the
scaling estimates the dominant omitted corrections in such

transitions, all other omitted corrections should not exceed
this upper bound of 0.7%, resulting in a total uncertainty
estimate of 1%. The CC and CI + all-order values for all other
contributions, including small remainders, were found to be in
good agreement. Because we expect the CC method to yield
more accurate values of the 6s-5d matrix elements, we take
the CC values of the 6p polarizabilities as the final results.

Most likely, the discrepancy with the CI + all-order calcu-
lations is caused by an omission of the small corrections to
the effective dipole operator in the CI + all-order approach.
However, it might be possible that the 6p-5d matrix elements
are affected by the small mixing of the even 5s25d states
with the 5s5p2 4PJ triplet, which is accounted for by the
CI + all-order method but not the CC method. The weight
(in probability) of the 5s5p2 configuration in the 5dj levels
is 0.02–0.03, i.e., small but non-negligible. Moreover, there is
a very strong mixing of the nd configurations. Therefore, we
take the difference between the CI + all-order and the CC
results as the final uncertainty to account for the possible
uncertainty due to such mixing. We note that the 5s26s state
essentially does not mix with the 5s5p2 configuration (its
weight is only 0.0003), so 6s-6p matrix elements are not
affected by such mixing. A high-precision measurement of
the 6p3/2-6s Stark shift should resolve this question. The final
values for the 6p3/2 polarizabilities are listed in the last rows
in Tables III and IV.

IV. DISCUSSION OF THE RESULTS AND THEIR
UNCERTAINTIES

While we have estimated the uncertainties of the CC
calculation, it is possible to improve our evaluation of the un-
certainties by comparing the CC and CI + all-order results. As
we have described above, these two high-precision approaches
include somewhat different higher order effects. The CI + all-
order calculations include the valence-valence correlation
corrections to the wave functions very precisely, as indicated
by the excellent agreement of the respective energies with ex-
periment. On the other hand, the effective dipole operator Deff

includes only RPA corrections in the CI + all-order method at
the present time, omitting the structure radiation, the normal-
ization, and other small corrections. These corrections to the
electric-dipole matrix elements are included in the CC method.

In the polarizability calculations, we use the experimental
energies for the main terms. Therefore, a more accurate
method of calculating individual matrix elements is somewhat
more important for the 6s polarizability. In the framework
of the CC method, the 5s shell is included in the core and
we have a large core polarizability. It leads to an increase
in the total uncertainty of the polarizability because the
core polarizability is calculated with less accuracy. But it
cancels out when the Stark shift of a transition is calculated.
The CI + all-order method treats contributions with a high
n with a better accuracy, since it is done by solving the
inhomogeneous equation instead of using the sum-over-states
method. This is not significant for the 6s polarizability, where
such tail contributions are small, but is important for the 5p1/2

polarizability.
In summary, the CC and CI + all-order methods together

include all correlation corrections that are expected to be
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TABLE IV. Contributions to the 6p3/2 scalar and tensor polarizabilities are listed (in a3
0 ) in the columns labeled “α0” and “α2”. The

experimental energies (in cm−1) and the theoretical electric-dipole reduced matrix elements (in a.u.) used to calculate the dominant contributions
are listed in the columns labeled “�E” and “D”. The CC and CI + all-order matrix elements and the scalar and tensor polarizability contributions
are listed in the columns labeled “CC” and “CI + All”, respectively. The contributions from the terms 6s, 7s, 8s, 5dj , 6dj , and 7dj are grouped
together in the row “Main”.

�E D α0 α2

Contribution Expt. CC CI + All CC CI + All CC CI + All

6s −7742 8.529 8.491 −344(12) −341 344(12) 341
7s 4187 9.413 9.338 774(7) 762 −774(7) −762
8s 8522 1.797 1.830 14 14 −14 −14
(9–12)s 5 −5
(n > 12)s 4(1) −4(1)
5d3/2 777 4.511 4.420 958(19) 920 767(15) 736
6d3/2 6933 3.157 3.124 53(7) 51 42(6) 41
7d3/2 9721 1.350 1.309 7(1) 6 5(1) 5
(8–12)d3/2 4(1) 3(1)
(n > 12)d3/2 4(1) 3(1)
5d5/2 800 13.577 13.296 8426(170) 8080 −1685(34) −1616
6d5/2 6983 9.218 9.031 445(58) 427 −89(12) −85
7d5/2 9747 4.003 3.930 60(7) 58 −12(1) −12
(8–12)d5/2 35(7) −7(1)
(n > 12)d5/2 33(9) −7(1)
5s5p2 4P5/2 5337 2.337 37 −7
Other 79 −13
Core 30(4) 3
Main 10393(180) 9979 −1416(42) −1367
Remainder 114(12) 119 −16(2) −20
Total 10506(180) 10098 −1432(42) −1387
Recommended 10500(400) −1432(45)

dominant for the present polarizability calculations. Therefore,
the uncertainty can be approximated as the difference δα =
|α(CC) − α(CI + all)| of the CC and CI + all-order results.
All other omitted higher order corrections are expected to be
smaller than already included ones; therefore, we can also
assume that they do not exceed δα. Therefore, we take our
final uncertainty in the polarizabilities and their difference to
be

√
2δα, calculated separately for each of the properties. We

list our final values of the 6s and 5p1/2 polarizabilities and
their difference �α0(6s-5p1/2) in Table V (in a.u.).

We take the CC results to be the final values since the
CC method accounts for more higher order corrections to

the E1 matrix elements that dominate the 6s polarizability.
For consistency, the CC value of the 5p1/2 polarizability
is used when calculating the final value for the 6s-5p1/2

Stark shift. Our final result is in excellent agreement with
a recent high-precision measurement of the 6s-5p1/2 Stark
shift [13], which allows for a benchmark comparison of the
theoretical approaches. We find that the CC value is closer to
the experimental measurement than the CI + all-order result.
Our calculated polarizability of the 5p1/2 state is in excellent
agreement with recent CC single, double, and perturbative
triple excitation [CCSD(T)] calculations in Refs. [26] and [27].
We note that our implementation of the CC method differs

TABLE V. Final values of the 6s and 5p1/2 polarizabilities and their difference �α0 (in a.u.). Determination of the reduced electric-dipole
6s-6pj matrix elements (in a.u.) and 6pj lifetimes (in ns) from the combination of the recently measured Stark shift [13] and theoretical values.
The quantity C is the value of �α0(6s-5p1/2) with the contribution of 6s-6pj transitions subtracted out. The results are compared with other
theory and experiment.

α0(6s) α0(5p1/2) �α0(6s-5p1/2) C D(6s-6p1/2) D(6s-6p3/2) τ (6p1/2) τ (6p3/2)

CC 1056 61.5 995 −59.6 6.126 8.551
CI + All 1042 62.4 980 −65.2 6.141 8.575
Final 1056(20) 61.5(1.3) 995(21) −59.6(7.8) 6.126(24) 8.551(34) 63.77(50) 58.17(45)
Expt. [13] 1000.2(2.7)
Expt. [28] 69(8)
Theory [27] 61.48
Theory [26] 62.0(1.9)
Theory [29] 63.8(8) 58(1)
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significantly from that in Refs. [26] and [27] (see the recent
review [24] for details).

V. DETERMINATION OF LIFETIMES

Recent precision measurement of the 6s-5p1/2 Stark shift
[13] can be combined with the present calculations to obtain
very accurate lifetimes of the 6p1/2 and 6p3/2 states. This is
possible since the 6s-6pj matrix elements overwhelmingly
dominate the values of this Stark shift, as illustrated by
Table II. Separating the 6s-6pj contributions [see Eq. (5)],
we write the �α0(6s-5p1/2) Stark shift as

�α0(6s − 5p1/2) = BS + C, (7)

where

B = 1

3

(
1

E(6p1/2) − E(6s)
+ R2

E(6p3/2) − E(6s)

)
, (8)

S = D2 is the 6s-6p1/2 line strength, R is the ratio of the
D(6s-6p3/2) and D(6s-6p1/2) reduced E1 matrix elements,
and the term C contains all other contributions to the Stark
shift. We calculate the ratio R to be 1.396(1). The uncertainty
(0.001) is very small since the ratio R is very insensitive to
different corrections. Using the results presented in Table II, we
see that the CC and CI + all-order methods give R values equal
to each other up to the fourth significant figure. Substituting
the ratio R and the corresponding experimental energies in
Eq. (8) gives B = 28.24(3) a.u.

The values of C in the CC and CI + all-order methods are
obtained from the results presented in Table II and are equal
to −59.6 and −65.2 a.u., respectively (see Table V). Adding
the relevant uncertainties from CC calculations in Table II in
quadrature leads to the uncertainty δC = 4.9 a.u. This number
is consistent with the difference in the CC and CI + all-order
values, 5.6 a.u. We note that the uncertainty of the core term
does not contribute to δC, since this term is canceled when the
Stark shift is calculated. The 5p1/2 αvc term does contribute,
and its uncertainty is 1.3 a.u. To evaluate the final uncertainty
in C we use the same rule as for the polarizability: multiply
the difference in the CC and CI + all-order values by

√
2

to account for other small uncertainties not included in our
consideration. Again, we assume that they cannot exceed the
difference between the CC and the CI + all-order values. The
final value for C is presented in Table V.

There are three sources of the uncertainties contributing
to the uncertainty in D(6s-6p1/2): uncertainties in C, B, and
experimental values of �α0. For convenience, we calculate
first the uncertainty in the line strength S using the formula

δS = 1

B

√
(δC)2 + (δ�α0)2 + (SδB)2. (9)

The relative uncertainty in D is one-half of the rela-
tive uncertainty in S. The uncertainty in B is negligible.
The final values of the matrix elements are listed in Table
V. The lifetimes of the 6p1/2 and 6p3/2 states are obtained
using the formula τa = 1/Aab since there is only one E1 decay
channel for each state. The transition rate Aab is given by

Aab = 2.02613 × 1018

λ3
ab

Sab

2Ja + 1
s−1, (10)

where the transition wavelength λab is in Å. The relative
uncertainties in the lifetimes are twice that of the relative
uncertainties of the corresponding E1 matrix elements. The
final values are listed in Table V.

To simplify the extraction of the 5d-6p matrix elements
from the future experimental value of the 6p3/2-6s Stark shift,
we evaluated the sum of all contributions to the 6p1/2 and
6p3/2 polarizabilities with the 5d-6p terms excluded. These
quantities, which we designate C̃(6pj ), are obtained from the
data in Tables III and IV. We note that C̃(6p1/2) and C̃(6p3/2)
refer to the contributions to the polarizabilities, rather than
their differences as in Eq. (7).

We find that the CC and CI + all-order results are very
close together and are well within the uncertainty estimates
of the CC data. The CC values (in a.u.) are C̃(6p1/2) =
884(68), C̃0(6p3/2) = 1123(60), and C̃2(6p3/2) = −514(19),
where subscripts “0” and “2” refer to the scalar and tensor po-
larizabilities, respectively. The corresponding CI + all-order
values are 854, 1098, and −506 (in a.u.). The ratio of the
6p1/2-5d3/2 and 6p3/2-5d3/2 matrix elements is 2.238(4) and
the ratio of the 6p3/2-5d5/2 and 6p3/2-5d3/2 matrix elements is
3.0095(16).

VI. CONCLUSION

We have carried out a systematic comparison of the
linearized CC and CI + all-order method using the polariz-
abilities of the low-lying states of the In atom as a benchmark
testing case. We find that the CI + all-order method produces
more accurate data for the energy levels. It appears that the CC
data for the E1 matrix elements are somewhat more accurate
due to the more complete inclusion of the small higher order
corrections to the matrix elements in cases where relevant
configuration mixing of trivalent states is negligible. This is an
additional motivation for incorporating such corrections into
the CI + all-order formalism at the all-order level in the future.

Our result for the 6s-5p1/2 Stark shift is in excellent
agreement with the recent high-precision experiment [13]. We
also provide predictions for the polarizabilities of the 6p1/2

and 6p3/2 states. A precise experimental measurement of the
6p3/2-6s Stark shift proposed in [13] would be a good test of
our calculations. This will also provide an excellent test of the
theoretical approaches. Combining the present calculations
with the experimental Stark shift data allows very accurate
extraction of the lifetimes of low-lying In states.
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