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Rubidium Rydberg linear macrotrimers
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We investigate the interaction between three rubidium atoms in highly excited (58p) Rydberg states lying along
a common axis and calculate the potential energy surfaces between the three atoms. We find that three-body
long-range potential wells exist in some of these surfaces, indicating the existence of very extended bound states
that we label macrotrimers. We calculate the lowest vibrational eigenmodes and the resulting energy levels and
show that the corresponding vibrational periods are rapid enough to be detected spectroscopically.
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I. INTRODUCTION

Ultracold Rydberg systems are a particularly interesting
avenue of study. Translationally, the atoms are very slow,
yet their internal energies are very high. The large excitation
of a single electron leads to exaggerated atomic properties,
such as long lifetimes, large cross sections, and very large
polarizabilities [1], which can lead to strong interactions
between Rydberg atoms [2,3]. Such interactions have led to
various applications in quantum information processes over
the past decade (see [4] for a comprehensive review).

Another active area of research with Rydberg atoms is in
the area of long-range “exotic molecules.” Such examples
include the trilobite and butterfly states, so called because
of the resemblence of their respective wave functions to these
creatures. First predicted in [5], these quantum states were
detected more recently in [6]. Also of interest are the formation
and detection of macroscopic Rydberg molecules. In [7], it
was first predicted that weakly bound macrodimers could be
formed from the induced van der Waals interactions of two
Rydberg atoms. However, we have shown more recently [8,9]
that larger, more stable dimers can be formed via the strong �

mixing of various Rydberg states. Recent measurements [10]
have shown signatures of such macrodimers using an ultracold
sample of cesium Rydberg atoms.

More recently, the focus of study has moved toward few-
body interactions, such as between atom-diatom interactions
[11–13] and diatom-diatom interactions [14,15]. Coincid-
ing with this shift, there have been proposals [16–19] for
many-body long-range interactions involving Rydberg atoms.
However, these works focus on the interactions between one
Rydberg atom and ground state atoms or molecules. In this
paper, we describe the long-range interactions between three
Rydberg atoms arranged along a common axis and provide
calculations, which predict the existence of bound trimer
states. Here, we also present the lowest vibrational energies of
these bound states, calculated via the oscillation eigenmodes
of the bound system.

II. THREE-BODY INTERACTIONS

In [8,9], we predicted the existence of long-range rubid-
ium Rydberg dimers by analyzing potential energy curves
corresponding to the interaction energies between the two
Rydberg atoms. In these works, we diagonalized an interaction

Hamiltonian consisting of the long-range Rydberg-Rydberg
interaction energy and atomic fine structure in the Hund’s case
(c) basis set. Each molecular state in the basis was symmetrized
with respect to the D∞h symmetry of the homonuclear dimer.

In general, adding a third atom to the interaction picture
will change the physical symmetry of the system. However,
to simplify our calculations, we assume that three identical
Rydberg atoms lie along a common (z) axis [see Fig. 1(a)]. This
preserves the D∞h symmetry and permits the use of much of
the two-body physics on the three-body system. We analyzed
this symmetry state for three Rb 58s atoms and three Rb 58p

atoms and found that the 58p case exhibited examples of
three-dimensional wells, indicating that the three atoms are
bound in a linear chain.

A. Basis states

Obtaining properly symmetrized basis functions for the
three-atom case is very similar to that of the two-atom
system (see [20]), but much more technically demanding.
We construct the molecular wave functions from three free
Rydberg atoms in respective states |a1〉 ≡ |n1,�1,j1,mj1〉,
|a2〉 ≡ |n2,�2,j2,mj2〉, and |a3〉 ≡ |a3,�3,j3,mj3〉, where ni is
the principal quantum number of atom i, �i is the orbital angu-
lar momentum of atom i, and mji

is the projection of the total
angular momentum �j i = ��i + �si of atom i onto a quantization
axis (chosen in the z direction). As in the two-atom case, we
assume that the three Rydberg atoms interact via long-range
dipole-dipole and quadrupole-quadrupole couplings. Here,
long range indicates that the distance between each Rydberg
atom is greater than the Le-Roy radius [21]:

RLR = 2[〈n1�1|r2|n1�1〉1/2 + 〈n2�2|r2|n2�2〉1/2], (1)

such that there is no overlapping of the electron clouds. The
properly symmetrized long-range three-atom wave functions
take the form

|a1; a2; a3〉 = 1√
6

[(|a1〉1|a2〉2|a3〉3 + |a2〉1|a3〉2|a1〉3

+ |a3〉1|a1〉2|a2〉3) − P (|a1〉1|a3〉2|a2〉3

+ |a2〉1|a1〉2|a3〉3 + |a3〉1|a2〉2|a1〉3)], (2)

where P = p(−1)�1+�2+�3 , with p = +1 (−1) for gerade
(ungerade) molecular states.
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FIG. 1. (Color online) (a) Three Rydberg atoms lie along a
common z axis. The distance between atoms 1 and 2 is represented by
R1 and the distance between atoms 2 and 3 is represented by R2. Each
atom is in state |ai〉, defined in the text. Each bound macrotrimer has
two eigenmodes of oscillation: (b) ω2

+ and (c) ω2
− (see text).

The basis set consists of the Rydberg molecular level
being probed (e.g., 58p + 58p + 58p), as well as all nearby
asymptotes with significant coupling to this level and to each
other. All of these states are properly symmetrized via Eq. (2)
according to their molecular symmetry � = mj1 + mj2 + mj3 .
In this paper, we consider the � = 1/2 symmetry.

B. Interaction Hamiltonian

As in the two-atom case, we construct the interaction picture
for the three-atom system by diagonalizing an interaction
Hamiltonian in the properly symmetrized basis described
in the previous section. The Hamiltonian consists of a
three-body long-range Rydberg interaction energy and atomic
fine structure, i.e., Hint = Vthree-body + Hfs. Using the wave
functions defined by Eq. (2), we write the matrix elements
of the Hamiltonian as the sums of multiple interactions. Each

matrix element is defined as

〈a1; a2; a3|Vthree-body|b1; b2; b3〉
= 1

6

∑
i,j,k

i ′,j ′,k′

〈
a

(1)
i a

(2)
j a

(3)
k

∣∣Vthree-body

∣∣b(1)
i ′ b

(2)
j ′ b

(3)
k′

〉

× (�C + Pa�A)(�C + Pb�A), (3)

where each summation index is over the total number of atoms,
i.e., from 1 to 3, P is as before, we have defined

�C =
{−1 for cyclic permutations

0 for anti-cyclic permutations

�A =
{

0 for cyclic permutations
−1 for anticyclic permutations,

and we have defined |a(1)
i a

(2)
j a

(3)
k 〉 ≡ |ai〉1|aj 〉2|ak〉3, etc. In the

case that |a1; a2; a3〉 = |b1; b2; b3〉 (i.e., along the diagonal of
the matrix), the matrix element is given by

〈a1; a2; a3|Hint|a1; a2; a3〉
= 〈a1; a2; a3|Vthree-body|a1; a2; a3〉 + E123, (4)

with E123 = E1 + E2 + E3, where Ek = − 1
2 (nk − δ�k

)−2 are
the atomic Rydberg energies with respective quantum defects
δ�k

.
The long-range assumption assures that these are three free

atoms interacting via long-range two-body potentials. That is,
the transition element 〈a(1)

i a
(2)
j a

(3)
k |Vthree-body|b(1)

i ′ b
(2)
j ′ b

(3)
k′ 〉 given

in Eq. (3) is defined as a sum of two-body interactions:〈
a

(1)
i a

(2)
j a

(3)
k

∣∣Vthree-body

∣∣b(1)
i ′ b

(2)
j ′ b

(3)
k′

〉
= 〈

a
(1)
i a

(2)
j

∣∣VL(R12)
∣∣b(1)

i ′ b
(2)
j ′

〉 + 〈
a

(2)
j a

(3)
k

∣∣VL(R23)
∣∣b(2)

j ′ b
(3)
k′

〉
+ 〈

a
(1)
i a

(3)
k

∣∣VL(R13)
∣∣b(1)

i ′ b
(3)
k′

〉
, (5)

where Rαβ is the nuclear separation between atoms α and β,
and L = 1 (2) for dipolar (quadrupolar) interactions. Since we
are assuming that the three atoms lie along a common axis,
each two-body interaction term 〈a(α)

i a
(β)
j |VL(Rαβ)|b(α)

i ′ b
(β)
j ′ 〉

defines the long-range transition element between the two
respective Rydberg atoms. Each transition element is given
by [9,20]

〈12|VL(R)|34〉 = (−1)L−1−mjtot +jtot

√
�̂1�̂2�̂3�̂4ĵ1ĵ2ĵ3ĵ4

RL
13RL

24

R2L+1

(
�1 L �3

0 0 0

) (
�2 L �4

0 0 0

)

×
{

j1 L j3

�3
1
2 �1

}{
j2 L j4

�4
1
2 �2

} L∑
m=−L

BL+m
2L

(
j1 L j3

−mj1 m mj3

) (
j2 L j4

−mj2 −m mj4

)
, (6)

where jtot = j1 + j2 + j3 + j4, mjtot = mj1 + mj2 + mj3 +
mj4 , �̂i = 2�i + 1, ĵi = 2ji + 1, and RL

ij = 〈i|rL|j 〉 is the
radial matrix element.

III. POTENTIAL ENERGY SURFACES

A. General cases

We diagonalize the three-body Hamiltonian at successive
values of R1 and R2, resulting in a series of potential energy

surfaces (PES), where each surface corresponds to a different
molecular asymptote in the basis. In each of the plots shown,
R1 represents the distance between atom 1 and atom 2, R2

represents the distance between atom 2 and atom 3, both in a0

[see Fig. 1(a)] and the energy is measured in GHz. The color
scheme for the energy values is given in the scales to the right
of each plot.

As a result of the large � mixing that occurs between the
Rydberg atoms, these surfaces have interesting topographies.
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FIG. 2. (Color online) PES correlated to the
|56p 1

2 , 1
2 ; 58p 3

2 ,− 1
2 ; 60p 3

2 , 1
2 〉 asymptotic state. This surface is

analogous to a repulsive potential curve for the two-body case: As
the distance of either the first or last atom in the linear chain is
increased, the two local atoms remain repulsed. The color scheme
denotes the energy values given in GHz, with the scale presented to
the right of the plot. Both nuclear distances are in units of the Bohr
radius (a0).

For example, Figs. 2 and 3 illustrate potential surfaces
analogous to two-dimensional repulsive and attractive curves,
respectively. The repulsive PES shown in Fig. 2 cor-
responds to the |56p 1

2 , 1
2 ; 58p 3

2 ,− 1
2 ; 60p 3

2 , 1
2 〉 state, while

the attractive PES shown in Fig. 3 corresponds to the
|58s 1

2 , 1
2 ; 59s 1

2 ,− 1
2 ; 57d 5

2 , 1
2 〉 state. We see that in both cases,

the distance of the third atom has very little effect on the other
two atoms: As either R1 or R2 is increased (while keeping
the other distance fixed), the two stationary atoms consistently
demonstrate an attractive or repulsive behavior.

Figure 4 illustrates another type of surface, in which there
is a significant “ridge” running along one of the axes (in this
case along the R2 axis). Such a ridge indicates that the two
local atoms (e.g., atom 1 and atom 2) form a bonded pair,
existing even as atom 3 is moved away. This particular surface

FIG. 3. (Color online) PES correlated to the
|58s 1

2 , 1
2 ; 59s 1

2 ,− 1
2 ; 57d 5

2 , 1
2 〉 asymptotic state. This surface is

analogous to an attractive potential curve for the two-body case:
As the distance of either the first or last atom in the linear chain is
increased, the two local atoms remain attracted. The color scheme
denotes the energy values given in GHz, with the scale presented to
the right of the plot. Both nuclear distances are in units of the Bohr
radius (a0).

FIG. 4. (Color online) PES correlated to the
|59s 1

2 ,− 1
2 ; 55d 3

2 , 3
2 ; 58d 3

2 ,− 1
2 〉 asymptotic state. We note the

“ridge” lying along the R2 axis, which indicates that atom 1 and
atom 2 are bound (see text). The color scheme denotes the energy
values given in GHz, with the scale presented to the right of the plot.
Both nuclear distances are in units of the Bohr radius (a0).

corresponds to the |59s 1
2 ,− 1

2 ; 55d 3
2 , 3

2 ; 58d 3
2 ,− 1

2 〉 asymptotic
state.

B. Potential wells

Although the surfaces highlighted in the previous section
are interesting, ultimately we seek surfaces that illustrate
potential wells, as these indicate bound three-atom systems.
Upon separately investigating three excited 58s rubidium
atoms and three excited 58p rubidium atoms, we found that
in the case of the three excited 58p atoms, surface plots corre-
sponding to various 58p + 58p + 58p asymptotes illustrated
such (three-dimensional) potential wells. Specifically, wells
were determined for the following states:

|1〉 ≡ ∣∣58p 1
2 , 1

2 ; 58p 1
2 , 1

2 ; 58p 1
2 ,− 1

2

〉
,

|2〉 ≡ ∣∣58p 1
2 ,− 1

2 ; 58p 1
2 ,− 1

2 ; 58p 3
2 , 3

2

〉
,

|3〉 ≡ ∣∣58p 1
2 , 1

2 ; 58p 3
2 , 1

2 ; 58p 3
2 ,− 1

2

〉
,

|4〉 ≡ ∣∣58p 1
2 ,− 1

2 ; 58p 3
2 ,− 1

2 ; 58p 3
2 , 3

2

〉
,

|5〉 ≡ ∣∣58p 3
2 ,− 1

2 ; 58p 3
2 ,− 1

2 ; 58p 3
2 , 3

2

〉
.

As an example, in Fig. 5 we show the PES and the
corresponding two-dimensional projection correlated to the
|1〉 state, which demonstrates a potential well approximately
50–100 MHz deep. Due to the large equilibrium separations,
e.g., R1e ∼ 22 500a0 and R2e ∼ 31 000a0, we label these
bound states macrotrimers.

For the three-atom configuration shown in Fig. 1(a), the
(nonzero) oscillation modes can be calculated via

ω2
(±) =

(k1 + k2) ±
√

k2
1 − k1k2 + k2

2

m
, (7)

where ki are “effective spring constants” that need to be
calculated and m is the mass of a single rubidium atom. In
Figs. 1(b) and 1(c), we show the physical description of each
eigenmode. Panel (b) corresponds to the ω2

+ eigenvalue and
shows that the two outer Rydberg atoms vibrate in the same
direction, opposite to the inner atom’s direction of motion.
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FIG. 5. (Color online) Potential energy surface (top)
and two-dimensional projection (bottom) correlated to the
|58p 1

2
1
2 ; 58p 1

2 , 1
2 ; 58p 1

2 ,− 1
2 〉 asymptotic molecular state. The main

feature of these plots is the three-dimensional well, centered at
R1e = 22 500a0 and R2e = 31 000a0, indicating that the three
Rydberg atoms are bound together in a linear chain (see text). The
red (vertical) and blue (horizontal) lines imposed on the bottom plot
are centered at the well minimum and indicate the cross sections for
which quadratic fits are performed (see Fig. 6). The color scheme
denotes the energy values given in GHz, with the scale presented to
the right of each plot. Both nuclear distances are in units of the Bohr
radius (a0).

Panel (c) corresponds to the ω2
− eigenvalue and shows that the

inner Rydberg atom is stationary while the outer two atoms
oscillate in opposing directions.

To calculate the ki for Eq. (7), we perform polynomial fits to
two-dimensional cross sections of the potential wells along the
R1 and R2 axes at each well’s minima (see Fig. 6). The deepest
portions of each well can be modeled as a simple harmonic
oscillator, and it is easily shown that the desired k value equals
the second derivative of these quadratic fits (with respect to
the nuclear separation in that particular direction), i.e.,

ki = d2V

dR2
i

∣∣∣∣
Rie

, (8)

where Rie is the equilibrium separation along axis Ri . Table I
summarizes the results of the polynomial fitting including the
keff values, the goodness of fits (r2 values) of the harmonic
oscillator potentials, and the potential energy range for which
the quadratic assumption is valid.

Based on these properties, we use Eq. (7) and the familiar
E = h̄ω(v + 1/2) to find the oscillation energies in the deepest
portions of the highlighted wells. Table II lists the vibrational
energies of the first few bound states for each modal frequency
ω+ and ω−. We see that in each case, the energies defined by the

28 30 32 34 36 38 40
R2 separation (units of 1000 a0)

-3222.60

-3222.58

-3222.56

-3222.54
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21 22 23 24 25 26
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-3222.65

-3222.60

-3222.55

-3222.50

-3222.45

-3222.40

En
er

gy
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H
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FIG. 6. (Color online) Two-dimensional cross sections of the
three-dimensional surface shown in Fig. 5 taken along the R1 (top)
and R2 (bottom) axes at the well’s minimum. Each cross section is
fitted with a harmonic potential centered at the minimum. The results
of these fits are summarized in Table I.

ω+ frequency illustrate spacings of about 3–6 MHz, which are
separated enough to be detected through spectroscopic means.
The MHz energy values correspond to μs oscillation periods,
which are rapid enough to allow for several oscillations during
the lifetimes of these Rydberg atoms (roughly 500 μs for
n ∼ 60 [22]). The energies corresponding to the ω− frequency
are more closely spaced and demonstrate oscillation periods
that are slower, but should still be able to be detected
experimentally.

C. Other asymptotes

Of course, the potential wells described in Sec. III B
are not the only wells that exist (Figs. 7–9). During the

TABLE I. Characteristics of the polynomial fitting procedures
for each trimer state |i〉 (see text), assumed to be quadratic. A two-
dimensional cross section was taken at the minimum of each well
for both the R1 and R2 axes, where the well is centered (R1e,R2e).
The keff values (in N/m) correspond to the numeric fitting along each
respective axis. The well depth indicates the potential energy range
for which the quadratic assumption is valid and for which the given
r2 goodness-of-fit values are appropriate.

Re (units) Depth
State Axis of 103a0) keff (N/m) r2 value (MHz)

|1〉 R1 22.50 8.37 × 10−11 0.9879 17.50
R2 31.00 4.40 × 10−12 0.9926 16.60

|2〉 R1 23.15 3.85 × 10−11 0.9861 16.10
R2 33.10 1.07 × 10−12 0.9781 77.50

|3〉 R1 22.80 2.55 × 10−11 0.9908 37.70
R2 34.60 3.02 × 10−12 0.9892 21.30

|4〉 R1 22.85 4.63 × 10−11 0.9985 29.30
R2 31.50 5.54 × 10−12 0.9943 5.80

|5〉 R1 22.00 6.87 × 10−11 0.9982 16.24
R2 31.70 1.72 × 10−12 0.9992 11.94
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TABLE II. Lowest vibrational levels and corresponding bound
state energies for both oscillation frequencies of each trimer state |i〉
(see text). Energy± represents the bound energies associated with ω±
and is measured from the bottom of the potential well.

State v Energy+ (MHz) Energy− (MHz)

|1〉 0 2.71 0.62
1 8.13 1.86
2 13.55 3.11
3 4.34
...

...
...

12 15.53

|2〉 0 1.84 0.31
1 5.51 0.92
2 9.18 1.53
3 12.86 2.14
4 2.75
...

...
...

25 15.60
|3〉 0 1.50 0.51

1 4.48 1.54
2 7.48 2.57
3 10.47 3.60
4 13.47 4.63
5 16.46 5.66
6 19.45 6.69
7 7.72
...

...
...

20 21.10

|4〉 0 2.02 0.70
1 2.09
2 3.49
3 4.88

|5〉 0 2.46 0.39
1 7.37 1.17
2 1.94
...

...
...

14 11.27

FIG. 7. (Color online) Potential surface corresponding to the
|59s 1

2 − 1
2 ; 55d 3

2
1
2 ; 58d 3

2
1
2 〉 asymptotic state. The color scheme de-

notes the energy values given in GHz, with the scale presented to the
right of the plot. Both nuclear distances are in units of the Bohr radius
(a0). This particular surface actually exhibits a few potential wells,
the largest one being between 40 and 50 MHz deep.

FIG. 8. (Color online) Potential surface corresponding to the
|59s 1

2 − 1
2 ; 55d 3

2 − 1
2 ; 58d 3

2
3
2 〉 asymptotic state. The color scheme

denotes the energy values given in GHz, with the scale presented to
the right of the plot. Both nuclear distances are in units of the Bohr
radius (a0). This particular surface exhibits two potential wells, each
about 30–40 MHz deep.

course of our analysis, we also found wells corresponding to
various |59s55d58d〉 asymptotes; some examples of which
are presented below. Although in principle these wells can
be evaluated in the same amount of detail as was done for
the |58p58p58p〉 wells in Sec. III B, we merely present
visual evidence of their existence in this paper. Should these
additional asymptotes lend themselves to specific experimental
probing, then computing their respective energy levels would
be of value. At this time, however, such evaluation is beyond
the goals of this paper.

IV. CONCLUSIONS

The work presented in this paper demonstrates results
for the � = 1/2 symmetry of 58p + 58p + 58p rubidium
Rydberg atoms. During the course of our analysis, we also
examined the surfaces corresponding to asymptotic states near
the Rb 58s + 58s + 58s asymptote, but no potential wells were
found for this case. The formalism could also be applied to the
58d + 58d + 58d case, but this would correspond to a large

FIG. 9. (Color online) Potential surface corresponding to the
|59s 1

2 − 1
2 ; 55d 3

2
3
2 ; 58d 3

2 − 1
2 〉 asymptotic state. The color scheme

denotes the energy values given in GHz, with the scale presented to
the right of the plot. Both nuclear distances are in units of the Bohr
radius (a0). The well exhibited in this surface is 60–100 MHz deep.
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increase in computation time and thus, is outside the scope of
the work shown in this paper. Due to an increased number of
basis states for the triple 58d case, we would expect to find
additional wells, however.

In addition, the methodology presented here can be applied
to Rydberg states of other �-symmetry values as well as to
other alkali-metal elements. The current literature regarding
ultracold multibody Rydberg physics involves one Rydberg
atom interacting with multiple ground state atoms or a ground
state molecule.

We seek to continue to analyze cases of Rydberg trimers
for various alkali-metal elements, asymptotes, and linear
� symmetries, as well as exploring the energy levels cor-
responding to transverse (bending) modes of oscillation.
Similarly, we seek to extend the theory to different molecular

configurations, such as triangular systems. The detection of
such trimer states could have applications in a variety of
research areas, including quantum information processing and
exotic, ultracold chemistry.

Furthermore, it might be possible to extend the lin-
ear chain to include N -Rydberg atoms, although this is
purely speculative at this stage. Such investigations could
prove fruitful in the advancement of ultracold multibody
physics.
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