
PHYSICAL REVIEW A 87, 032506 (2013)

Measurement of the scalar polarizability within the 5P1/2-6S1/2 410-nm transition in atomic indium
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We have completed a measurement of the Stark shift in 115In within the 410-nm 5P1/2-6S1/2 transition. We
measure the Stark shift constant to be kS = −122.92(33) kHz/(kV/cm)2, corresponding to a difference in the
6S1/2- and 5P1/2-state polarizabilities, �α0 (in atomic units), of 1000.2 ± 2.7 a3

0 . This result is a factor of 30 more
precise than previous measurements and is in excellent agreement with a new theoretical value based on an ab
initio calculation of the wave functions in this three-valence-electron system. The measurement was performed
in an indium atomic-beam apparatus, used a GaN laser diode system, and exploited a FM spectroscopy technique
to extract laser transmission spectra under conditions where our interaction region optical depth was typically
less than 10−3.
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I. INTRODUCTION

High-precision atomic structure measurements have long
been an important tool in testing the accuracy and guiding
the refinement of theoretical techniques aimed at calculating
atomic wave functions in multielectron atomic systems.
Alkali-metal systems have played a particularly important
role in this experiment-theory interplay. More recently, new
ab initio calculational techniques have produced theoretical
results of improved precision for multiple-valence-electron
systems [1–4]. Of relevance here are the group III systems such
as indium and thallium. Thallium, in particular, has played
an important role in tests of discrete symmetry violation over
recent decades [5–7], and a proposal to measure the permanent
electric-dipole moment of indium was recently published
[8]. The size of these symmetry-violating observables scales
rapidly with the atomic number, encouraging the use of
high-Z systems. This therefore requires independent, precise
atomic wave-function calculations in order to distinguish
quantum-mechanical effects from the elementary-particle
physics observables being targeted. For example, the present
2%–3% uncertainties in ab initio wave-function calculations
in thallium currently limit the quality of the standard model
test provided by a 1995 thallium parity nonconservation
measurement [6]. A theoretical method very similar to that
used for thallium can be applied to other three-valence systems
such as indium and gallium [2].

Recently, our group measured the hyperfine constants of the
indium 6P3/2 excited state [9], providing a test of short-range
electron wave-function behavior as well as a measurement of
the nuclear quadrupole moment. The Stark shift result reported
here is quite complementary to this hyperfine structure work in
that it provides a test of long-range wave-function properties.
Previous experimental work to measure indium polarizability
includes a 1970 atomic-beam spectroscopy experiment [10]
and a 1984 ground-state measurement based on atomic-beam
deflection [11], both at the 10% level of accuracy.
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Our new polarizability measurement, with its 0.3% accu-
racy provides a benchmark test of two distinct, high-precision
calculational methods which can be applied to multivalence
atoms such as indium. One method, employing a coupled-
cluster approach, has been particularly effective for monova-
lent systems [12] but also produced results [3] in excellent
agreement with experimental polarizability measurements in
thallium [13,14]. A second theoretical strategy incorporates
a configuration interaction approach to better accommodate
three-particle states. Both of these methods were very recently
employed to compute the 6S1/2- and 5P1/2-state polarizabil-
ities in indium. The agreement between these theoretical
methods and between theory and our experimental result is
very good and is detailed in [15]. Finally, as discussed at the
end of this paper, our experimental result and the theoretical
expressions can be combined to extract accurate values for the
indium 6P1/2- and 6P3/2-state lifetimes.

II. ATOMIC STRUCTURE DETAILS

We focus on the principal naturally occurring isotope of
indium (115In, 96% abundant), which in our Doppler-narrowed
atomic-beam geometry is spectroscopically isolated from the
small 113In component. 115In has nuclear spin I = 9/2, so
that both the 5P1/2 and 6S1/2 states contain F = 5 and F = 4
hyperfine levels. The respective 11.4- and 8.4-GHz hyperfine
splittings (HFS) of the ground and excited states again yield
an entirely resolved spectrum in our atomic-beam apparatus.
Because we study a J = 1/2 → J = 1/2 transition, the Stark
shift of each level has only a scalar component, producing a
common shift of all sublevels within a given state and yielding
an experimental result which is independent of relative laser
and static electric-field polarization. Expressing the energy
shift of a given level as �W = − 1

2α0E
2, where α0 is the

scalar polarizability, the observed frequency shift of the
410-nm line can then be expressed as �νS = − 1

2h
[α0(6S1/2) −

α0(5P1/2)]E2. In the one-electron central field (OECF) valence
approximation, the polarizability is calculable from second-
order perturbation theory and for state v is given by the
expression [16,17]

α0(v) = 2

3(2jv + 1)

∑
k

〈k‖D‖v〉2

Ek − Ev

, (1)
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where 〈k‖D‖v〉 is the reduced electric dipole (E1) matrix
element and the sum extends over all states for which the E1
matrix elements are nonzero.

Due to the size of the HFS compared to the optical transition
frequencies (δνHFS/δνopt of order 10−5) we expect no mea-
surable difference in Stark shift value among four hyperfine
component lines, given our level of experimental precision.
Small tensor components of the Stark shift of individual
sublevels induced by higher-order hyperfine interaction effects
are similarly of negligible magnitude in our experiment [18].
As discussed below, we did acquire data for two different
hyperfine transitions and different laser linear polarization
directions as part of our overall search for potential systematic
errors.

In this experiment, we perform transverse laser spec-
troscopy. Given the geometry of our atomic beam and in-
teraction region, we find that the residual Doppler broadening
of our atomic spectrum is reduced roughly 15-fold from the
value that would be found in our heated source. As such,
the absorption line shape is described by a Voigt profile
with a 23-MHz Lorentzian component due to the natural line
width and a roughly 100-MHz Gaussian component due to the
residual Doppler broadening. As described below, we use an
electro-optic modulator to add FM sidebands to the spectrum
of our blue laser. We demodulate the subsequent atomic-beam
transmission signal at either the first or second harmonic of
the modulation frequency. The resultant atomic line shapes
can be computed as a function of the FM modulation index,
choice of demodulation frequency, and relative phase [19,20].
As discussed in Sec. IV, we have developed a model for exact
fitting of our rf-demodulated spectra, but we also perform
simplified polynomial or Lorentzian fits to the central portion
of our line shapes to extract line centers and Stark shift
information.

III. EXPERIMENTAL DETAILS

A. Atomic-beam system

Figure 1 shows a cross section of our atomic-beam oven
source, vacuum chamber, and interaction region. Our atomic-
beam source consists of a cylindrical molybdenum crucible
capable of containing 100 g of metallic indium. The crucible
is supported by two legs that tilt the cylinder at roughly
20◦ upwards from the horizontal. The open front face of the
cylinder is milled so that it is in the vertical plane, and we
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FIG. 1. (Color online) A cross-sectional view of the atomic-
beam source, vacuum chamber, and interaction region. The source-
interaction distance is roughly 40 cm.

cap the crucible with a molybdenum faceplate containing 20
parallel 0.25-mm-wide vertical slits extending over a 2-cm
horizontal width. The 0.5-cm thickness of the faceplate serves
to help precollimate our atomic beam by creating a series of
parallel “tunnels” from which the indium atoms must effuse.
The crucible sits within an alumina tube around which we
attach a pair of resistive heaters. These are surrounded by
layers of carbon felt insulation and thin stainless steel (serving
as a heat shield). A water-cooled cylindrical copper cold wall
forms the outermost layer of our source oven. The whole
assembly rests on an adjustable base that bolts to the floor
of the vacuum chamber. Four thermocouples attached to the
crucible, heater, stainless-steel heat shield, and copper cold
wall allow for continuous temperature monitoring. To reach
our target temperatures between 900 and 1000 ◦C, we require
roughly 0.6 kW of (ac) power. We regulate the temperature of
the crucible using a variable-duty-cycle controller which can
produce stable source temperatures up to 1100 ◦C.

Our stainless-steel vacuum chamber includes a pair of
liquid-N2-trapped diffusion pumps (Varian M-6), one located
beneath the source oven and one beneath the interaction
region chamber. Under hot-source-oven operating conditions,
we typically observe 1 × 10−6 torr pressure in our source
chamber, while the pressure in the differentially pumped
interaction region is 3 or 4 times lower. Roughly half way along
the ∼40-cm source-interaction region path we place adjustable
razor-blade collimators to define and collimate our atomic
beam in both the vertical and horizontal directions, creating
a 2-mm-high, 1.5-cm-wide ribbon-shaped atomic beam. Just
upstream of our electric-field plates we insert one additional
collimation iris of comparable dimensions to minimize the
amount of scattered metallic indium which might coat the
field plate surfaces. Finally, we attach an in-vacuum chopping
wheel to the final collimator assembly, just upstream of our
interaction region. In this way, we can modulate the atomic
beam at a typical frequency of 500 Hz, leading to the removal
of background features in our atomic spectra, as discussed
below. A set of three pairs of orthogonal magnetic-field-
cancellation coils on the outside of the interaction chamber is
used to reduce the ambient magnetic field to <10−6 T within
the interaction region.

B. Electric-field plates and high-voltage system

Our electric-field-plate assembly consists of a pair of
highly polished circular stainless-steel plates that are 10 cm
in diameter. The two plates are separated by four ceramic
spacers and positioned horizontally on a ceramic pedestal.
The separation between the plates was repeatedly measured
using metric gauge blocks to be 0.999(1) cm. The modest
temperature increase characteristic of the downstream interac-
tion region during beam operation causes negligible change
in plate separation, especially given that expansion of the
ceramic posts and steel plates tend to oppose one another.
Our blue laser beam intersects the 1.5-cm-wide atomic beam
at the center of the plate assembly. Independently, we have
performed simulations to ensure that, given our interaction
region geometry, any nonidealities due to the finite size of the
plates would affect our electric-field calibration only at the
level of 1 part in 105 or below.

032506-2



MEASUREMENT OF THE SCALAR POLARIZABILITY . . . PHYSICAL REVIEW A 87, 032506 (2013)

A high-voltage (HV) power supply (Glassman ER40P07.5)
allows the application of up to 40 kV to the plates. Our data
acquisition system allows computer control of both polarity
and magnitude of this voltage. In series with the HV output
and the field plates, we place both a chain of ballast resistors of
total resistance 100 M� (for current limiting and power-supply
protection) and a 1-M� resistor between the ground plate
and the power-supply return (for leakage-current monitoring).
Leakage currents were typically in the nanoampere range,
so that errors due to leakage-current-induced voltage drops
were negligible for our purposes. In parallel with the power
supply we installed a commercial high-voltage divider (Ross
Engineering, Inc.). This device has a quoted precision of
0.01% and a total resistance of 180 M� and is customized
to be impedance matched to the particular voltmeter we use
(Keithley model 197A, 0.011% absolute voltage measurement
accuracy). The data acquisition program reads the output of
the Keithley voltmeter via a GPIB interface, and to the quoted
precision of the instruments, this is exactly 1/1000 of the actual
high-voltage applied.

C. Optical system

The experiment uses a commercial external cavity GaN
diode laser system in the Littrow configuration (Toptica
Photonics, DL 100) to produce roughly 10 mW of light
at a wavelength near 410.2 nm. The laser can be tuned to
excite any of the four hyperfine transitions in the indium
5P1/2(F = 4,5) → 6S1/2 (F ′ = 4,5) manifold. After passing
through an optical isolator, a fraction of the laser output is
directed into a Doppler-free saturated absorption system. This
system includes an optical chopping wheel which interrupts
the pump beam, and we record the subsequent lock-in amplifier
output of the probe beam signal. We do not lock our laser using
this signal but instead use the Doppler-free absorption peak as
a frequency reference to facilitate comparison of the spectral
shift in the atomic-beam transmission signal when we turn on
and off the electric field in our interaction region.

The main laser beam is then passed through an electro-optic
modulator (EOM; New Focus, model 4001). The EOM is
driven by a 100-MHz rf synthesizer and power amplifier.
We obtain a frequency-modulated (FM) laser spectrum whose
exact sideband distribution is determined by the EOM input
power. A portion of the modulated laser beam is then directed
to a 1-GHz free-spectral-range confocal Fabry-Pérot (FP)
interferometer (Burleigh RC-110) whose finesse is roughly 40.
We isolate and passively temperature stabilize the FP cavity by
covering it with acoustical insulation material. By detecting the
FP transmission signal as we scan our laser frequency, the FM
laser spectrum, with its precisely known 100-MHz sidebands,
can thus be monitored, and the laser-frequency scan can be
calibrated and linearized. In order to create a spectrum with
measurable second- and third-order FM sidebands, we drive
the EOM with sufficient power to achieve modulation depths
β ranging from approximately 1.0 to 3.0.

The modulated laser beam is then directed into and
through our atomic-beam apparatus via windows which are
antireflection coated for our 410-nm wavelength. As it enters
the vacuum chamber, the laser beam has a 1-mm diameter
and an adjustable linear polarization and is arranged to

FIG. 2. (Color online) A complete experimental setup indicating
the configuration of the Doppler-free saturated absorption system
(top), Fabry-Pérot interferometer (middle), and transverse atomic-
beam FM spectroscopy system (bottom).

intersect the atomic beam in a transverse fashion. By passing
our laser beam through 1-mm-diameter collimating apertures
on either side of our vacuum chamber, we ensure that the
we have a reproducible, well-defined interaction geometry.
This minimizes any possible Doppler-shift-related systematic
errors in our spectra. After exiting the vacuum chamber,
having interacted with the atomic beam, we collect the optical
transmission signal on a 1-GHz-bandwidth photodiode (New
Focus, model 1601). Figure 2 shows a complete schematic
layout of our optical and signal-processing arrangement.

D. FM signal processing and lock-in detection

By applying a linear voltage ramp to the piezoelectric
transducer (PZT) of the diode laser external cavity, we scan
the 410-nm laser frequency upwards and downwards over
∼1.5 GHz, which includes either the F = 5 → F ′ = 4 or
F = 4 → F ′ = 5 hyperfine resonance. Because the vapor
pressure of indium is comparatively low (for example, 1000
times lower than thallium in this temperature range), we
observe an atomic-beam optical depth of approximately
0.001 in our interaction region even at oven temperatures
near 1000 ◦C. We have therefore made use of an FM
spectroscopy technique, which greatly improves the quality
of our atomic absorption spectra under conditions where
direct transmission measurement is not a feasible option.
As described below, we demodulate the transmitted atomic
absorption signal at either the fundamental FM frequency (1f =
100 MHz in our case) or at the second-harmonic frequency
(2f). One can also study the in-phase or the quadrature
component of the demodulated signal. We find that higher
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FM modulation depth complicates the line shape but provides
us with a larger signal size. A complete analysis of the form
of the expected demodulated signals under various conditions
can be found elsewhere [19,20]. The frequency-modulated
electric field can, in general, be expressed in terms of sideband
components with relative amplitudes given by Bessel functions
Jn whose arguments are the modulation depth. Defining ωc

and ωm to be the carrier and modulation frequencies,
respectively, and β to be the modulation depth, we have

E(t) = E0 exp[i(ωct + β sin ωmt)]

= E0 exp(iωct)
+∞∑

n=−∞
Jn(β) exp(iωmt). (2)

After interacting with the atomic beam, we can associate a
(complex) electric-field transmission function Tn(ωc + nωm)
with each sideband component. In the limit of very small ab-
sorption, we approximate this as Tn ≈ 1 − (δn + iφn), where
δ is the frequency-dependent atomic absorption line shape and
φ is the associated (dispersive) phase shift. The transmission
signal we detect is then proportional to the absolute square of
the transmitted field. Our rf lock-in amplifier (SRS model
SR844) is referenced to the synthesizer which drives the
EOM. By detecting the Fourier component of the transmitted
intensity at either 1f or 2f, we pick out particular cross terms
in the square of the sum above. We can derive analytic expres-
sions for the in-phase and quadrature component demodulated
spectra of both the 1f and 2f demodulated signals for arbitrary
modulation depth. For example, for the case of demodulation
at the fundamental modulation frequency, we find [20]

I[1f ](ωc) ∝
∞∑

n=0

JnJn+1 [(δ−n−1 − δn+1 + δ−n − δn) cos θd

+ (φ−n−1 − φ−n + φn+1 − φn) sin θd ], (3)

where θd is the relative phase between the FM signal and the
lock-in detector. Each absorption component δn(ωc + nωm)
represents a distinct, frequency-shifted Voigt profile. We use an
appropriately truncated sum of this form to fit our demodulated
spectra, where the modulation depth and lock-in phase are left
as fit parameters in our analysis.

Equation (3) predicts a zero-background demodulated
signal. Because the absorption in our atomic beam is so small,
in practice we find that our demodulated spectra contain a
nonzero frequency-dependent background in addition to our
atomic absorption signal, likely due to some purely optical
effects, such as etaloning due to small reflections within
the EOM itself. We can completely eliminate this residual
optical background pattern using our atomic-beam chopping
wheel. We direct the output signal of our rf lock-in amplifier
to a second low-frequency lock-in amplifier (SRS model
SR810) which is referenced to the chopping-wheel rotation
frequency. The output of this second-stage demodulation is a
truly background-free line shape which we record and analyze.

E. Data acquisition and experiment control

The HV is programmed and controlled using a LABVIEW

program. A computer-generated timing sequence initiates
switching on or off the high voltage. After each state switch,
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FIG. 3. A timing schematic for the experiment and data acquisi-
tion. We compute a set of Stark shift values by comparing HV on-off
scans, such as B-C, and a separate set of values by comparing HV
off-on scans, such as D-E.

we wait roughly 14 s for all high-voltage-switching transients
to subside. This delay time was chosen by studying the
consistency of scans acquired with various shorter delay times.
We then initiate a triangular external voltage ramp signal
which we apply to the PZT in the laser’s external cavity.
Two upward- and downward-going sweeps, each requiring
roughly 3 s, are completed for each high-voltage state. In
this way, we can compute the Stark shift by comparing
consecutive laser scans in two different ways. By comparing
the (HV-on to HV-off) frequency shift to that obtained with
the temporal order reversed, we can study and potentially
eliminate any slow drift or HV state-specific effect in the
experimental system that might lead to a systematic error
in our measured frequency shift. In all cases, we record and
analyze upward- and downward-going laser scans separately.
Figure 3 summarizes the data acquisition timing sequence.
The FM signal, FP transmission signal, Doppler-free saturated
absorption (SA) signal, and the output of the meter which
monitors the field-plate high voltage are sent to our data
acquisition interface and recorded by the LABVIEW program.

IV. DATA AND ANALYSIS

A. Summary of data collected

We typically acquired alternating HV off and HV on scans
in the sequence described above using a particular choice of
HV for a 30-min period. The actual voltage measured by our
high-precision Keithley voltmeter is recorded for each data
point, although in practice the voltage value varies only in
the third decimal place from cycle to cycle within a set of
nominally identical HV runs. This produced ∼200 individual
spectra, providing ∼100 Stark shift determinations, of which
half are upward-going laser scans and half are downward
scans. We then changed our nominal value for the HV,
repeating these half-hour data collection cycles for 11 values
of HV between 10 and 20 kV. We analyzed 18 such days of
data in total. A wide variety of experimental conditions were
changed over the course of the full data-collection period,
including hyperfine transition, laser polarization and power,
EOM power (modulation depth for FM spectrum), and rf
lock-in detection frequency (1f, 2f). In total, we obtained
roughly 6000 individual Stark shift measurements which were
analyzed in multiple ways to ensure that the Stark shift values
extracted from the fits were consistent and reliable. The final
statistical error in our measurement is less than 0.1%. The high
statistical precision thus allowed us to explore many possible
systematic error contributions to the data set, as we discuss
below.
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FIG. 4. (Color online) Simultaneous data acquisition of (top)
demodulated FM signal, (middle) Fabry-Pérot transmission, and
(bottom) saturated absorption signal. The horizontal axis represents
the normalized point scale xj , where −1 < xj � 1, as defined in the
text. For this scan, we demodulate the FM signal at 1f, and the entire
scan extends over roughly 1.5 GHz.

B. Data fitting procedure

Since in this experiment we compare atomic resonance po-
sitions after switching the HV state, we require that the system
remain stable over time scales of at least tens of seconds.
Furthermore, we require a spectral feature that can be used as
a frequency reference point. Finally, as we ramp the voltage
applied to the laser cavity PZT for our scans, we must linearize
and calibrate our scan to produce an accurate frequency axis.
For each laser scan, we simultaneously collect the demodulated
FM atomic-beam signal, the FP transmission signal, and the
saturated absorption signal from our supplementary vapor
cell. Figure 4 shows such a single scan and the associated
signals that we collect. For this data scan we employed 1f
demodulation with an FM modulation depth of roughly 1.5.
We typically scan the laser over a ∼1.5 GHz range centered
on the atomic resonance. To begin a data collection cycle,
we manually tune the FP cavity length to ensure that the FM
spectrum of the FP cavity is centered on the atomic resonance,
and we find that we do not need to retune the cavity for several
hours. We typically collect 400 data points per 3–4-s scan.
Prior to further analysis, we recast our frequency axis in terms
of a normalized point number, xj ≡ (j − N/2)/(N/2). In this
case N = 400, and 1 � j � 400, so that −1 < xj � +1.

We begin the analysis procedure by fitting the central FP
spectrum. Because we limit our laser scan to a single set of FM
sidebands associated with a single FP longitudinal mode, we
need not fit our FP spectrum to a periodic Airy function and
instead fit the spectrum to a simple sum of seven Lorenztians.

FIG. 5. (Color online) Fabry-Pérot transmission data (points)
with the results of a fit to a sum of seven Lorentzians (solid line). The
horizontal axis represents the normalized point scale xj as defined in
the text. The seven peak locations are exactly 100 MHz apart. All of
these peaks correspond to a single FP longitudinal mode (free spectral
range = 1.0 GHz).

We know that each Lorenztian peak is separated from the next
by precisely 100 MHz, our modulation frequency. However,
due to nonlinearity in the PZT response, we expect that the
fitted Lorenztian peak locations, x(1) · · · x(7), will not have
equal separation in terms of the variable x. Given the relatively
small frequency-scanning range and the nonlinearity typical
for such PZT devices, we find that a third-order polynomial
allows an accurate frequency mapping of our scan. Thus,
to each point in our scan we assign a frequency according
to f (j ) = a0 + a1xj + a2x

2
j + a3x

3
j , where the polynomial

coefficients are determined by insisting that the Lorenztian FP
peaks occur at exact 100-MHz intervals. Figure 5 shows the
results of a fit to an FP spectrum. The deviation from linearity
in our scan is small, but we find that quadratic and cubic
components can be resolved. These parameters tend to remain
consistent for repeated scans taken under identical conditions.
Moreover, upward- and downward-going laser scans tend to
have opposite-sign quadratic components due to the hysteretic
nature of the PZT. We found that for these scans, a fourth-order
polynomial fit did not reliably resolve a quartic coefficient and
did not improve the quality of the fit. While this polynomial
model may not be a reliable mapping of the frequency near the
edges of the scan, where FP peaks do not exist, it does provide
an accurate map of the frequency nonlinearity in the central
portion of the scan, exactly where the FM atomic-beam signal
is located.

In the ∼14 s between HV on and off scans, a small
change in the laser cavity PZT position or FP cavity length
would obviously result in a systematic error in a Stark shift
determination. For this reason, we use the SA peak from our
supplementary vapor cell as a frequency reference for both
scans. Using the newly calibrated frequency axis, we fit the
central portion of the SA peak to a Lorenztian to determine
the line center. Independently, we can evaluate the extent of
possible slow drifts in the FP or PZT systems by comparing
the SA line center position to a0 (derived from the FP fit) over
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FIG. 6. (Color online) Two up-scan FM signals demodulated at
1f. Triangles (circles) represent data taken with HV off (on). Solid
lines are fits based on the theoretical model discussed in the text.
Expanded residuals are shown below.

time scales up to 1 h. We find that the maximum drift in the
relative line positions of the two signals is 10 MHz over these
time scales and typically much less than this. Nevertheless, as
the Stark shifts we measure are of the order of 10–50 MHz, the
use of the SA cell reference is clearly essential. After the SA fit,
we reset the frequency offset a0 so that the SA peak frequency
defines the frequency origin while keeping the higher-order
parameters a1–a3 intact. We can now compare the line center
of our FM atomic-beam spectra to the location of the SA
peak using a properly linearized and calibrated frequency
scale.

The Stark shift is defined as the difference between the
fitted center of the demodulated atomic-beam transmission
spectrum with the high voltage on and with the high voltage
off (we observe a negative frequency shift upon application
of the field). If we demodulate the FM signal at 1f (2f),
the resultant line shape is an odd (even) function. At low
modulation depths, the 1f signal has a simple dispersion
shape, while the 2f signal consists of a symmetric peak
with small additional lobes on each side of resonance. For
larger modulation depths, the demodulated signals grows in
size but also becomes substantially more complicated. We
have developed a curve-fitting algorithm based on functions
derived from the full FM analysis outlined above. That is,
using Eq. (3) as a basis for the fitting model and truncating the
infinite sum appropriately, we fit our demodulated data to a
sum of symmetric and dispersive Voigt profiles, allowing the
modulation depth, the relative phase of lock-in detection, and
the Voigt profile component widths to become fit parameters
in a nonlinear least squares fitting routine. Examples of these
“full FM model” fits to our demodulated line shapes are shown
in Figs. 6 and 7. For both the 1f and 2f demodulated cases, we

FIG. 7. (Color online) Two up-scan FM signals demodulated at
2f. Triangles (circles) represent data taken with HV off (on). Solid
lines are fits based on the theoretical model discussed in the text.
Expanded residuals are shown below.

show a pair of spectra with and without a 20 kV/cm electric
field applied.

While these full FM fits do an excellent job of capturing
the complexities of the line shape, we also pursued a simpler,
computationally faster fitting algorithm in order to assess the
robustness of the line shape fitting results. At low modulation
depths, we can fit the central portions of the 1f and 2f
line shapes to a linear function and a Lorenztian function,
respectively. For somewhat larger values of β one can develop
a correspondingly more involved fitting function by fitting the
central portion of the line shape to a higher-order polynomial,
an odd function for the 1f signals and an even function for
the 2f signals. Since, as we observe, the pair of Stark-shifted
line shapes are identical in size and shape, differing only
in frequency offset, it is reasonable to assume that any
imperfection in the polynomial approximation approach will
affect each spectrum identically and thus not lead to any
systematic error in the Stark shift determination. Furthermore,
we can compare our results for 1f and 2f demodulation
and for low and high modulation depth to ensure that the
Stark shift values we extract are not sensitive to the exact
shape of the resonance line shape. By exploring the degree
of the polynomial fit and the extent over which we fit the
central portion of the line shape, we ensured that the final
Stark shift results were independent of these details. The line
shape centers and Stark shift constants extracted from the two
different fitting methods were in excellent agreement.

C. Analysis of Stark shift results

A typical single Stark shift measurement, determined from a
pair of consecutive scans, yields a 3–5 MHz uncertainty, while
the magnitude of the shift varies between 10 and 50 MHz
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FIG. 8. (Color online) Measured Stark shift vs the square of the
electric field. The result of one day’s worth of data is shown, with
all runs taken at each of ten different nominal electric-field values
averaged. Statistical errors of individual points are comparable to the
point size. The Stark shift constant kS (slope of the fitted line) has an
uncertainty of roughly 0.4% for these data.

for the HV values we use. We store results for upward laser
sweeps (“up scans”) and downward sweeps (“down scans”)
separately. We further separate our Stark shift results into data
sets based on the order of field switching; that is, we have
separate sets of on-off as well as off-on Stark shift results for
each HV setting. For each experimental condition, we compute
a weighted average and standard error for the measured Stark
shifts over one 30-min cycle at a single HV value. By dividing
the resulting Stark shift value by the square of the electric
field for this data set we can obtain a result for the Stark
shift constant kS = �ν/E2, in units of kHz/(kV/cm)2, which
can eventually be converted to the atomic scalar polarizability.
Alternatively, after analyzing similar data sets for a full range
of high voltages between 10 and 20 kV, we can plot our
measured shifts vs the square of the electric field, as is done in
Fig. 8 for one complete day’s worth of data. It is encouraging to
see the expected linear relationship and that the linear fit yields
an intercept value statistically consistent with zero. When we
extract a value for the Stark shift constant independently for
each individual 30-min cycle, for each value of high voltage,
and under all experimental conditions, we obtain the histogram
shown in Fig. 9 consisting of roughly 500 distinct kS values.
We can obtain a final statistical mean and error from our data
in several ways, for example, by analyzing individual data
such as in Fig. 9 or by computing slopes such as indicated
in Fig. 8 for each day and then averaging over all 18 days
of data collection. These various statistical analysis schemes
gave consistent final results. This then leads us to a final mean
and one-standard-deviation statistical error for our Stark shift
measurement of kS = −122.92(05) kHz/(kV/cm)2.

FIG. 9. (Color online) A histogram of all kS values. Each binned
entry represents the results of a 30-min collection cycle with a
nominally identical high-voltage value. The solid line represents a
fitted Gaussian.

D. Investigation of systematic errors

We searched for a wide variety of potential systematic errors
in our data in two basic ways. First, when two substantial
subsets of the data could be identified, corresponding to two
distinct experimental configurations, we compared the results
of these subsets statistically. Second, in some situations, we
could search for correlations in our Stark shift constant values
as a function of some experimental parameter. In the first
category, we compared data taken for up vs down laser
scans, for 1f vs 2f demodulation, for F = 4 → 5 vs F =
5 → 4 hyperfine transitions, for horizontal vs vertical laser
polarization, and for HV on-off vs off-on sequencing, none
of which should influence our Stark shift constant. Figure 10
summarizes these comparisons. Most of these searches yielded
no statistically resolved systematic differences. Note that
the entire vertical extent of Fig. 10 represents 0.5% of our
mean value. For the cases of laser sweep direction and

FIG. 10. (Color online) A summary of data subset comparisons
to investigate potential systematic errors. The comparisons, in order,
are fit results based on complete FM line shape analysis vs those
derived from polynomial or Lorenztian fits to the central portion of
the spectrum, direction of laser sweep, sequence of HV switching,
rf lock-in demodulation frequency, hyperfine transition, and laser
polarization.
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TABLE I. Contributions to the final uncertainty. All entries are in
units of kHz/(kV/cm)2.

Sources of error

0.05 statistical
0.05 electric-field dependence
0.14 laser scan direction
0.20 laser polarization
0.25 electric-field calibration
0.33 quadrature sum of errors

laser polarization, where we see small (about two combined
standard deviations) differences between subsets, we have
included small systematic error contributions (see Table I).

We also searched for correlations in our data of the
Stark shift constant with various experimental variables. Two
examples of this are shown in Fig. 11. At the top, we plot
our measured values of kS versus electric field (squared). We
see no statistically resolved slope here, but we do observe a
scatter in values slightly larger than expected based purely
on statistical variation (reduced χ2 ∼ 2). For this reason we
have included a small additional systematic error contribution
associated with the variation of kS with electric field in our
final table of uncertainties. At the bottom of Fig. 11 we plot
kS vs laser power. One could worry that optical pumping or
optical saturation effects or even ac Stark effects could affect
our line shapes or line centers. While it is difficult to see how
this could affect the HV on-off scans differently, causing a
systematic Stark shift error, it is nevertheless encouraging to
see that over a factor of 6 variation in laser power we see no
observable correlation. Finally, the list of error contributions
in Table I includes a contribution from the overall uncertainty
in the determination of the electric field (squared). This is
dominated by our 0.1% uncertainty in the plate separation. The
other field-related uncertainties, from our high-voltage divider
and Keithley voltmeter, are an order of magnitude smaller. We
thus include a 0.2% contribution to the final error from the
uncertainty in E2 determination. As summarized in Table I,

FIG. 11. (Color online) Correlation plots: (top) kS vs the square
of the electric field and (bottom) kS vs laser power.

the quadrature sum of all errors, statistical and systematic,
yields a 0.3% final uncertainty.

V. DISCUSSION OF RESULTS AND COMPARISON
WITH THEORY

Our final result for the Stark shift constant is kS =
−122.92(33) kHz/(kV/cm)2. Converting this result to
scalar polarizability (in atomic units), we find that �α0 ≡
α0(6S1/2) − α0(5P1/2) = 1000.2 ± 2.7a3

0 . This result is in
agreement with, but a factor of 30 more precise than, a
measurement by Fowler and Yellin [10] in which they found
�α0 = 944(73)a3

0 . As discussed in Ref. [15], a new theory
calculation of this quantity has just been completed. The
result of this calculation gives �α0 = 995(20)a3

0 , in excellent
agreement with our experimental result.

The infinite sums in the theoretical calculations for the
initial- and final-state polarizabilities are dominated (nearly
95% of the total contribution) by terms involving mixing of the
6S1/2 state and the nearby 6P1/2,3/2 states. Because of this, we
can combine the theoretical expression with our experimental
result to infer highly accurate values for the matrix elements
corresponding to these two transitions (and hence the 6P

excited-state lifetimes). Using summations as in Eq. (1) as
a starting point, we recast the expression for the polarizability
difference to isolate the two dominant terms as follows:

�α0 = BS + C, (4)

where S ≡ 〈6P1/2‖D‖6S〉2 (the E1 line strength), and we
define

B = 1

3

(
1

E(6P1/2) − E(6S)
+ R2

E(6P3/2) − E(6S)

)
. (5)

R2 in Eq. (5) is the ratio of the 6S-6P3/2 to 6S-6P1/2 E1 line
strength. In the present case, R2 has a theoretical value [15] of
1.949(2), allowing us to compute a precise value for B. The
constant C, which accounts for all terms in the sums beyond
the 6S-6P mixing terms, has a theoretical value of −60(8) a3

0
in this case. Inserting our experimental value into the left-hand
side of Eq. (4), we can then infer a value for the line strength S

with corresponding uncertainty (largely due to the theoretical
error in C). Finally, using the known energy splittings, we can
compute a value for the decay rate of the two 6P states, using
the relation [4]

Aab = 2.02613 × 1018

λ3

Sab

(2ja + 1)
s−1,

where the line strength Sab is expressed in atomic units and
the transition wavelength is in angstroms. In this case, the 6P

excited-state lifetimes are given by τa = 1/Aab since there is
only one E1 decay channel from each of these states. We find

τ (6P3/2) = 58.17(45) ns, τ (6P1/2) = 63.77(50) ns.

These values, with uncertainties below 1%, are an order of
magnitude more precise than earlier measurements derived
from pulsed laser spectroscopy [21] and agree very well with
recent theoretical estimates [4].
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VI. CONCLUSIONS AND FUTURE WORK

We have measured the scalar polarizability for the ground-
state 410-nm transition in atomic indium, improving the
experimental precision by more than an order of magnitude.
This work has spurred a set of atomic theory calculations
whose results agrees very well with our measurement. We
are currently introducing a second (infrared) laser system
to our experimental setup. Using two-step excitation, we
will then probe the 6S1/2-6P1/2,3/2 transitions in our atomic
beam with a diode laser centered near 1300 nm. We recently
completed an indium vapor cell measurement using this exact
optical arrangement [9]. We plan to use frequency modulation
spectroscopy again to probe the very weak IR absorption
signal. The Stark shift for these excited-state transitions is
expected to be significantly larger and, for the case of the
6P3/2 state, will exhibit both scalar and tensor components.

Since the 6P -state polarizabilities include large contributions
from the nearby 5D states, this presents a new challenge to
atomic theory. Finally, having developed this dual-modulation
scheme, effective for studying weak transitions in the atomic-
beam environment, we plan to study directly the thallium
6P1/2-6P3/2 M1 transition in the atomic beam. Here, because
the vapor pressure of thallium is much larger, a similar
atomic-beam source can produce a much denser downstream
beam, which would help compensate for the intrinsically small
transition strength of the magnetic dipole line.
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