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Excitation energies of the ns, np, nd , and nf (n � 9) states in Li-like Be+ are evaluated within the framework of
relativistic many-body theory. First-, second-, third-, and all-order Coulomb energies and first- and second-order
Breit corrections to the energies are calculated. Two alternative treatments of the Breit interaction are investigated.
In the first approach, we omit Breit contributions to the Dirac-Fock potential and evaluate Coulomb and Breit-
Coulomb corrections through second order perturbatively. In the second approach, we include both Coulomb and
Breit contributions on the same footing via the Breit-Dirac-Fock potential and then treat the residual Breit and
Coulomb interactions perturbatively. The results obtained from the two approaches are compared and discussed.
All-order calculations of reduced matrix elements, oscillator strengths, transition rates, and lifetimes are given
for levels up to n = 9. Electric-dipole (2s–np), electric-quadrupole (2s–nd), and electric-octupole (2s–nf )
matrix elements are evaluated in order to obtain the corresponding ground-state multipole polarizabilities using
the sum-over-states approach. Recommended values are provided for a large number of electric-dipole matrix
elements. Scalar and tensor polarizabilities for the ns, np1/2, np3/2, nd3/2, and nd5/2 states with n � 9 are also
calculated. The scalar hyperpolarizability for the ground 2s state is evaluated and compared with the result of a
nonrelativistic calculation.
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I. INTRODUCTION

In the present paper, we report a systematic ab initio
relativistic study of Be+ properties, including calculations
of excitation energies, oscillator strengths, transition rates,
lifetimes, polarizabilities, and hyperpolarizability in Li-like
beryllium. The calculations are carried out using a high-
precision relativistic all-order method which includes all
single, double (SD), and partial triple excitations (SDpT) of the
Dirac-Fock wave functions [1]. In 2012, all-order calculations
of neutral Li oscillator strengths, lifetimes, and polarizabilities
[2] were found in excellent agreement with benchmark high-
precision results obtained with Hylleraas basis functions [3–7].
Recently, oscillator strengths, polarizabilities, and hyperpolar-
izabilities in Li-like beryllium evaluated using Hylleraas basis
functions were presented by Tang et al. [8,9]. We compare our
values with these calculations and present a large number of
recommended data for other states. These calculations provide
recommended values critically evaluated for their accuracy
for a number of Be+ atomic properties useful for a variety of
applications.

We start with a review of relevant theoretical and experi-
mental studies. The most accurate calculations of the oscillator
strengths, lifetimes, and polarizabilities in neutral lithium
were obtained using Hylleraas basis functions [3–7,10–21].
A review of Li polarizabilities was recently given in [22].

Early theoretical calculations and measurements of en-
ergies, wavelengths, oscillator strengths, transition rates,
polarizabilities, and lifetimes in Be+ were presented in
Refs. [14,23–62]. The recently published comprehensive
critical National Institute of Standards and Technology (NIST)

compilation by Fuhr and Wiese [63] included the energies,
wavelengths, and transition rates for allowed and forbidden
transitions of Be+. The recommended values of the line
strengths, oscillator strengths, and transition rates in Ref. [63]
were based on accurate theoretical calculations presented by
Yan et al. [14], Godefroid et al. [23], Froese Fischer et al. [27],
Qu et al. [25,26], Chung [34], and Peach et al. [40].

The Hylleraas-type variational method was used in
Ref. [14] to calculate the energies of the lithium 2s and 2p

isoelectronic sequences up to Z = 20. The oscillator strengths
for the 2s → 2p transitions were evaluated for Z up to
20 including finite-nuclear-mass effects; the corresponding
lifetimes were also determined [14]. The multiconfiguration
Hartree-Fock method was used in [23] to calculate wave
functions in the infinite-nuclear-mass limit for the 1s2ns 2S

(n= 2−4), 1s2np 2P (n = 2 and 3), and 1s23d 2D terms
of lithiumlike ions (3 � Z � 8). The line strengths and
transition rates were evaluated for the 2s–2p, 2s–3p, 3s–3p,
2p–3s, 2p–4s, 3p–4s, 2p–3d, and 3p–3d transitions [23].
Multiconfiguration Breit-Pauli energy levels, lifetimes, and
transition data were presented by Froese Fischer et al. [27] for
the lithium sequence in the range Z � 8. All J levels of the
six lowest 2L terms, namely, those with configuration labels
2s, 2p, 3s, 3p, 3d, and 4s, were included. The nonrelativistic
dipole length, velocity, and acceleration absorption oscillator
strengths for the 2s–np (3 � Z � 9) transitions of the lithium
isoelectronic sequence up to Z = 10 were calculated by
using the energies and the multiconfiguration wave functions
obtained from a full-core-plus-correlation (FCPC) method
[25]. The authors emphasized that in most cases, the f values
from the length and velocity formulas were in agreement
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up to the fourth or fifth digit [25]. The same method was
used in Refs. [24,26] to evaluate oscillator strengths for the
2p–nd (3 � n � 9) and 3d–nd (4 � n � 9) transitions of
the lithium isoelectronic sequence up to Z = 10. Theoretical
wavelengths, oscillator strengths, line strengths, and transition
probabilities for the E1, M1, and E2 transitions among states
in the Li isoelectronic sequence were evaluated by Cheng
et al. [43]. The multiconfiguration Dirac-Fock technique was
used to calculate necessary energy levels and wave functions.
In addition to relativistic effects arising from the Dirac
Hamiltonian and the Breit operator, the authors included the
Lamb shift of the 1s, 2s, and 2p1/2 electrons [43].

The oscillator strengths of all allowed transitions between
the singly excited states of Be+ with principal quantum
numbers up to n = 11 were calculated within the Coulomb
approximation with a Hartree-Slater core (CAHS) approach
[37]. The results were subsequently combined to obtain the
radiative lifetimes of the excited states. Tabulated results were
given by Theodosiou [37] for the ns, np, nd, nf , and ng states
up to n = 12. The lifetimes of the 2p1/2 and 2p3/2 levels in the
lithium isoelectronic sequence were computed by Theodosiou
et al. [38] using the semiempirical Coulomb approximation
with a Hartree-Slater core. Isoelectronic trends of line-strength
data in the Li isoelectronic sequence were presented by Träbert
and Curtis [64]. Those authors proposed that the decays of
the 2p1/2 and 2p3/2 levels of Li-like ions can be used as
simple-atom test beds for lifetime measurements and for the
development of accurate calculations of the transition rates.
The experimental data were summarized and filtered in order
to obtain consistent data sets and isoelectronic trends that
can be compared with theoretical predictions. The graphical
presentation of line-strength data enables direct comparison
and evaluation of the merit of data along extended isoelectronic
sequences [64].

The energy levels of the ns, np1/2, np3/2 (n = 2 and 3),
3d3/2, and 3d5/2 levels of Li-like ions with Z = 2–16 were
calculated by Safronova [52] using the perturbation theory
method (MZ code). The Z-expansion method allowed a
description of the correlation part of the energy in the first,
second, and higher orders of perturbation theory. Relativistic
effects were taken into account by the Breit-Pauli operator
[52]. Relativistic all-order calculations of energies and matrix
elements for Li and Be+ were presented by Blundell et al.
[39]. Valence removal energies, hyperfine constants, and E1
transition amplitudes were calculated for the 2s, 2p1/2, 2p3/2,
and 3s states of Li and Be+. This calculation was a significant
improvement over the earlier second- and third-order many-
body perturbation theory (MBPT) calculations, and included
an infinite subset of MBPT terms evaluated using all-order
methods [39]. The nonrelativistic energies of the lithiumlike
ns, nd (n = 3, 4, and 5), and nf (n = 4 and 5) states for
Z = 3–10 were calculated by Wang et al. [35,36] using
a full-core-plus-correlation method with multiconfiguration-
interaction wave functions. Relativistic and mass-polarization
effects were treated as first-order perturbation corrections. The
quantum-electrodynamic (QED) correction to the energy was
included using an effective nuclear charge [35,36].

The dipole polarizabilities of the lithiumlike ground
states, 2s, were calculated by Wang and Chung [33] using
full-core-plus-correlation wave functions. The nonrelativistic

polarizabilities were obtained by using a variation-perturbation
method. Based on the relativistic and QED corrections to the
energy, the dipole polarizabilities were corrected using an
oscillator strength formula [33]. The same approximation was
used by Chen and Wang [65] to evaluate the quadrupole and
octupole polarizabilities for the ground states of lithiumlike
systems from Z = 3 to 20. The polarizabilities and hyper-
polarizabilities of the Be+ ion in the 2s and 2p states were
determined by Tang et al. [8]. Calculations were performed
using two independent methods: variationally determined
wave functions using Hylleraas basis set expansions and
single-electron calculations utilizing a frozen-core Hamil-
tonian. The dynamic dipole polarizabilities for Li atoms
and Be+ ions in the 2s and 2p states were calculated
using the variational method with a Hylleraas basis in [9].
Corrections due to relativistic effects were also estimated.
Analytic representations of the polarizabilities for frequency
ranges encompassing the n = 3 excitations were presented in
Ref. [9].

In the present paper, we investigate all of the above
properties of the ground and excited states of Li-like Be+ using
the relativistic all-order method described in [1]. In particular,
we evaluate excitation energies of ns, np, nd, and nf states
with n � 10, reduced matrix elements, oscillator strengths,
transition rates, and lifetimes for levels with n � 9, ground-
state E1, E2, and E3 static polarizabilities, and scalar and
tensor polarizabilities for the np1/2, np3/2 (n = 2–9), nd3/2,
and nd5/2 (n = 3–9) states. The scalar hyperpolarizability
for the ground 2s1/2 state is evaluated and compared with
results of nonrelativistic calculations. We use a complete
set of DF wave functions on a nonlinear grid generated
using B splines [66] constrained to a spherical cavity. A
cavity radius of 220a0 is chosen to accommodate all valence
orbitals with n < 13 so we can use experimental energies
for these states. The basis set consists of 70 splines of
order 11 for each value of the relativistic angular quantum
number κ .

II. ALL-ORDER MBPT CALCULATIONS OF ENERGIES

The energies of nlj states are evaluated for n � 10 and
l � 3 using the single-double all-order method discussed in
Ref. [67], in which all single and double excitations of Dirac-
Fock wave functions are iterated to all orders. The results of our
energy calculations are summarized in Table I. Columns 2–8 of
Table I give the lowest-order DF energies E(DF), the all-order
SD energies in the column labeled E(SD), and the part of the
third-order energies missing from E(SD) in the column labeled
E

(3)
extra. The first-order and second-order Breit corrections B(1)

and B(2) and an estimated Lamb shift contribution ELS are
listed in columns 5–7. The sum of these contributions, E

(SD)
tot ,

listed in the eighth column of Table I, is the final all-order
result. The Lamb shift correction for ns states is estimated
by scaling the 2s Lamb shift (the Xα = 2/3 case) given by
Sapirstein and Cheng [68] with 1/n3. The 2s Lamb shift from
[68] is consistent with values found in Refs. [69,70]. For states
with l > 0, the Lamb shift is estimated to be smaller than
0.01 cm−1 using scaled Coulomb values and can be omitted at
the present level of precision.
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TABLE I. Energy calculated with Dirac-Fock (DF) and Breit-Dirac-Fock (BDF) potentials. Zeroth-order (DF) and (BDF), single-double
Coulomb energies E(SD), E(BSD), E

(3)
extra, first-order B (1) and second-order Breit-Coulomb (B (2) and BB (2)) corrections, and Lamb shift ELS

corrections in 9Be+ are listed. The total energies (E(SD)
tot = E(DF) + E(SD) + E

(3)
extra + B (1) + B (2) + ELS and E

(BSD)
tot = E(BDF) + E(BSD) + E

(3)
extra +

BB (2) + ELS) are compared with experimental energies ENIST [73], δE = Etot − ENIST. Units: cm−1. The value of the infinite-mass Rydberg
constant used to convert numerical data from a.u. to cm−1 is Ry = 10 973.7316.

nlj E(DF) E(SD) E
(3)
extra B (1) B (2) ELS E

(SD)
tot E(BDF) E(BSD) BB (2) E

(BSD)
tot ENIST δE(SD) δE(BSD)

2s1/2 −146210.3 −690.27 2.45 5.64 −1.77 1.10 −146893.2 −146205.1 −690.32 −1.33 −146893.2 −146882.9 −10.3 −10.4
2p1/2 −114005.4 −959.58 4.06 5.99 −1.30 0.00 −114956.2 −114000.3 −959.52 −0.44 −114956.2 −114954.1 −2.1 −2.1
2p3/2 −113996.5 −958.77 4.05 2.88 −1.19 0.00 −114949.5 −113994.5 −958.84 −0.34 −114949.6 −114947.5 −2.0 −2.1
3s1/2 −58495.1 −161.28 0.35 1.43 −0.47 0.22 −58654.9 −58493.8 −161.30 −0.35 −58654.9 −58650.9 −3.9 −3.9
3p1/2 −50133.8 −257.80 0.98 1.87 −0.42 0.00 −50389.2 −50132.2 −257.79 −0.16 −50389.2 −50387.5 −1.7 −1.7
3p3/2 −50131.1 −257.57 0.97 0.88 −0.38 0.00 −50387.2 −50130.5 −257.59 −0.13 −50387.3 −50385.6 −1.7 −1.7
3d3/2 −48788.5 −42.99 0.41 0.02 0.00 0.00 −48831.1 −48788.5 −43.00 0.01 −48831.1 −48828.3 −2.8 −2.8
3d5/2 −48788.0 −42.99 0.41 0.00 0.00 0.00 −48830.5 −48788.0 −43.00 0.01 −48830.9 −48827.8 −2.8 −3.2
4s1/2 −31358.9 −62.14 0.11 0.57 −0.19 0.09 −31420.4 −31358.4 −62.14 −0.14 −31420.4 −31418.4 −2.0 −2.0
4p1/2 −28019.4 −105.13 0.39 0.79 −0.18 0.00 −28123.5 −28018.7 −105.13 −0.07 −28123.5 −28122.3 −1.2 −1.2
4p3/2 −28018.3 −105.04 0.39 0.37 −0.16 0.00 −28122.7 −28018.0 −105.05 −0.06 −28122.7 −28121.5 −1.2 −1.2
4d3/2 −27443.8 −19.68 0.18 0.00 0.00 0.00 −27463.3 −27443.8 −19.68 0.00 −27463.3 −27461.7 −1.6 −1.6
4d5/2 −27443.5 −19.68 0.18 0.00 0.00 0.00 −27463.0 −27443.5 −19.68 0.00 −27463.2 −27461.4 −1.6 −1.8
4f5/2 −27434.6 −3.38 0.04 0.00 0.00 0.00 −27437.9 −27434.6 −3.38 0.00 −27438.0 −27436.3 −1.7 −1.7
4f7/2 −27434.5 −3.37 0.04 0.00 0.00 0.00 −27437.8 −27434.5 −3.38 0.00 −27437.8 −27436.1 −1.7 −1.7
5s1/2 −19518.9 −30.31 0.05 0.29 −0.09 0.04 −19548.9 −19518.7 −30.31 −0.07 −19549.0 −19547.7 −1.2 −1.2
5p1/2 −17859.6 −52.94 0.19 0.40 −0.09 0.00 −17912.0 −17859.2 −52.94 −0.04 −17912.0 −17911.2 −0.8 −0.8
5p3/2 −17859.0 −52.89 0.19 0.20 −0.08 0.00 −17911.6 −17858.9 −52.90 −0.03 −17911.6 −17910.8 −0.8 −0.8
5d3/2 −17563.4 −10.44 0.09 0.00 0.00 0.00 −17573.8 −17563.4 −10.44 0.00 −17573.8 −17572.7 −1.0 −1.0
5d5/2 −17563.3 −10.43 0.09 0.00 0.00 0.00 −17573.6 −17563.3 −10.44 0.00 −17573.7 −17572.6 −1.0 −1.1
5f5/2 −17558.1 −1.93 0.02 0.00 0.00 0.00 −17560.1 −17558.1 −1.93 0.00 −17560.1 −17559.0 −1.0 −1.1
5f7/2 −17558.1 −1.93 0.02 0.00 0.00 0.00 −17560.0 −17558.1 −1.93 0.00 −17560.0 −17558.9 −1.0 −1.1
6s1/2 −13310.4 −17.02 0.03 0.15 −0.05 0.02 −13327.3 −13310.3 −17.02 −0.04 −13327.3 −13326.4 −0.8 −0.8
6p1/2 −12368.1 −30.34 0.11 0.24 −0.05 0.00 −12398.2 −12367.9 −30.34 −0.02 −12398.2 −12397.5 −0.7 −0.7
6p3/2 −12367.8 −30.31 0.11 0.11 −0.05 0.00 −12397.9 −12367.7 −30.32 −0.02 −12397.9 −12397.3 −0.7 −0.7
6d3/2 −12196.4 −6.15 0.06 0.00 0.00 0.00 −12202.5 −12196.4 −6.15 0.00 −12202.5 −12201.7 −0.8 −0.8
6d5/2 −12196.3 −6.15 0.06 0.00 0.00 0.00 −12202.4 −12196.3 −6.15 0.00 −12202.5 −12201.7 −0.7 −0.8
6f5/2 −12193.2 −1.18 0.01 0.00 0.00 0.00 −12194.3 −12193.2 −1.18 0.00 −12194.3 −12193.7 −0.7 −0.7
6f7/2 −12193.1 −1.18 0.01 0.00 0.00 0.00 −12194.3 −12193.1 −1.18 0.00 −12194.3 −12193.6 −0.6 −0.7
7s1/2 −9654.3 −10.49 0.02 0.09 −0.03 0.02 −9664.7 −9654.2 −10.49 −0.02 −9664.7 −9664.1 −0.6 −0.6
7p1/2 −9068.6 −18.99 0.07 0.15 −0.03 0.00 −9087.4 −9068.5 −18.99 −0.01 −9087.4 −9086.9 −0.5 −0.5
7p3/2 −9068.4 −18.97 0.07 0.07 −0.03 0.00 −9087.2 −9068.3 −18.97 −0.01 −9087.2 −9086.7 −0.5 −0.5
7d3/2 −8960.3 −3.92 0.04 0.00 0.00 0.00 −8964.2 −8960.3 −3.92 0.00 −8964.2 −8963.7 −0.5 −0.5
7d5/2 −8960.3 −3.92 0.00 0.00 0.00 0.00 −8964.2 −8960.3 −3.92 0.00 −8964.2 −8963.7 −0.5 −0.5
7f5/2 −8958.2 −0.77 0.01 0.00 0.00 0.00 −8959.0 −8958.2 −0.77 0.00 −8959.0 −8958.5 −0.4 −0.4
7f7/2 −8958.2 −0.76 0.01 0.00 0.00 0.00 −8959.0 −8958.2 −0.77 0.00 −8959.0 −8958.5 −0.4 −0.4
8s1/2 −7321.3 −6.92 0.01 0.07 −0.02 0.00 −7328.2 −7321.2 −6.92 −0.02 −7328.2 −7327.7 −0.5 −0.5
8p1/2 −6932.6 −12.66 0.05 0.09 −0.02 0.00 −6945.2 −6932.5 −12.66 −0.01 −6945.2 −6944.8 −0.4 −0.4
8p3/2 −6932.5 −12.65 0.05 0.04 −0.02 0.00 −6945.1 −6932.5 −12.65 −0.01 −6945.1 −6944.7 −0.4 −0.4
8d3/2 −6860.1 −2.64 0.02 0.00 0.00 0.00 −6862.7 −6860.1 −2.64 0.00 −6862.7 −6862.3 −0.4 −0.4
8d5/2 −6860.1 −2.64 0.00 0.00 0.00 0.00 −6862.7 −6860.1 −2.64 0.00 −6862.7 −6862.3 −0.4 −0.4
8f5/2 −6858.6 −0.52 0.01 0.00 0.00 0.00 −6859.2 −6858.6 −0.52 0.00 −6859.2 −6858.7 −0.4 −0.4
8f7/2 −6858.6 −0.52 0.01 0.00 0.00 0.00 −6859.1 −6858.6 −0.52 0.00 −6859.1 −6858.7 −0.4 −0.4
9s1/2 −5742.2 −4.81 0.01 0.04 −0.02 0.00 −5746.9 −5742.1 −4.81 −0.01 −5746.9 −5746.6 −0.4 −0.4
9p1/2 −5471.2 −8.87 0.03 0.07 −0.02 0.00 −5479.9 −5471.1 −8.87 −0.01 −5479.9 −5479.6 −0.3 −0.3
9p3/2 −5471.1 −8.86 0.03 0.02 −0.02 0.00 −5479.9 −5471.0 −8.86 −0.01 −5479.9 −5479.5 −0.3 −0.3
9d3/2 −5420.2 −1.86 0.00 0.00 0.00 0.00 −5422.1 −5420.2 −1.86 0.00 −5422.1 −5421.7 −0.3 −0.3
9d5/2 −5420.2 −1.86 0.00 0.00 0.00 0.00 −5422.0 −5420.2 −1.86 0.00 −5422.0 −5421.7 −0.3 −0.3
9f5/2 −5419.2 −0.37 0.00 0.00 0.00 0.00 −5419.5 −5419.2 −0.37 0.00 −5419.5 −5419.2 −0.3 −0.3
9f7/2 −5419.2 −0.37 0.00 0.00 0.00 0.00 −5419.5 −5419.2 −0.37 0.00 −5419.5 −5419.2 −0.3 −0.3
10s1/2 −4623.9 −3.48 0.00 0.02 −0.02 0.00 −4627.3 −4623.8 −3.48 −0.01 −4627.3 −4627.0 −0.3 −0.3
10p1/2 −4427.4 −6.49 0.02 0.04 −0.02 0.00 −4433.9 −4427.4 −6.49 −0.01 −4433.9 −4433.6 −0.3 −0.3
10p3/2 −4427.4 −6.46 0.02 0.02 −0.02 0.00 −4433.8 −4427.4 −6.46 −0.01 −4433.8 −4433.5 −0.3 −0.3
10f5/2 −4389.5 −0.27 0.00 0.00 0.00 0.00 −4389.8 −4389.5 −0.27 0.00 −4389.8 −4389.5 −0.3 −0.3
10f7/2 −4389.5 −0.27 0.00 0.00 0.00 0.00 −4389.8 −4389.5 −0.27 0.00 −4389.8 −4389.5 −0.3 −0.3
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As expected, the largest correlation contribution to the
valence energy comes from the second-order term E(2). There-
fore, we calculate this term with higher numerical accuracy.
The second-order energy includes partial waves up to lmax = 8
and is extrapolated to account for contributions from higher
partial waves (see, for example, Refs. [71,72]). As an example
of the convergence of E(2) with the number of partial waves l,
consider the 2s state. Calculations of E(2) with lmax = 6 and 8
yield E(2)(2s) = −637.021 and −638.021 cm−1, respectively.
Extrapolation of these calculations yields −638.814 and
−638.873 cm−1, respectively. Thus, in this particular case,
we have a numerical uncertainty in E(2)(2s) of 0.059 cm−1. It
should be noted that the 1.85 cm−1 contribution from partial
waves with l > 8 for the 2s state is the largest among all
states considered in Table I; a smaller (1.00 cm−1) contribution
is obtained for two other n = 2 states and much smaller
contributions (0.01–0.32 cm−1) were found for the n = 3
states.

Owing to the numerical complexity, we restrict l � lmax = 6
in all third-order and all-order calculations. As noted above,
the second-order contribution dominates; therefore, we can
use the extrapolated values of E(2) described above to account
for the contributions of the higher partial waves. Since the
asymptotic l dependences of the second- and third-order
energies are similar (both fall off as l−4), we use the second-
order remainder as a guide to estimate the remainder in the
third-order contribution. The term E

(3)
extra in Table I, which

accounts for that part of the third-order MBPT energy missing
from the SD expression for the energy, is smaller than the total
third-order contribution E(3) by an order of magnitude for the
states considered here.

Recommended energies from the NIST database [73] are
given in the column labeled ENIST. Differences between
our all-order calculations and experimental data, δE(SD) =
E

(SD)
tot − ENIST, are given in the δE(SD) column of Table I.
The first-order and second-order Breit corrections B(1) and

B(2) given in columns 5 and 6 of Table I are obtained with the
Dirac-Fock potential where the Breit interaction was omitted.
We evaluate Coulomb and Breit-Coulomb corrections through
second order perturbatively in such approach. In the second
more accurate approach, we include both Coulomb and Breit
contributions to the Breit-Dirac-Fock potential and then treat
the residual Breit and Coulomb interactions perturbatively. In
this approximation the first-order Breit correction B(1) is equal
to zero. The value of the second-order Breit corrections BB(2)

given in column 11 of Table I is smaller than the value of B(2)

(column 6) because the random-phase-approximation (RPA)
diagram was removed from the B(2) correction (see Sec. III
of Ref. [74] for details). This RPA contribution is explicitly
included by the use of the BDF potential. We find that the
difference between the all-order contributions calculated with
DF and BDF potentials is very small, less than 0.01%. We
did not recalculate the extra third-order correction since its
contribution is small. The largest difference between the two
approximations is in the Breit correction as well as in the DF
and BDF (E(DF) and E(BDF)) energies.

The three terms E(BDF), E(BSD), and BB(2) evaluated using
the Breit-Dirac-Fock potential are displayed in columns 8, 9,
and 10 of Table I. The final all-order result E

(BSD)
tot given in

column 11 of of Table I is obtained as a sum of the E(BDF),
E(BSD), BB(2), E

(3)
extra, and ELS terms. The differences between

our the all-order calculations and experimental data, δE(BSD) =
E

(BSD)
tot − ENIST, are given in the δE(SD) column of Table I. We

find that the higher-order Breit corrections that are included
using the BDF potential are negligible for Be+, since the results
given in two last columns are almost identical.

III. ELECTRIC-DIPOLE MATRIX ELEMENTS,
OSCILLATOR STRENGTHS, TRANSITION
RATES, AND LIFETIMES IN Li-LIKE Be+

A. Electric-dipole matrix elements

In Table II, we list our recommended values for 190 E1
ns-n′p, np-n′d, and nf -n′d transitions. The absolute values
in atomic units (a0e) are given in all cases. We refer to these
values as the recommended matrix elements. We note that
we have calculated 489 E1 matrix elements that included
all dipole transitions between the ns, npj , ndj , and nfj ,
states with n � 10 for our calculation of the polarizabilities
and hyperpolarizability. We list only the matrix elements
that give significant contributions to the atomic properties
calculated in the other sections. To evaluate the uncertainties
of these values, we carried out several calculations by different
methods of increasing accuracy: lowest-order DF, second-
order relativistic many-body perturbation theory (RMBPT),
third-order RMBPT, and all-order methods. The many-body
perturbation theory calculations are carried out following
the method described in Ref. [75]. The third-order RMBPT
includes random-phase-approximation terms iterated to all
orders, Brueckner orbital (BO) corrections, the structural
radiation, and normalization terms (see [75] for definitions of
these terms). Comparisons of the values obtained in different
approximations allow us to evaluate the sizes of the second-,
third-, and higher-order correlation corrections.

The evaluation of the uncertainty of the matrix elements
in this approach was described in detail in [76–78]. Four
all-order calculations were carried out. Two of these were
ab initio all-order calculations with (SDpT) and without
(SD) the inclusion of the partial triple excitations. We have
developed some general criteria to establish the final values
for all transitions and evaluate uncertainties owing to the need
to analyze a very large number of transitions. The scaling
procedure and evaluation of the uncertainties are described
in detail in [76–78]. We note that it is a rather complicated
procedure that involves complete recalculation of the matrix
elements with new values of the valence excitation coefficients.
The scaling factors depend on the correlation energy given by
the particular calculation and are different for the SD and
SDpT calculations; therefore these values have to be scaled
separately. The results were listed in Refs. [76–78] with the
subscript “sc.” To limit the size of the table, we displayed here
only the final results Z(final) with uncertainties.

The values of the uncertainties in Li-like Be+ are smaller
than the values of the uncertainties in Ca2+ [76], K-like
Sc2+ [78], Rb-like Sr + [79], and neutral Rb [77], as expected.
The relative uncertainties of the final values are to be 0.01%–
0.001%. We note that some other contributions (such as Breit
and QED corrections) may start to contribute at this level.
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TABLE II. Recommended values of the reduced electric-dipole matrix elements in Li-like Be+ in atomic units. Final recommended values
and their uncertainties are given in the Zfinal column.

Transition Zfinal Transition Zfinal Transition Zfinal Transition Zfinal Transition Zfinal

2s-2p1/2 1.8506(2) 3s-2p1/2 0.8675(1) 4s-2p1/2 0.2838(0) 5s-2p1/2 0.1597(0) 6s-2p1/2 0.1079(0)
2s-2p3/2 2.6172(3) 3s-2p3/2 1.2271(3) 4s-2p3/2 0.4013(1) 5s-2p3/2 0.2258(1) 6s-2p3/2 0.1526(0)
2s-3p1/2 0.4347(0) 3s-3p1/2 4.6951(3) 4s-3p1/2 2.1611(3) 5s-3p1/2 0.6810(1) 6s-3p1/2 0.3774(0)
2s-3p3/2 0.6145(1) 3s-3p3/2 6.6400(4) 4s-3p3/2 3.0568(7) 5s-3p3/2 0.9632(1) 6s-3p3/2 0.5338(1)
2s-4p1/2 0.2403(0) 3s-4p1/2 0.7008(0) 4s-4p1/2 8.6922(6) 5s-4p1/2 3.9845(4) 6s-4p1/2 1.2201(1)
2s-4p3/2 0.3397(0) 3s-4p3/2 0.9907(3) 4s-4p3/2 12.2927(8) 5s-4p3/2 5.636(1) 6s-4p3/2 1.7257(2)
2s-5p1/2 0.1590(1) 3s-5p1/2 0.3941(0) 4s-5p1/2 1.0130(1) 5s-5p1/2 13.8507(9) 6s-5p1/2 6.3388(7)
2s-5p3/2 0.2249(0) 3s-5p3/2 0.5572(0) 4s-5p3/2 1.4319(5) 5s-5p3/2 19.588(1) 6s-5p3/2 8.966(2)
2s-6p1/2 0.1159(1) 3s-6p1/2 0.2641(1) 4s-6p1/2 0.5688(2) 5s-6p1/2 1.3737(3) 6s-6p1/2 20.172(1)
2s-6p3/2 0.1639(1) 3s-6p3/2 0.3734(1) 4s-6p3/2 0.8042(1) 5s-6p3/2 1.9416(2) 6s-6p3/2 28.527(2)
2s-7p1/2 0.0897(1) 3s-7p1/2 0.1948(1) 4s-7p1/2 0.3813(2) 5s-7p1/2 0.7669(3) 6s-7p1/2 1.7844(3)
2s-7p3/2 0.1268(1) 3s-7p3/2 0.2754(1) 4s-7p3/2 0.5391(1) 5s-7p3/2 1.0842(1) 6s-7p3/2 2.5221(4)
2s-8p1/2 0.0722(1) 3s-8p1/2 0.1522(1) 4s-8p1/2 0.2818(2) 5s-8p1/2 0.5120(4) 6s-8p1/2 0.9892(6)
2s-8p3/2 0.1020(1) 3s-8p3/2 0.2152(1) 4s-8p3/2 0.3985(2) 5s-8p3/2 0.7239(3) 6s-8p3/2 1.3985(3)
2s-9p1/2 0.0598(1) 3s-9p1/2 0.1236(2) 4s-9p1/2 0.2209(4) 5s-9p1/2 0.3777(7) 6s-9p1/2 0.657(1)
2s-9p3/2 0.0845(1) 3s-9p3/2 0.1748(1) 4s-9p3/2 0.3124(2) 5s-9p3/2 0.5344(4) 6s-9p3/2 0.9290(5)

2p1/2-3d3/2 2.5084(0) 2p1/2-4d3/2 0.9608(1) 2p1/2-5d3/2 0.5596 2p1/2-6d3/2 0.3837 2p1/2-7d3/2 0.2867
2p3/2-3d3/2 1.1219(1) 2p3/2-4d3/2 0.4297(1) 2p3/2-5d3/2 0.2503 2p3/2-6d3/2 0.1716 2p3/2-7d3/2 0.1282
2p3/2-3d5/2 3.3657(2) 2p3/2-4d5/2 1.2892(2) 2p3/2-5d5/2 0.7508 2p3/2-6d5/2 0.5148 2p3/2-7d5/2 0.3846
3p1/2-3d3/2 5.8534(7) 3p1/2-4d3/2 3.8426(3) 3p1/2-5d3/2 1.6090(1) 3p1/2-6d3/2 0.9661(0) 3p1/2-7d3/2 0.6736(0)
3p3/2-3d3/2 2.6177(3) 3p3/2-4d3/2 1.7187(3) 3p3/2-5d3/2 0.7196(1) 3p3/2-6d3/2 0.4321(0) 3p3/2-7d3/2 0.3012(0)
3p3/2-3d5/2 7.853(1) 3p3/2-4d5/2 5.1560(8) 3p3/2-5d5/2 2.1588(2) 3p3/2-6d5/2 1.2962(0) 3p3/2-7d5/2 0.9038(0)
4p1/2-3d3/2 0.9972(0) 4p1/2-4d3/2 12.0562(8) 4p1/2-5d3/2 5.4853(5) 4p1/2-6d3/2 2.3276(2) 4p1/2-7d3/2 1.4058(1)
4p3/2-3d3/2 0.4458(1) 4p3/2-4d3/2 5.3917(4) 4p3/2-5d3/2 2.4536(5) 4p3/2-6d3/2 1.0410(2) 4p3/2-7d3/2 0.6288(1)
4p3/2-3d5/2 1.3375(2) 4p3/2-4d5/2 16.175(1) 4p3/2-5d5/2 7.360(1) 4p3/2-6d5/2 3.1231(4) 4p3/2-7d5/2 1.8863(2)
5p1/2-3d3/2 0.3563(0) 5p1/2-4d3/2 2.2833(1) 5p1/2-5d3/2 19.905(1) 5p1/2-6d3/2 7.430(1) 5p1/2-7d3/2 3.1418(4)
5p3/2-3d3/2 0.1593(0) 5p3/2-4d3/2 1.0208(2) 5p3/2-5d3/2 8.9016(6) 5p3/2-6d3/2 3.3237(9) 5p3/2-7d3/2 1.4052(2)
5p3/2-3d5/2 0.4779(0) 5p3/2-4d5/2 3.0628(5) 5p3/2-5d5/2 26.705(2) 5p3/2-6d5/2 9.971(2) 5p3/2-7d5/2 4.2158(6)
6p1/2-3d3/2 0.2013(1) 6p1/2-4d3/2 0.8078(2) 6p1/2-5d3/2 4.0169(4) 6p1/2-6d3/2 29.455(2) 6p1/2-7d3/2 9.6778(2)
6p3/2-3d3/2 0.0900(0) 6p3/2-4d3/2 0.3612(0) 6p3/2-5d3/2 1.7959(1) 6p3/2-6d3/2 13.1728(9) 6p3/2-7d3/2 4.3290(6)
6p3/2-3d5/2 0.2701(1) 6p3/2-4d5/2 1.0837(1) 6p3/2-5d5/2 5.3883(1) 6p3/2-6d5/2 39.518(2) 6p3/2-7d5/2 12.9870(8)

4f7/2-3d5/2 9.4461(4) 4f5/2-3d5/2 2.1122(1) 4f5/2-3d3/2 7.9031(4) 5f7/2-3d5/2 3.0718 6f7/2-3d5/2 1.6663(6)
4f7/2-4d5/2 14.707(1) 4f5/2-4d5/2 3.2885(3) 4f5/2-4d3/2 12.304(1) 5f7/2-4d5/2 12.9685(1) 6f7/2-4d5/2 4.7877(3)
4f7/2-5d5/2 1.5595(0) 4f5/2-5d5/2 0.3487(0) 4f5/2-5d3/2 1.3048(0) 5f7/2-5d5/2 27.790(2) 6f7/2-5d5/2 17.1194(1)
4f7/2-6d5/2 0.5297(1) 4f5/2-6d5/2 0.1184(0) 4f5/2-6d3/2 0.4432(1) 5f7/2-6d5/2 3.4248(1) 6f7/2-6d5/2 43.316(3)
4f7/2-7d5/2 0.2873(1) 4f5/2-7d5/2 0.0642(0) 4f5/2-7d3/2 0.2403(1) 5f7/2-7d5/2 1.1788(1) 6f7/2-7d5/2 5.8748(4)
4f7/2-8d5/2 0.1888(1) 4f5/2-8d5/2 0.0422(0) 4f5/2-8d3/2 0.1580(1) 5f7/2-8d5/2 0.6406(2) 6f7/2-8d5/2 2.0345(5)
4f7/2-9d5/2 0.1375(1) 4f5/2-9d5/2 0.0307(0) 4f5/2-9d3/2 0.1151(1) 5f7/2-9d5/2 0.4209(2) 6f7/2-9d5/2 1.1060(5)

The present uncertainties represent our best estimate of the
uncertainty of the Coulomb correlation corrections. Our final
results and their uncertainties given in Table II are used to
calculate the recommended values of the transition rates,
oscillator strengths, and lifetimes as well as to evaluate the
uncertainties of these results.

B. Transition rates, oscillator strengths, and line strengths

We combine recommended NIST energies [73] and our
final values of the matrix elements listed in Table II to calculate
transition rates Ar and oscillator strengths f . The transition
rates are calculated using

Aab = 2.02613 × 1018

λ3

S

2ja + 1
s−1, (1)

where the wavelength λ is in Å and the line strength
S = (Z(final))2 is in atomic units.

Most of the previous results presented for the
transition rates, oscillator strengths, and line strengths
in Be+ were obtained in nonrelativistic approximations
[14,18,24–27,29,37,38,48,49,53,54,57,62]. A fraction of those
results were used in a recently published compilation [63].
In order to compare our results with recommended NIST
values of the transition rates, oscillator strengths, and line
strengths for Be+, we average over j and j ′ our Ar (nlj,n′l′j ′),
f (nlj,n′l′j ′), and S(nlj,n′l′j ′) results obtained in a relativistic
approximation. We obtain 190 averaged transitions instead
of 489 transitions with fixed j . The transition rates, oscillator
strengths, and line strengths averaged over j are listed in
Table III. In this table, we display the same transitions
that were listed in the NIST compilation [63]. The relative
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TABLE III. Transition rates Ar (s−1), oscillator strengths (f ), and line strengths S (a.u.) for transitions in Be+ calculated using our
recommended values of reduced electric-dipole matrix elements Z(final) and their uncertainties. Our relativistic values are averaged over j . The
relative uncertainties in the values of transition rates, oscillator strengths, and line strengths are the same. They are listed in the column labeled
“Unc.” in percentages. Numbers in brackets represent powers of 10. Wavelengths λ (Å) are from NIST data [63].

λ Ar f S Unc. λ Ar f S Unc.
Transitions (Å) (s−1) (a.u.) (%) Transitions (Å) (s−1) (a.u.) (%)

2 2S–2 2P 3131.5 1.130[8] 4.983[−1] 1.027[1] 0.015 2 2P –7 2D 943.52 5.947[7] 1.323[−2] 2.465[−1] 0.036
2 2S–3 2P 1036.3 1.719[8] 8.305[−2] 5.666[−1] 0.027 2 2P –8 2D 925.18 3.915[7] 8.372[−3] 1.530[−1] 0.045
2 2S–4 2P 842.03 9.793[7] 3.123[−2] 1.731[−1] 0.015 2 2P –9 2D 913.01 2.716[7] 5.656[−3] 1.020[−1] 0.058
2 2S–5 2P 775.36 5.497[7] 1.486[−2] 7.586[−2] 0.033 3 2P –3 2D 64177 7.879[4] 8.109[−2] 1.028[2] 0.014
2 2S–6 2P 743.57 3.310[7] 8.229[−3] 4.029[−2] 0.078 3 2P –4 2D 4362.1 1.082[8] 5.141[−1] 4.430[1] 0.025
2 2S–7 2P 725.71 2.131[7] 5.049[−3] 2.413[−2] 0.093 3 2P –5 2D 3047.5 5.560[7] 1.290[−1] 7.767[0] 0.013
2 2S–8 2P 714.60 1.445[7] 3.319[−3] 1.561[−2] 0.126 3 2P –6 2D 2618.9 3.159[7] 5.414[−2] 2.800[0] 0.007
2 2S–9 2P 707.20 1.023[7] 2.301[−3] 1.072[−2] 0.184 3 2P –7 2D 2414.1 1.960[7] 2.855[−2] 1.361[0] 0.007
3 2S–3 2P 12096 1.261[7] 8.301[−1] 6.613[1] 0.015 3 2P –8 2D 2297.6 1.300[7] 1.714[−2] 7.779[−1] 0.007
3 2S–4 2P 3275.6 1.415[7] 6.828[−2] 1.473[0] 0.040 4 2P –4 2D 151450 2.544[4] 1.458[−1] 4.361[2] 0.014
3 2S–5 2P 2454.6 1.064[7] 2.882[−2] 4.658[−1] 0.009 4 2P –5 2D 9479.4 2.148[7] 4.822[−1] 9.029[1] 0.025
4 2S–4 2P 30326 2.742[6] 1.135[0] 2.266[2] 0.015 4 2P –6 2D 6281.4 1.329[7] 1.310[−1] 1.626[1] 0.014
4 2S–5 2P 7403.3 2.561[6] 6.312[−2] 3.076[0] 0.041 4 2P –7 2D 5219.7 8.448[6] 5.752[−2] 5.929[0] 0.014
5 2S–5 2P 61090 8.523[5] 1.431[0] 5.755[2] 0.015 4 2P –8 2D 4703.8 5.659[6] 3.128[−2] 2.907[0] 0.014
2 2P –3 2S 1776.2 4.082[8] 6.437[−2] 2.259[0] 0.027 5 2P –5 2D 295600 9.323[3] 2.036[−1] 1.189[3] 0.014
2 2P –4 2S 1197.2 1.427[8] 1.022[−2] 2.415[−1] 0.027 5 2P –6 2D 17511 6.247[6] 4.788[−1] 1.657[2] 0.028
2 2P -5 2S 1048.2 6.729[7] 3.694[−3] 7.649[−2] 0.042 5 2P –7 2D 11174 4.299[6] 1.342[−1] 2.962[1] 0.014
2 2P –6 2S 984.03 3.714[7] 1.797[−3] 3.493[−2] 0.042 5 2P –8 2D 9050.8 2.940[6] 6.018[−2] 1.076[1] 0.025
2 2P –7 2S 949.80 2.270[7] 1.023[−3] 1.919[−2] 0.045 3 2D–4 2P 4829.5 8.941[6] 1.875[−2] 2.982[0] 0.024
3 2P –4 2S 5272.1 9.690[7] 1.346[−1] 1.401[1] 0.027 3 2D–5 2P 3234.5 3.800[6] 3.575[−3] 3.807[−1] 0.009
3 2P –5 2S 3242.7 4.135[7] 2.172[−2] 1.392[0] 0.015 4 2D–5 2P 10468 4.600[6] 4.535[−2] 1.564[1] 0.024
3 2P –6 2S 2698.3 2.204[7] 8.018[−3] 4.273[−1] 0.027 3 2D–4 2F 4674.7 2.212[8] 1.015[0] 1.562[2] 0.007
3 2P –7 2S 2455.7 1.322[7] 3.985[−3] 1.933[−1] 0.027 3 2D–5 2F 3198.1 7.307[7] 1.568[−1] 1.651[1] 0.020
4 2P –5 2S 11660 3.042[7] 2.068[−1] 4.764[1] 0.027 3 2D–6 2F 2729.7 3.457[7] 5.408[−2] 4.860[0] 0.056
4 2P –6 2S 6758.9 1.466[7] 3.345[−2] 4.467[0] 0.015 3 2D–7 2F 2508.2 1.946[7] 2.569[−2] 2.121[0] 0.056
4 2P –7 2S 5417.8 8.482[6] 1.244[−2] 1.331[0] 0.015 3 2D–8 2F 2382.7 1.216[7] 1.449[−2] 1.137[0] 0.070
5 2P –6 2S 21807 1.177[7] 2.798[−1] 1.206[2] 0.027 3 2D–9 2F 2303.7 8.156[6] 9.084[−3] 6.889[−1] 0.084
5 2P –7 2S 12122 6.151[6] 4.520[−2] 1.082[1] 0.015 4 2F–5 2D 10138 8.275[5] 9.109[−3] 4.257[0] 0.007
2 2P –3 2D 1512.4 1.106[9] 6.320[−1] 1.888[1] 0.013 5 2F–6 2D 18666 6.394[5] 2.386[−2] 2.053[1] 0.017
2 2P –4 2D 1143.0 3.759[8] 1.227[−1] 2.770[0] 0.018 6 2F–7 2D 30960 4.123[5] 4.232[−2] 6.040[1] 0.020
2 2P –5 2D 1026.9 1.758[8] 4.631[−2] 9.395[−1] 0.038 7 2F–8 2D 47704 2.599[5] 6.334[−2] 1.393[2] 0.047
2 2P –6 2D 973.25 9.707[7] 2.298[−2] 4.416[−1] 0.031 8 2F–9 2D 69588 1.663[5] 8.626[−2] 2.767[2] 0.010

uncertainties in the values of the transition rates, oscillator
strengths, and line strengths are the same, since all of these
properties have the same dependence on the E1 matrix
elements. The uncertainties in percent are given in the column
“Unc.” of Table III. The values of the relative uncertainties
are less than 0.1% for all transitions displayed in Table III.
Wavelengths listed in Table III for reference are taken from
Table VII of the NIST compilation [63].

We do not incorporate the recommended values of transition
rates, oscillator strengths, and line strengths from [63] in
Table III to save space. Comparison of those results with
our results given in Table III shows excellent agreement. The
difference is about 0.01%–0.1% for half of the transitions
displayed in Table III. The difference is larger than 2% for the
three transitions (2s-7p, 2s-9p, and 3d-9f ) which have the
smallest values of the line strengths.

The oscillator strengths for transitions in Be+ calculated
using Hylleraas basis functions [8] are compared with our
results in Table IV. Our results for the oscillator strengths

are calculated using the recommended values of the reduced
electric-dipole matrix elements Z(final) and their uncertainties
given in Table II. Our relativistic values f (nlj,n′l′j ′) are
averaged over j and j ′ to make a comparison with the results
from Ref. [8]. The smallest difference is 0.0002% for the
3d-4f transition, while the largest difference (0.14%) is for
the 2s-3p transition. Differences below 0.01% are observed
for the 2p–3d and 2p–4d transitions. The differences are
about 0.03%–0.07% for the 2s-2p, 2p-3s, 3s-3p, 3p-3d, and
3p-4s transitions. These differences are in part explained by
relativistic effects omitted in Ref. [8].

C. Lifetimes in Be+

We calculated lifetimes of the ns (n = 3–10), npj (n =
2–10), ndj (n = 3–9), and nfj (n = 4–9) states in Be+ using
out final values of the transition rates listed in Table III.
The uncertainties in the lifetime values are obtained from the
uncertainties in the transition rates listed in Table III. We list
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TABLE IV. Oscillator strengths (f ) for transitions in Be+ calculated using our recommended values of
reduced electric-dipole matrix elements Z(final) and their uncertainties. Our relativistic values f (nlj,n′l′j ′)
are averaged over j and j ′. Oscillator strengths calculated using Hylleraas basis functions [8,14], FCPC
[25], and MCHF [23] methods are compared with our results.

Transitions Present [8] Theory

2 2S–2 2P 0.49830(7) 0.49806736(6) 0.498067381(25) [14]
2 2S–3 2P 0.08305(2) 0.08316525(18) 0.08136 [25]
3 2S–3 2P 0.8301(1) 0.8297696(15)
2 2P –3 2S 0.06437(2) 0.06434157(29)
2 2P –4 2S 0.010216(3) 0.01021583(30)
3 2P –4 2S 0.13457(4) 0.1345245(13)
2 2P –3 2D 0.63195(8) 0.6319828(11) 0.63199 [23]
3 2P –3 2D 0.08109(1) 0.08103350(17)
3 2D–4 2F 1.0146(1) 1.01460194(11)

the lifetimes of the 52 levels in Table V. We also evaluate the
lowest-order DF lifetimes to estimate the size of the correlation
effects. The differences between the lowest-order values and
our final lifetimes are 3%–5%.

The present values displayed in Table V are compared with
beam-foil experimental measurements by Andersen et al. [58],
Bromander [57], and Hontzeas et al. [56]. The accuracy of the
measurements was about 5%–10%.

Our lifetime values are also compared with theoretical
lifetimes obtained by multiconfiguration Breit-Pauli (BP) ap-
proach by Froese Fischer et al. [27]. In the multiconfiguration
Hartree-Fock (MCHF) method, the radial functions were used
to construct the configuration state functions (CSFs). Once the
radial functions were determined, a configuration-interaction
calculation can be performed over the set of configuration
states, where the interaction matrix was evaluated with

TABLE V. Comparison of the Be+ lifetimes (in ns) with other theoritcal and experimental results. Uncertainties are given in parentheses.
References are given in square brackets.

Level Present Theory Ref. Expt. Level Present Theory [37]

2p1/2 8.850(2) 8.853 [27] 8.1(4) [58] 7s1/2 17.918(4) 18.02
2p3/2 8.850(2) 8.847 [27] 7p1/2 29.78(3) 29.19
3s1/2 2.451(1) 2.450 [27] 3.3(3) [58] 7p3/2 29.78(2)
3p1/2 5.417(1) 5.418 [27] 7d3/2 10.522(1) 10.61
3p3/2 5.417(2) 5.416 [27] 6.7(8) [56] 7d5/2 10.518(4)
3d3/2 0.904(1) 0.904 [27] 7f5/2 23.60(1) 23.49
3d5/2 0.901(1) 0.905 [27] 0.92(6) [57] 7f7/2 23.60(1)

4s1/2 4.174(1) 4.131 [27] 4.4(3) [58] 8s1/2 26.17(1) 26.22
4p1/2 8.072(3) 8.030 [37] 8.5(9) [56] 8p1/2 42.47(5) 41.57
4p3/2 8.086(1) 8p3/2 42.66(4)
4d3/2 2.067(1) 2.081 [37] 2.3(2) [58] 8d3/2 15.58(1) 15.71
4d5/2 2.066(1) 8d5/2 15.58(1)
4f5/2 4.531(1) 4.522 [37] 4.9(2) [57] 8f5/2 35.01(1) 34.77
4f7/2 4.525(1) 8f7/2 35.03(1)

5s1/2 7.194(2) 7.213 [37] 9s1/2 36.78(2) 36.81
5p1/2 12.935(6) 12.76 [37] 9p1/2 58.86(14) 57.25
5p3/2 12.918(4) 9p3/2 58.86(7)
5d3/2 3.950(1) 3.971 [37] 3.5(4) [56] 9d3/2 22.05(1) 22.22
5d5/2 3.938(2) 9d5/2 22.01(1)
5f5/2 8.739(2) 8.739 [37] 9.0(8) [56] 9f5/2 49.71(2) 49.18
5f7/2 8.734(1) 9f7/2 49.73(2)

6s1/2 11.673(2) 11.70 [37] 10s1/2 49.89(7) 50.02
6p1/2 20.04(2) 19.71 [37] 10p1/2 78.9(7) 76.66
6p3/2 20.05(1) 10p3/2 78.6(2)
6d3/2 6.701(2) 6.754 [37] 7.3(8) [56]
6d5/2 6.700(2)
6f5/2 14.959(6) 14.93 [37]
6f7/2 14.948(6)
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respect to the BP Hamiltonian. Efficient programs based on
a combination of second quantization in coupled tensorial
form and a generalized graphical technique were used for
performing angular integrations for the evaluation of matrix
elements [27]. Numerical values of the lifetimes evaluated
in [27] for eight levels are listed in the column “Theory” of
Table V. We find excellent agreement (about 0.03% difference)
between our results and results from [27]. The disagreement is
larger (1%–3%) between our lifetime values and the theoretical
results given by Theodosiou [37]. The lifetimes in [37] were
calculated using the Coulomb approximation with a Hartree-
Slater core approach. Since those results are nonrelativistic
lifetime values, we placed in the column “Theory” of Table V
only one number for the nlj level with the smaller value of j .
The contribution of relativistic effects leads to the 0.05%–0.2%
difference between the nlj lifetime values with different j for
fixed nl states.

IV. STATIC MULTIPOLE POLARIZABILITIES
OF THE 2s STATE

The static multipole polarizability αEk of Li-like Be+ in its
ground state can be separated into two terms; a dominant first
term from intermediate valence-excited states, and a smaller
second term from intermediate core-excited states. The latter
term is smaller than the former by several orders of magnitude
and is evaluated here in the random-phase approximation [80].
The dominant valence contribution is calculated using the sum-
over-states approach,

αEk
v = 1

2k + 1

∑
n

|〈nlj‖rkCkq‖2s〉|2
Enlj − E2s

, (2)

where Ckq(r̂) is a normalized spherical harmonic and where
nlj is npj , ndj , and nfj for k = 1, 2, and 3, respectively [81].
The reduced matrix elements in the dominant contributions
to the above sum are evaluated using our final values of
the dipole matrix elements and NIST energies [73]. The
uncertainties in the polarizability contributions are obtained
from the uncertainties in the matrix elements. The final values
for the quadrupole and octupole matrix elements and their
uncertainties are determined using the procedure that was
described above for the dipole matrix elements.

We use the recommended energies from [73] and our final
matrix elements to evaluate terms in the sum with n � 10, and
we use theoretical SD energies and wave functions to evaluate
terms with 10 � n � 26. The remaining contributions to αEk

from orbitals with 27 � n � 70 are evaluated in the RPA since
the contributions from these terms are smaller than 0.01% in
all cases. These terms are grouped together as “Tail.” In the
case of αE3, we find that the contribution (1.5%) from the
(27–30)nfj part of the sum over j is substantial, and we use
theoretical SD energies and wave functions to evaluate terms
with 10 � n � 30.

We evaluate core contributions in the random-phase approx-
imation [80] for E1, E2, and E3 polarizabilities. Our result for
the core E1 polarizability is the same as the one in [80]. The
core polarizabilities are small in comparison with the valence
ones and their uncertainties are negligible.

The contributions to dipole, quadrupole, and octupole
polarizabilities of the 2s ground state are presented in Table VI.
The first two terms in the sum over states for αE1 contribute

TABLE VI. Contributions to multipole polarizabilities of the 2s

state of Li-like Be+ in a3
0 . Uncertainties are given in parentheses.

Contr. αE1

2p1/2 7.847(2)
2p3/2 15.692(3)
(3–26)pj 0.889
Tail 0.003
Core 0.052
Total 24.483(4)
Ref. [9]a 24.489(4)
Ref. [8] 24.4966(1)

Contr. αE2

3d3/2 18.374(4)
4d3/2 1.744(1)
(5–26)d3/2 1.362
3d5/2 27.561(6)
4d5/2 2.616(1)
(5–26)d5/2 2.044
Tail 0.025
Core 0.015
Total 53.741(7)
Ref. [8] 53.7659(2)

Contr. αE3

4f5/2 80.963(16)
5f5/2 29.633(6)
6f5/2 13.872(3)
(7–19)f5/2 25.899(3)
(20–26)f5/2 45.578
(27–30)f5/2 3.483
4f7/2 107.952(22)
5f7/2 39.512(8)
6f5/2 18.497(4)
(7–19)f5/2 36.612(4)
(20–26)f5/2 59.691
(27–30)f5/2 3.651
Tail 0.010
Core 0.011
Total 465.36(3)
Ref. [8] 465.7621(1)

aIncludes estimate of relativistic effects.

96.4% of the total. The remaining 3.6% of αE1 comes from the
(3–26)npj states. The first four terms in the sum over states
for αE2 contribute 93.7% of the totals. The remaining 6.3% of
the αE2 contribution is from the (5–26)ndj states. However,
the first six terms in the sum over states for αE3 contribute
only 62.4% of the totals. The remaining 37.6% of the αE3

contribution was divided into three parts: (7–19)nfj (13.4%),
(20–26)nfj (22.6%), and (27–30)nfj (1.5%).

The final results for the multipole polarizabilities of the
Li-like Be+ ground state are compared in Table VI with high-
precision calculations given by Tang et al. [8]. The calculations
were performed using variationally determined wave functions
with Hylleraas basis set expansions. The authors emphasized
that the values reported were the results of calculations close
to convergence [8]. We found excellent agreement between
our final results and the results obtained using the Hylleraas
basis set: the difference is 0.055%, 0.046%, and 0.086% for
the αE1, αE2, and αE3 polarizabilities, respectively.
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V. SCALAR AND TENSOR EXCITED-STATE
POLARIZABILITIES

The valence scalar α0(v) and tensor α2(v) polarizabilities
of an excited state v of Li-like Be+ are given by

α0(v) = 2

3(2jv + 1)

∑
nlj

|〈v||rC1||nlj 〉|2
Enlj − Ev

, (3)

α2(v) = (−1)jv

√
40jv(2jv − 1)

3(jv + 1)(2jv + 1)(2jv + 3)

×
∑
nlj

(−1)j
{
jv 1 j

1 jv 2

} |〈v||rC1||nlj 〉|2
Enlj − Ev

. (4)

The excited-state polarizability calculations are carried out
in the same way as the calculations of the multipole polar-
izabilities discussed in the previous section. We summarize
our results for the scalar α0 and tensor α2 polarizabilities of
Be+ in Table VII. In this table, we list our final values for the
polarizabilities of the ns, np1/2, np3/2, nd3/2, and nd5/2 states
with n < 10. The uncertainties of all values are given. If no
uncertainty is listed, it is zero for the significant figures that are
quoted. We note again that we could evaluate only the domi-
nant uncertainties due to missing Coulomb correlation effects.

The polarizability values rapidly increase with increasing
n, but the rate of increase depends on l. The ratio of α0(3l)
and α0(2l) is substantially different for l = s and l = p. This
difference in ratios decreases with n. The ratio of α0(3s) and
α0(2s) is equal to 24, while the ratio of α0(3p) and α0(2p) is
740. The ratio of α0(4s) and α0(3s) is equal to 8.5, while the
ratio of α0(4p) and α0(3p) is only slightly different (9.9).
The ratios of α0(nl) and α0((n − 1)l) for l = s and l = p

are equal to 5.1 and 5.3 for n = 5 and 3.7–3.8 for n = 6.
There are no differences in the α0(nl) and α0((n − 1)l) ratios
for l = s and l = p in the cases of n = 7, 8, and 9. The

ratios of α0(nl) and α0((n − 1)l) are similar for the nd states:
3.2, 2.6, and 2.3 for n = 7, 8, and 9, respectively; it is only
slightly different for the tensor polarizabilities. The values
for α2(4l) and α2(3l) have different signs and their ratios are
equal to −12 for to l = p and −57 for l = d. Significant
cancellations among different contributions are observed that
lead to similar values for the α2(3p3/2) and α2(2p3/2) tensor
polarizabilities. These cancellations were previously observed
for α2(nl) polarizabilities in Sr+ [79], Rb [77], and Ca+ [76].

We illustrate the importance of the different contributions
and evaluation of uncertainties for the scalar and tensor nd5/2

polarizabilities in Table VIII. Uncertainties are given in paren-
theses. The dominant contributions to the polarizabilities are
listed separately with the corresponding absolute values of the
electric-dipole reduced matrix elements given in the column
labeled Zfinal. The experimental NIST transition energies [73]
are given in the column �E. The dominant contributions for
the α0(nd5/2) scalar and α2(nd5/2) polarizabilities are from
the nd5/2-np3/2, nd5/2-nf5/2, and nd5/2-nf7/2 transitions. The
remaining contributions to the valence polarizability are given
in the next row after the dominant contribution. For example,
the dominant contributions to the α0(4d5/2) polarizability
are from the three matrix elements: 4d5/2-4p3/2, 4d5/2-4f5/2,
and 4d5/2-4f7/2. These give 99.7% of the final value of
the α0(4d5/2) polarizability. The 0.3% remaining contribution
comes from the sum over n = 2,3,5–26 for the 4d5/2-np3/2

contribution and the sum over n = 5–26 for the 4d5/2-nf5/2

and 4d5/2-nf7/2 contribution. The contributions from the core
and tail (n > 26) terms are very small (less than 0.1 in a3

0) and
are omitted from the table.

The dominant contribution to the nd5/2 polarizabilities
comes from the transitions with the largest values of dipole
matrix elements among the 71 matrix elements that are
included in the evaluation of these polarizabilities. The ratio
of the Zfinal(nd5/2-nf7/2) and Zfinal(nd5/2-nf5/2) contributions
is equal to 4.47 for n = 3–9. Therefore, the contribution

TABLE VII. The α0 scalar and α2 tensor polarizabilities for the Be+ ion in a3
0 . Uncertainties are given in parentheses. X(a)[b] means

X × 10b with uncertainty a in the last digit of X.

Scalar polarizabilities α0

2s 3s 4s 5s 6s 7s 8s 9s

24.483(4) 588.7(1) 5002(1) 25400(4) 94411(14) 284420(40) 736200(100) 1698300(360)
2p1/2 3p1/2 4p1/2 5p1/2 6p1/2 7p1/2 8p1/2 9p1/2

2.025(2) 1491.3(3) 14816(3) 78545(17) 296710(70) 899600(200) 2333800(500) 5387800(1200)
2p3/2 3p3/2 4p3/2 5p3/2 6p3/2 7p3/2 8p3/2 9p3/2

2.029(2) 1492.9(3) 14832(3) 78630(16) 297120(60) 900900(200) 2337100(500) 5396900(1100)
3d3/2 4d3/2 5d3/2 6d3/2 7d3/2 8d3/2 9d3/2

−8.469(2)[2] 2.090[5] 1.392(1)[6] 5.778(4)[6] 1.826(2)[7] 4.763(7)[7] 1.118(2)[8]
3d5/2 4d5/2 5d5/2 6d5/2 7d5/2 8d5/2 9d5/2

−8.476(2)[2] 2.100[5] 1.397(1)[6] 5.757(4)[6] 1.826(2)[7] 4.762(7)[7] 1.118(2)[8]

Tensor polarizabilities α2

2p3/2 3p3/2 4p3/2 5p3/2 6p3/2 7p3/2 8p3/2 9p3/2

5.848(2) 8.540(1) −105.3(7) −760(4) −3050(14) −9166(43) −23050(100) −51420(400)
3d3/2 4d3/2 5d3/2 6d3/2 7d3/2 8d3/2 9d3/2

6.523(2)[2] −3.696(1)[4] −2.526(2)[5] −1.058(1)[6] −3.358(4)[6] −8.759(14)[6] −2.058(6)[7]
3d5/2 4d5/2 5d5/2 6d5/2 7d5/2 8d5/2 9d5/2

9.330(2)[2] −5.300(2)[4] −3.620(2)[5] −1.504(1)[6] −4.796(6)[6] −1.251(2)[7] −2.940(8)[7]
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TABLE VIII. Contributions to the α0(nd5/2) scalar and α2(nd5/2) tensor polarizabilities for the Be+ ion in a3
0 . Uncertainties are given in

parentheses. The dominant contributions to the polarizabilities are listed separately with the corresponding absolute values of the electric-dipole
reduced matrix elements given in column labeled Zfinal. The experimental NIST transition energies (cm−1) are given in the column �E. The
remaining contributions to the valence polarizability are given in the next row after the dominant contribution. X(a)[b] means X × 10b with
uncertainty a in the last digit of the X value.

Level Contr. �E Zfinal α0(nd5/2) α2(nd5/2)

3d5/2 3d5/2-3p3/2 −1557.81 7.853(1) −9.654(2)[2] 9.654(2)[2]
3d5/2-np3/2 −1.75 1.75
3d5/2-4f5/2 21391.49 2.1122(1) 5.086(1) 5.812(1)
3d5/2-nf5/2 6.10[−1] 6.98[−1]
3d5/2-4f7/2 21391.62 9.4461(4) 1.017[2] −3.633([1]
3d5/2-nf7/2 1.22[1] −4.36

Total −8.476(2)[2] 9.330(2)[2]

4d5/2 4d5/2-4p3/2 −660.12 16.175(1) −9.665(2)[3] 9.665(2)[3]
4d5/2-np3/2 −1.65 1.65
4d5/2-4f5/2 25.15 3.2885(3) 1.049[4] 1.198[4]
4d5/2-nf5/2 2.38[1] 2.72[1]
4d5/2-4f7/2 25.28 14.707(2) 2.086[5] −7.451(1)[4]
4d5/2-nf7/2 4.75[2] −1.70[2]

Total 2.100[5] −5.300(2)[4]

5d5/2 5d5/2-5p3/2 −338.20 26.705(2) −5.142(1)[4] 5.142(1)[4]
5d5/2-np3/2 2.41[1] −2.41[1]
5d5/2-5f5/2 13.60 6.2139(5) 6.924(1)[4] 7.913(2)[4]
5d5/2-nf5/2 7.61[1] 8.70[1]
5d5/2-5f7/2 13.67 27.790(2) 1.378(1)[6] −4.920(2)[5]
5d5/2-nf7/2 1.52(0)[3] −5.44[2]

Total 1.397(1)[6] −3.620(2)[5]

6d5/2 6d5/2-6p3/2 −195.54 39.518(2) −1.948[5] 1.948[5]
6d5/2-np3/2 1.61[2] −1.61[2]
6d5/2-6f5/2 8.05 9.6857(6) 2.842(2)[5] 3.248(1)[5]
6d5/2-nf5/2 2.04[2] 2.33[2]
6d5/2-6f7/2 8.08 43.316(3) 5.663(4)[6] −2.022(1)[6]
6d5/2-nf7/2 4.07[3] −1.45[3]

Total 5.757(4)[6] −1.504(1)[6]

7d5/2 7d5/2-7p3/2 −123.05 54.635(3) −5.916(1)[5] 5.916(1)[5]
7d5/2-np3/2 6.24[2] −6.24[2]
7d5/2-7f5/2 5.14 13.7530(7) 8.974(9)[5] 1.026(1)[6]
7d5/2-nf5/2 4.77[2] 5.45[2]
7d5/2-7f7/2 5.14 61.506(3) 1.795(2)[7] −6.410(6)[6]
7d5/2-nf7/2 9.54[3] −3.41[3]

Total 1.826(2)[7] −4.796(6)[6]

8d5/2 8d5/2-8p3/2 −82.40 72.062(4) −1.537[6] 1.537[6]
8d5/2-np3/2 1.88[3] −1.88[3]
8d5/2-8f5/2 3.54 18.430(1) 2.340(3)[6] 2.674(3)[6]
8d5/2-nf5/2 1.01[3] 1.15[3]
8d5/2-8f7/2 3.54 82.423(6) 4.680(7)[7] −1.671(2)[7]
8d5/2-nf7/2 2.02[4] −7.22[3]

Total 4.762(7)[7] −1.251(2)[7]

9d5/2 9d5/2-9p3/2 −57.84 91.799(6) −3.553(1)[6] 3.553(1)[6]
9d5/2-np3/2 4.79[3] −4.79[3]
9d5/2-9f5/2 2.50 23.722(2) 5.489(11)[6] 6.273(12)[6]
9d5/2-nf5/2 1.97[3] 2.26[3]
9d5/2-9f7/2 2.50 106.089(7) 1.098(2)[8] −3.921(8)[7]
9d5/2-nf7/2 3.95[4] −1.41[4]

Total 1.118(2)[8] −2.940(8)[7]
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of the nd5/2-nf5/2 transition is smaller by a factor of 20
in comparison with the contribution from the nd5/2-nf7/2

transition. There are almost no differences between the
�E(nd5/2-nf5/2) and �E(nd5/2-nf7/2) energy transitions,
while the �E(nd5/2-np3/2) energy transition is larger by a
a factor of 23–26 than the �E(nd5/2-nfj ) energy transitions.
That leads to a contribution smaller by a factor of 23–26 from
the nd5/2-np3/2 transition in comparison with the nd5/2-nf7/2

transition. As a result, the dominant nd5/2-nf7/2 transition is
the largest contributor to the values of the nd5/2 polarizabilities.
This transition contributes 99.3%–98.2% to the value of the
α0(nd5/2) (n = 4–9) polarizabilities. The distribution of con-
tributions to the tensor polarizability is different in comparison
with the scalar one due to different angular factors [compare
Eqs. (3) and (4)]. The nd5/2-np3/2 and nd5/2-nd5/2 contribu-
tions have different signs in comparison with the nd5/2-nd7/2

contributions. As a result, the dominant nd5/2-nd7/2 contribu-
tions are larger than the final tensor α2(nd5/2) polarizabilities
by a factor of 1.41–1.33 for n = 4–9, respectively.

We find that it is very important to use the accurate values
of the transition energies to evaluate the polarizability values.
We use the recommended NIST data [73] that are given for
Be+, with two significant figures after the decimal point, in

cm−1 for the most of the levels. The transition energy for
the dominant nd5/2-nd7/2 transition decreases with n from
25.28 cm−1 for n = 4 to 2.50 cm−1 for n = 9. Therefore, the
uncertainties in the energy values can no longer be assumed to
be negligible for these transitions. We take the experimental
transition energy uncertainties to be 0.005 cm−1 based on
the number of significant figures given in the NIST database.
The uncertainty in these small energy intervals dominates the
uncertainty in the polarizabilities for the nd states with n > 4.
More accurate measurements of the transition energies are
needed to improve the precision of these polarizabilities.

VI. SCALAR HYPERPOLARIZABILITY OF Be+

The nonrelativistic scalar hyperpolarizability γ0 was de-
fined by Tang et al. [3]. Using the same procedure, we derive
the following equation for the relativistic scalar hyperpolariz-
ability γ0:

γ0(n0l0j0) = 24√
(2j0 + 1)

∑
nmlmjm

∑
nnlnjn

∑
nklkjk

�0(j0,jm,jn,jk)

×ϒ(n0l0j0,nmlmjm,nnlnjn,nklkjk), (5)

where

�0(j0,jm,jn,jk) =
∑
K1

(−1)j0−jn+2K1 (2K1 + 1)
(2K1 + 1)√

(2j0 + 1)

(
1 1 K1

0 0 0

)2 {
1 1 K1

j jn jm

} {
1 1 K1

J jn jk

}
(6)

and

ϒ(n0l0j0,nmlmjm,nnlnjn,nklkjk) = I (n0l0j0,nmlmjm,nnlnjn,nklkjk)

− (−1)2j0−jm−jk δ(j0,jn)
〈n0l0j0 |rC1| nmlmjm〉2

(E(nmlmjm) − E(n0l0j0))
〈n0l0j0 |rC1| nklkjk〉2

(E(nklkjk) − E(n0l0j0))2 . (7)

The most complicated part in the calculation of γ0(n0l0j0) is in the evaluation of the sum over I (n0l0j0,nmlmjm,nnlnjn,nklkjk):

I (n0l0j0,nmlmjm,nnlnjn,nklkjk)

= 〈n0l0j0 |rC1| nmlmjm〉 〈nmlmjm |rC1| nnlnjn〉 〈nnlnjn |rC1| nklkjk〉 〈nklkjk |rC1| n0l0j0〉
[E(nmlmjm) − E(n0l0j0)] [E(nnlnjn) − E(n0l0j0)] [E(nklkjk) − E(n0l0j0)]

. (8)

The angular part of γ0(n0l0j0) is defined as

�0(j0,jm,jn,jk) =
∑
K1

(−1)j0−jn+2K1
(2K1 + 1)√

(2j0 + 1)

(
1 1 K1

0 0 0

)2 {
1 1 K1

j jn jm

}{
1 1 K1

J jn jk

}
. (9)

The sum over K1 includes only two terms, K1 = 0 and K1 = 2. This allows the following simplification of the �0(j0,jm,jn,jk)
equation:

�0(j0,jm,jn,jk) = (−1)j0−jn
1√

(2j0 + 1)

(
1 1 0
0 0 0

)2 {
1 1 0
j0 jn jm

} {
1 1 0
j0 jn jk

}

+ (−1)j0−jn 5√
(2j0 + 1)

(
1 1 2
0 0 0

)2 {
1 1 2
j0 jn jm

}{
1 1 2
j jn jk

}

= 1

3
(−1)2jn+jm+jk

1

3

1

(2j0 + 1)3/2
δ(j0,jn) + (−1)j0−jn

2

3

1√
(2j0 + 1)

{
1 1 2
j0 jn jm

}{
1 1 2
j0 jn jk

}
. (10)

Finally, we obtain

�
K1=0
0 (j0,jm,jn,jk) = (−1)jm−jk

1

9

1

(2j0 + 1)3/2
δ(j0,jn), (11)

�
K1=2
0 (j0,jm,jn,jk) = (−1)j0−jn

2

3

1√
(2j0 + 1)

{
1 1 2
j0 jn jm

}{
1 1 2
j0 jn jk

}
. (12)
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Let us consider the most important case for the alkali-metal systems, n0l0j0 = n0s1/2. We can rewrite Eq. (5) in the
following way:

γ0(n0s1/2) = 12T (spp) + 12T (dpp) − 12α0(n0l0j0)β0(n0l0j0), (13)

where α0(n0l0j0) is the scalar dipole polarizability and β0(n0l0j0) is the first-order nonadiabatic correction to the dipole
polarizability [8]:

α0(n0l0j0) = 1

3

∑
nlj

〈n0l0j0 |rC1| nlj 〉2

E(nlj ) − E(n0l0j0)
, (14)

β0(n0l0j0) = 1

6

∑
nlj

〈n0l0j0 |rC1| nlj 〉2

[E(nlj ) − E(n0l0j0)]2 . (15)

The values of T (spp) and T (dpp) are defined as

T (s,pj ,pj ′ ) =
∑
nm

∑
nn

∑
nk

〈n0s1/2|rC1|nmpj 〉〈nmpj |rC1|nns1/2〉〈nns1/2|rC1|nkpj ′ 〉〈nkj
′|rC1|n0s1/2〉

[E(nmpj ) − E(n0s1/2)][E(nns1/2) − E(n0s1/2)][E(nkpj ′ ) − E(n0s1/2)]
(16)

and

T (dj ′′ ,pj ,pj ′) =
∑
nm

∑
nn

∑
nk

〈n0s1/2|rC1|nmpj 〉〈nmpj |rC1|nndj ′′ 〉〈nndj ′′ |rC1|nkpj ′ 〉〈nkj
′|rC1|n0s1/2〉

[E(nmpj ) − E(n0s1/2)][E(nns1/2) − E(n0s1/2)][E(nkpj ′ ) − E(n0s1/2)]
. (17)

Numerical results for Li-like Be+ are given in Table IX.
The sums in Eqs. (16) and (17) are evaluated for nm = 2–26,

TABLE IX. Contributions to the 2s1/2 dipole hyperpolarizabilities
γ0 of Be+ in a.u. Uncertainties are given in parentheses. Sums in
Eqs. (16) and (17) are evaluated for nm = 2–26, nk = 2–26, and nn =
3–26. Values for “Tail” are the contributions from DF results evaluated
with ni = 27–70. The γvc contribution is obtained by including 1s

states in the sum in Eq. (16).

Contr. γ
(DF)
0 (2s) γ

(final)
0 (2s)

1
18 T (s,p1/2,p1/2) 35.247 32.605(53)
− 1

18 T (s,p1/2,p3/2) 70.487 68.886(92)
− 1

18 T (s,p3/2,p1/2) 70.487 68.886(92)
1

18 T (s,p3/2,p3/2) 140.965 137.669(109)
T (spp) 317.186 308.046(178)
γvc −0.399 −0.399
Tail −0.096 −0.096
Total 316.691 307.551
1

18 T (d3/2,p1/2,p1/2) 208.678 202.031(121)
1

18
√

10
T (d3/2,p1/2,p3/2) 41.731 40.403(18)

1
18

√
10

T (d3/2,p3/2,p1/2) 41.731 40.403(18)
1

180 T (d3/2,p3/2,p3/2) 8.345 8.080(3)
1

30 T (d5/2,p3/2,p3/2) 450.761 438.434(148)
T (dpp) 751.246 729.351(192)
γvc 0.0 0.0
Tail 1.800 1.800
Total 753.042 730.151(192)

α0β 2041.637 1995.743(382)
Total −971.904 −958.041(463)

γ0 −11663 −11496(6)
Ref. [8] −11521.30(3)

nk = 2–26, and nn = 3–26. The “Tail” contribution from
ni = 27–70 is evaluated in the DF approximation. The γvc

contribution is obtained by including 1s states in the sum in
Eq. (16). The final result for the γ0(2s) hyperpolarizability
is obtained using Eq. (13) and the numerical values given in
Table IX.

The difference between γ final
0 (2s) and γ

(DF)
0 (2s) is about

1.5%, so the overall correlation contribution is small. In the
last row of Table IX, we display the γ0(2s) value evaluated
using Hylleraas basis functions [8]. Our γ final

0 (2s) value is in
excellent agreement with that result. The difference is about
0.22%.

VII. CONCLUSION

A systematic study of Be+ atomic properties is carried out
using a high-precision relativistic all-order method where all
single, double, and partial triple excitations of the Dirac-Fock
wave function are included to all orders of perturbation
theory. The energies, multipole matrix elements, line strengths,
oscillator strengths, transition rates, lifetimes, and scalar
and tensor polarizabilities of the ns, npj , ndj , and nfj

(n � 9) states are calculated. Additionally, we evaluated
the ground-state hyperpolarizability in Li-like Be+. The
uncertainties of our calculations are evaluated for most of
the values listed in this work. These calculations provide
recommended values critically evaluated for their accuracy
for a number of Be+ atomic properties useful for a variety of
applications.
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[5] M. Puchalski, D. Kędziera, and K. Puchalski, Phys. Rev. A 84,
052518 (2011).

[6] L.-Y. Tang, J.-Y. Zhang, Z.-C. Yan, T.-Y. Shi, and J. Mitroy,
J. Chem. Phys. 133, 104306 (2010).
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