
PHYSICAL REVIEW A 87, 032333 (2013)

Scaling laws for Shor’s algorithm with a banded quantum Fourier transform

Y. S. Nam* and R. Blümel
Department of Physics, Wesleyan University, Middletown, Connecticut 06459-0155, USA

(Received 22 December 2012; revised manuscript received 19 February 2013; published 27 March 2013)

We investigate the performance of a streamlined version of Shor’s algorithm in which the quantum Fourier
transform is replaced by a banded version that, for each qubit, retains only coupling to its b nearest neighbors.
Defining the performance P (n,b) of the n-qubit algorithm for bandwidth b as the ratio of the success rates of
Shor’s algorithm equipped with the banded and the full-bandwidth (b = n − 1) versions of the quantum Fourier
transform, our numerical simulations show that P (n,b) ≈ exp[−ϕ2

max(n,b)/100] for n < nt (b) (nonexponential
regime) and P (n,b) ≈ 2−ξb(n−8) for n > nt (b) (exponential regime), where nt (b), the location of the transition,
is approximately given by nt (b) ≈ b + 5.9 + √

7.7(b + 2) − 47 for b � 8, ϕmax(n,b) = 2π [2−b−1(n − b − 2) +
2−n], and ξb ≈ 1.1 × 2−2b. Analytically we obtain P (n,b) ≈ exp[−ϕ2

max(n,b)/64] for n < nt (b) and P (n,b) ≈
2−ξ

(a)
b

n for n > nt (b), where ξ
(a)
b ≈ π2

12 ln(2) × 2−2b ≈ 1.19 × 2−2b. Thus, our analytical results predict the ϕ2
max

scaling (n < nt) and the 2−2b scaling (n > nt) of the data perfectly. In addition, in the large-n regime, the
prefactor in ξ

(a)
b is close to the results of our numerical simulations, and in the low-n regime, the numerical

scaling factor in our analytical result is within a factor 2 of its numerical value. As an example we show that
b = 8 is sufficient for factoring RSA-2048 with a 95% success rate.

DOI: 10.1103/PhysRevA.87.032333 PACS number(s): 03.67.Lx

I. INTRODUCTION

While the art of integer factoring lay dormant, literally
for millennia, and not much progress beyond the crudest
methods, such as trial division and looking for differences
of squares, had been made [1], the advent of the widely used
RSA cryptosystem [2] has recently propelled the factoring
of large integers from the arcane recesses of an ancient
mathematical discipline into the limelight of contemporary
physics and mathematics. The reason is that a powerful
factoring algorithm may be used in a frontal attack on the
RSA cryptosystem, and, if successful, immediately reveals
untold scores of government, military, and financial secrets
[3,4]. No wonder, then, that the first substantial breakthrough
in factoring in centuries, the quadratic number sieve [1,5],
occurred shortly after the initial publication of the RSA method
[2]. Using the quadratic number sieve, RSA keys with up to
100 decimal digits can now routinely be cracked [6] and are
no longer safe. In 1993, the general number field sieve [7]
added even more power to factoring attacks on RSA and
was used successfully to factor the RSA challenge number
RSA-768 (232 decimal digits) [8], which prompted the U.S.
National Institute of Standards and Technology (NIST) to
recommend retirement of all RSA keys with 1024 binary
digits or less [9]. However, no matter how powerful these
modern factoring algorithms are, they are based on classical
computing algorithms, are executed on classical computers,
and, without further improvements, will never be able to crack
an RSA key consisting of 5000 decimal digits or more (see
Sec. VIII). But not only classical computing profited from the
advent of the RSA cryptosystem; so did quantum computing
[10]. In 1994, Shor demonstrated that a certain quantum
algorithm executed on a quantum computer is exponentially
more powerful than any currently known classical factoring

*ynam@wesleyan.edu

scheme and poses a real threat to RSA-encrypted data [11].
Since its inception in 1994, Shor’s algorithm has maintained its
status as the gold standard in quantum computing, and progress
in quantum computer implementation is frequently measured
in terms of the size of semiprimes that a given quantum
computer can factor [12,13]. While, compared with classical
factoring algorithms, Shor’s algorithm is tremendously more
powerful, it should not come as a surprise that, in order to
break currently employed RSA keys, an enormous number of
quantum operations still needs to be performed. Therefore,
any advances in streamlining practical implementations of
Shor’s algorithm that result in reducing the number of required
quantum operations are welcome. A central component of
Shor’s algorithm is the quantum Fourier transform (QFT) [10],
and our paper focuses on how to perform this part of Shor’s
algorithm with the least number of quantum gates and gate
operations that still guarantee acceptable performance of the
algorithm.

Our paper is organized in the following way. In Sec. II
we present Shor’s algorithm. This section also serves to
introduce the basic notation and explains the central position
of the QFT in Shor’s algorithm. While the original version
of Shor’s algorithm [11] is formulated with the help of a
full implementation of the QFT, it turns out that a reduced,
approximate version of the QFT, the banded QFT [14–16],
yields surprisingly good results when used in conjunction
with Shor’s algorithm. The banded QFT is introduced and
discussed in Sec. III. In order to assess the influence of the
banded QFT on the performance of Shor’s algorithm, we need
an objective performance measure. Our performance measure
is defined in Sec. IV. In Sec. V, based on the performance
measure defined in Sec. IV, we investigate numerically the
performance of a quantum computer for various bandwidths b

as a function of the number of qubits n. We find that for fixed
b the quantum computer exhibits two qualitatively different
regimes, exponential for large n and nonexponential for small
n. We also find that relatively small b � 10 are already

032333-11050-2947/2013/87(3)/032333(18) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.87.032333

Y. S. NAM AND R. BLÜMEL PHYSICAL REVIEW A 87, 032333 (2013)

sufficient for excellent quantum computer performance, even
for n so large as to be interesting for the factoring of
semiprimes N of practical interest. These numerical findings
are then investigated analytically in Sec. VI. In Sec. VI A,
we show an important property of the performance measure,
i.e., approximate separability, which allows us to analyze
analytically the large-n behavior (Sec. VI B) and the small-n
behavior (Sec. VI C) of the numerical data presented in Sec. V.
In particular, we are able to predict analytically the scaling
functions of the data in the large-n and small-n regimes. In
Sec. VII we compare our work with the related pioneering
work of Fowler and Hollenberg (henceforth, FH) [15]. While
the final results are similar, our approach differs substantially
from the approach in Ref. [15]. Factoring actual semiprimes,
our approach is more realistic than the approach taken in
Ref. [15] and may serve to check the results reported in
Ref. [15]. We discuss our results in Sec. VIII and conclude
the paper in Sec. IX. In order not to break the flow of
exposition in the text, some technical material is relegated
to three Appendixes. In Appendix A we prove the existence
and uniqueness of an order 2 element for any semiprime N . In
Appendix B we compute an analytical bound for the maximal
possible order ω of a given semiprime N . In Appendix C, we
provide an auxiliary result on the distribution of an inverse
factor of ω, needed for one of our analytical results reported
in Sec. VI.

II. SHOR’S ALGORITHM

Progress in quantum computing happens in fits and starts.
Periods of stagnation and pessimism are followed by unex-
pected breakthroughs and optimism. Shor’s algorithm is a case
in point. Following a lull in quantum computing during which
the only known quantum algorithms were of an “academic”
nature, Shor’s algorithm, the first “useful” quantum algorithm,
instantly revived the field when it burst on the scene, quite
unexpectedly, in 1994 [11]. Shor’s algorithm is quantum
mechanics’ answer to a task that is hard or impossible to
perform on any classical computer: factoring large semiprimes
N . To accomplish this task, Shor’s algorithm makes use of the
entire palette of quantum effects that result in an exponential
speedup of the quantum algorithm with respect to any
currently known classical factoring algorithm: superposition,
interference, and entanglement. Shor’s algorithm is based
on Miller’s algorithm [17], a classical factoring algorithm.
Miller’s algorithm determines the factors of a semiprime
N = pq, where p �= q are prime, according to the following
procedure. First, we choose a positive integer 1 < x < N ,
called the seed, relatively prime to N , i.e., gcd(x,N) = 1,
where gcd denotes the greatest common divisor. Then we
determine the smallest positive integer ω, called the order of
x, such that

xω mod N = 1. (1)

For Miller’s algorithm to work, we require (i) that ω is even and
(ii) that (xω/2 + 1) mod N �= 0. Both conditions need to be
fulfilled. If either one is not, we need to choose another x and
try again. There is a high probability that this will succeed after
only a few trials [10,15,18]. Having found a seed x satisfying

both conditions, we write (1) in the form

[(xω/2 − 1)(xω/2 + 1)] mod N = 0, (2)

which implies that N divides the product on the left-hand
side of (2). This might be accomplished if N divides
xω/2 − 1, which implies xω/2 mod N = 1. This, however, is
impossible, because ω/2 < ω, and ω, according to (1), is the
smallest such exponent. Another hypothetical possibility is
that N divides the second factor in Eq. (2). This, however,
is excluded according to condition (ii). The only remaining
possibility is that p divides one of the factors in Eq. (2) and q

divides the other. Appropriately naming the factors of N , we
have

p = gcd(xω/2 − 1,N), q = gcd(xω/2 + 1,N), (3)

and the factoring problem is solved. So, if Miller’s classical
algorithm does the job, why do we need Shor’s quantum
algorithm? The answer is that finding the order ω on a classical
computer is an algorithmically hard problem that, for a generic
seed x, is impossible to perform on a classical computer within
a reasonable execution time for semiprimes N with more than
5000 digits (see Sec. VIII). This is where Shor’s algorithm
comes in. Using a QFT to find the order ω, Shor’s algorithm
makes order finding tractable on a quantum computer. This is
how it works.

First, we define the function

f (k) = xk mod N, (4)

where k is an integer with k � 0. Since f (k + ω) = f (k),
the function f turns order finding into period finding. Since
periods may be found by a Fourier transform, the central idea of
Shor’s algorithm is to use a QFT to determine ω. To implement
this idea [10,11,17,18], we work with a quantum computer
consisting of two quantum registers, register I and register II.
We assume that both registers consist of n qubits. In order
to reliably determine ω for a given N , care must be taken to
choose n at least twice as large as the number of binary digits
of N [10,18]. We strictly observe this requirement in Sec. V
[see Eq. (64)], where we present our numerical work. We start
by initializing both registers to 0 such that the initial state of
the quantum computer is

|ψ〉 = |0, . . . ,0〉I |0, . . . ,0〉II. (5)

Next, we initialize register I with a superposition of all
integers from 0 to 2n − 1 by applying a single-qubit Hadamard
transform [10] to each of the n qubits of register I, resulting in
the state

|ψ〉 = 1√
2n

2n−1∑
k=0

|k〉I |0, . . . ,0〉II, (6)

where we have introduced an intuitive equivalence, whereby
an integer k � 0 is mapped onto the n qubits of a register
according to the binary digits of k. Now we make use of the
function f defined in Eq. (4) to fill register II with the f images
of register I. This results in the computer state

|ψ〉 = 1√
2n

2n−1∑
k=0

|k〉I |f (k)〉II. (7)

032333-2

SCALING LAWS FOR SHOR’S ALGORITHM WITH A . . . PHYSICAL REVIEW A 87, 032333 (2013)

This step entangles registers I and II. The function f induces
equivalence classes

[s0] = {s0 + kω, 0 � k � K(s0) − 1} (8)

on {0, . . . ,2n − 1} with representatives 0 � s0 � ω − 1,
where K(s0) is the smallest integer with s0 + K(s0)ω � 2n.
In other words, K(s0) is the number of elements in the
equivalence class [s0]. Since the range of s values is 2n and the
spacing is ω, we obtain, approximately,

K(s0) ≈ 2n

ω
. (9)

Because of the periodicity of f , each member of [s0] is mapped
onto f (s0). Therefore, if a measurement of register II collapses
this register into state |f (s0)〉II, the quantum computer is in the
state

|ψi〉 = 1√
K(s0)

K(s0)−1∑
k=0

|s0 + kω〉I |f (s0)〉II. (10)

We may now apply a QFT,

Û (QFT) = 1√
2n

2n−1∑
k,l=0

|l〉 exp(2πilk/2n)〈k|, (11)

to register I of |ψi〉 to obtain

|ψf 〉 = 1√
K(s0)2n

K(s0)−1∑
k=0

2n−1∑
l=0

exp[2πil(s0 + kω)/2n]

× |l〉I |f (s0)〉II. (12)

A measurement of register I then collapses |ψf 〉 into |l〉 with
probability

P̃ (n,l,ω) = 1

2nK

∣∣∣∣∣
K−1∑
k=0

exp(2πilkω/2n)

∣∣∣∣∣
2

= sin2(Kπωl/2n)

2nK sin2(πωl/2n)
, (13)

where here and in the following we have suppressed the
argument s0 of K . Apparently, P̃ (n,l,ω) is sharply peaked at l

values for which ωl/2n is close to an integer. As a consequence,
these l values will appear as a result of measurement with a
high probability. Subsequent analysis of the measured peak
location on a classical computer then reveals the factors of
N with a high probability [10]. This step is called classical
postprocessing [10,18]. Equation (13) is the starting point of
our analysis of the performance of Shor’s algorithm with a
banded QFT in Sec. IV.

Several experimental demonstrations of Shor’s algorithm
have been published [12,13,19–21]. Since it is exceedingly
difficult to experimentally control more than a handful of
qubits, the numbers N factored in these experiments are
very small, currently not exceeding N = 21 [13]. Therefore,
reaching higher N is facilitated by reducing the requirements
to run Shor’s algorithm on a quantum computer. One such
optimization is the use of an approximate, banded QFT [14]
instead of the the full QFT (11). Further optimization is
possible by using a banded version of the semiclassical QFT
[22] defined in the following section.

(a)

(b)

H

H

H

H

H

H

H

H

H

H

M

M

M

M

M

M

M

M

M

M

θ1

θ1

θ1

θ1

θ1

θ1

θ1

θ1

θ2

θ2

θ2

θ3

θ3θ4

|s[4]>

|s[3]>

|s[2]>

|s[1]>

|s[0]>

|s[4]>

|s[3]>

|s[2]>

|s[1]>

|s[0]>

|l[0]>

|l[1]>

|l[2]>

|l[3]>

|l[4]>

|l[0]>

|l[1]>

|l[2]>

|l[3]>

|l[4]>

FIG. 1. Logic circuit of a five-qubit implementation of the single-
qubit realization of the quantum Fourier transform [22]. (a) Full
implementation (bandwidth b = 4); (b) truncated implementation
(bandwidth b = 1). H, θ , and M denote the Hadamard, single-qubit
conditional rotation, and measurement gates, respectively.

III. BANDED QUANTUM FOURIER TRANSFORM

A direct circuit implementation of the Fourier transform
defined in Eq. (11) requires n(n + 1)/2 two-qubit quantum
gates [10]. In Ref. [22], it was shown that, when followed by
measurements, as required by Shor’s algorithm, an equivalent
quantum circuit, consisting exclusively of single-qubit gates,
is exactly equivalent to the two-qubit realization of the QFT.
Figure 1(a) illustrates this single-qubit realization of the
quantum Fourier transform for the special case of five qubits
(we classify the conditional rotation gates θ in Fig. 1 as
single-qubit gates since they are controlled by classical input
and act coherently only on a single qubit). This circuit still
requires ∼n2 gate operations, but since they are performed
by single-qubit gates, experimental implementation of this
single-qubit circuit is considerably simpler. In contrast to
the full two-qubit implementation of the QFT, where the
measurements may occur simultaneously at the end of the
quantum computation, the measurements in the single-qubit
version of the QFT [denoted by the M gates in Fig. 1(a)]
occur sequentially and their (classical) measurement results
are used to control the phase rotation gates θ . As first pointed
out by Coppersmith [14], even this quantum circuit may still
be optimized by working with an approximate, banded QFT
as illustrated in Fig. 1(b).

The banded QFT Û
(QFT)
b [see Fig. 1(b)] is obtained from the

full implementation of the single-qubit QFT [see Fig. 1(a)] by
retaining only the coupling to b nearest neighbors of a given
qubit. As illustrated in Fig. 1(b) for the case b = 1, this results
in a banded structure of the corresponding quantum circuit
[16]. The name is also justified on theoretical grounds since
the unitary matrix representing the circuit shown in Fig. 1(b)
has a banded structure [23]. The banded QFT of bandwidth b

is the basis of our work presented in the following sections.

IV. PERFORMANCE MEASURE

The key idea of Shor’s algorithm is to use superposition and
entanglement to steer the quantum probability into qubits that

032333-3

Y. S. NAM AND R. BLÜMEL PHYSICAL REVIEW A 87, 032333 (2013)

correspond to numbers encoded in binary form, which will
then, as a result of classical postprocessing, reveal the factors
of N . Our first task, therefore, is to locate the useful peaks
after the QFT is performed. In order to define our performance
measure, we are interested in how sharp these peaks are in l.
For this purpose, we note that P̃ (n,l,ω) [see Eq. (13)] (up to a
factor) is of the form

f (z) = sin2(Kz)

sin2(z)
, (14)

where K is a large integer, z is a real number, and f (z) is
sharply peaked at integer multiples of π . Since the shape of
f (z) is the same for z in the vicinity of each peak, it suffices
to investigate the peak at z = 0 to determine the width of all
the other peaks of f (z). We define the half-width �z of f (z)
by requiring

f (�z) = 1
2 . (15)

Inspired by a second-order Taylor-series expansion of (15),
we obtain the heuristic formula

�z ≈ 1.39

K
, (16)

which, for K > 10, satisfies (15) to better than 10−3. Applied
to P̃ (n,l,ω) in Eq. (13), we have

z = πωl

2n
, (17)

and, therefore,

�z = πω

2n
�l ≈ 1.39

K
, (18)

from which we obtain

�l ≈
(

2n

ωK

)(
1.39

π

)
≈ 0.44, (19)

where we have used (9). This result shows that the full width
at half-maximum of the l peaks is only about one state and that
this width is “universal” in the sense that it is independent of
K , ω, and n.

Since a peak in P̃ (n,l,ω) occurs whenever ωl/2n is close to
an integer, we define the l integer closest to the peak number
j according to

lj =
(

2n

ω

)
j + βj , j = 0,1, . . . ,ω − 1, (20)

where βj , a rational number, ranges between −1/2 and 1/2.
Since the peaks in P̃ (n,l,ω) are universal in the above sense
and contain basically only a single state, namely, lj defined in
Eq. (20), we use

P̃ (n,lj ,ω) ≡ P̃j (n,ω) (21)

as the basis for our performance measure.
Although the width of the peaks of P̃ (n,l,ω) is narrow—

according to (19), of the order of a single state—and although
|lj 〉 carries most of the probability in the peak number
j of P̃ (n,l,ω) (approximately 77% on average), there are
nevertheless several states |l〉 inside of peak number j

that occur with a low but still appreciable probability in
a measurement of |ψf 〉 in Eq. (12). These states are also

0

 0.005

 0.01

 0.015

 0.02

 0.025

 9098 9100 9102 9104 9106
l

P
~

l

P
~

FIG. 2. Shape of a Fourier peak in l as a function of b for the
semiprime N = 247 and order ω = 36. Shown are the peaks for
different bandwidths b = 1 (solid line), b = 2 (long-dashed line),
b = 3 (short-dashed line), and b = 10 (dotted line). The vertical solid
line is located at l = 9101.5.

useful for factoring during classical postprocessing (see Sec. II
and [10,18]), and the question arises if these states should
be included in the performance measure. Indeed, instead of
determining the performance of Shor’s algorithm on the basis
of the single state |lj 〉, FH [15], e.g., base their performance
measure on the two closest states to the peaks in P̃ (n,l,ω). We
found that including more states in the performance measure
is not necessary, since the width of the Fourier peaks in l

is independent of the bandwidth b. At first glance this is
surprising since, intuitively, we would think that the quality
of the QFT should deteriorate with decreasing bandwidth b,
possibly accompanied by a broadening of the Fourier peaks in
l. That this is not so, and that the widths of the Fourier peaks
are indeed independent of b, is demonstrated in Fig. 2 for the
case N = 247 for b = 1,2,3,10. Independent of b, the vertical
line in the figure cuts each Fourier peak at approximately its
midpoint, thus demonstrating that the widths of the Fourier
peaks in l are indeed independent of b. Thus, upon a change
in b, all l states under a Fourier peak respond in unison to
the change in b. Therefore, a single l state, such as lj , is an
excellent representative of all the l states in its immediate
vicinity.

Defining P̃j (n,b,ω) = P̃ (n,lj ,b,ω) as the probability of
obtaining |lj 〉 in a measurement of |ψf 〉 if, instead of the full
QFT, (11), the banded QFT (see Sec. III) is used, and taking
into account that the widths of the peaks in P̃j (n,b,ω) do not
change as b is varied, we use the ratio of the total probability
of collapse into one of the states |lj 〉, given the bandwidth b,
to that of the full bandwidth b = n − 1, to capture the overall
probability of obtaining the useful |l〉 states in the vicinity of
|lj 〉. Thus, the normalized ratio is of the form

P (n,b,ω) = P̃ (n,b,ω)/P̃ (n,b = n − 1,ω), (22)

where

P̃ (n,b,ω) =
ω−1∑
j=0

P̃j (n,b,ω) (23)

and P̃ (n,b = n − 1,ω) is the probability of collapsing into any
one of the set of useful states |lj 〉 as a result of measuring |ψf 〉,

032333-4

SCALING LAWS FOR SHOR’S ALGORITHM WITH A . . . PHYSICAL REVIEW A 87, 032333 (2013)

where |ψf 〉 is generated from |ψi〉 by application of the full
QFT Û (QFT) defined in Eq. (11). We use P (n,b,ω), defined
in Eq. (22), as our performance measure throughout this
paper.

Next, we derive an analytical expression for P̃j (n,b,ω),
valid for any bandwidth 0 � b � n − 1, that can be used in our

performance measure, (22). In order to find P̃j (n,b,ω) we need
to descend to the qubit-by-qubit level, since the bandwidth b

in Û
(QFT)
b refers to interqubit spacing on the qubit level in

the circuit diagram of Û
(QFT)
b [see Fig. 1(b)]. We start with a

representation of the QFT in bit notation,

Û (QFT)|s〉 = 1√
2n

2n−1∑
l=0

e
2πisl

2n |l〉 = 1√
2n

n−1∏
m=0

1∑
l[n−m−1]=0

e2πi(.s[m]s[m−1]...s[0])l[n−m−1] |l[n−m−1]〉, (24)

where s[ν](l[ν]) indicates the νth binary digit of s (νth binary digit of l) and

(.s[m]s[m−1] . . . s[0]) =
m∑

ν=0

s[ν]2
−(m−ν+1). (25)

For bandwidth b, Û
(QFT)
b |s〉 then becomes

Û
(QFT)
b |s〉 = 1√

2n

n−1∏
m=0

1∑
l[n−m−1]=0

e2πi[(.s[m]s[m−1]...s[0])−(.00...0s[m−b−1]...s[0])]l[n−m−1] |l[n−m−1]〉. (26)

We may also write

Û
(QFT)
b |s〉 =

2n−1∑
l=0

B(s,l)|l〉, (27)

where

B(s,l) = 1√
2n

exp

{
2πi

n−1∑
m=0

[�m,0(s) − �m,b+1(s)]l[n−m−1]

}

(28)

and

�m,λ(s) = (.00 . . . 0s[m−λ]s[m−λ−1] . . . s[0]), (29)

i.e., λ zeros follow the binary point. Defining

Sλ(s,l) =
n−1∑
m=0

�m,λ(s)l[n−m−1], (30)

we may express B(s,l) in the form

B(s,l) = 1

2n/2
exp{2πi[S0(s,l) − Sb+1(s,l)]}. (31)

Sorting indices, Sλ(s,l) may be written in the form

Sλ(s,l) = 1

2

n−1∑
m=λ

m−λ∑
μ=0

s[n−m−1]l[μ]

2m−μ
. (32)

We are now ready to apply the banded QFT to register I
of the initial state |ψi〉[see Eq. (10)] and obtain, with (27)

and (31),

Û
(QFT)
b |ψi〉 = Û

(QFT)
b

1√
K

K−1∑
k=0

|sk〉 = 1√
K

K−1∑
k=0

2n−1∑
l=0

B(sk,l)|l〉

= 1√
2nK

K−1∑
k=0

2n−1∑
l=0

exp {2πi[S0(sk,l)

− Sb+1(sk,l)]}|l〉. (33)

From this we obtain

P̃j (n,b,ω) = 1

2nK

∣∣∣∣∣
K−1∑
k=0

exp{2πi[S0(sk,lj) − Sb+1(sk,lj)]}
∣∣∣∣∣
2

,

(34)

which, using the expanded form, (32), of S, can be written in
the form

P̃j (n,b,ω) = 1

2nK

∣∣∣∣∣
K−1∑
k=0

ei[(n,sk,lj)−ϕ(n,b,sk ,lj)]

∣∣∣∣∣
2

, (35)

where

(n,s,l) = π

n−1∑
m=0

m∑
μ=0

s[n−m−1]l[μ]

2m−μ
(36)

and

ϕ(n,b,s,l) = π

n−1∑
m=b+1

m−b−1∑
μ=0

s[n−m−1]l[μ]

2m−μ
. (37)

While in Eq. (36) is already in a form useful for numerical
calculations, we now derive an expression for exp(i),
which is more convenient for the analytical calculations in
Sec. VI. We start by summing (36) in reverse order over

032333-5

Y. S. NAM AND R. BLÜMEL PHYSICAL REVIEW A 87, 032333 (2013)

m (n − m − 1→ m) to obtain

(n,s,l) = π

n−1∑
m=0

n−m−1∑
μ=0

s[m]l[μ]

2n−1−m2−μ

= π

2n−1

n−1∑
m=0

2ms[m]

n−m−1∑
μ=0

2μl[μ]. (38)

If we extend the μ sum in Eq. (38) to include terms ranging
from μ = n − m to μ = n − 1, we note that these extra terms
generate even multiples of 2π in Eq. (38). Therefore, when
computing exp(i), we can safely extend the μ sum to μ =
n − 1, since the extra terms, generating even multiples of 2πi

in the argument of the exponential function, do not contribute
to exp(i). Therefore, we obtain

exp[i(n,s,l)] = exp

⎛
⎝ πi

2n−1

n−1∑
m=0

2ms[m]

n−1∑
μ=0

2μl[μ]

⎞
⎠. (39)

Using the fact that

n−1∑
m=0

2ms[m] = s mod 2n, (40)

and similarly for l, we obtain

exp[i(n,s,l)] = exp

{
2πi

2n
[(s mod 2n)(l mod 2n)]

}
. (41)

The factor 2πi/2n in the exponent induces a modulo operation
and we may also write

exp[i(n,s,l)]

= exp

{
2πi

2n
[(s mod 2n)(l mod 2n)] mod 2n

}
. (42)

Using the formula

[(A mod M)(B mod M)] mod M = (A · B) mod M

(43)

of elementary modular arithmetic, we may write (42) in the
form

exp[i(n,s,l)] = exp

[
2πi

2n
(sl) mod 2n

]
. (44)

Now we use (20) and (8) with s0 = 0 to obtain

exp[i(n,sk,lj)] = exp

[
2πi

2n
(k2nj + kωβj) mod 2n

]
.

(45)

The first term in parentheses contributes nothing to (45), since
it is an integer and, together with the prefactor in the exponent
of (45), amounts to an even multiple of 2πi. Therefore, (45)
reduces to

exp[i(n,sk,lj)] = exp

[
2πi

2n
(kωβj) mod 2n

]
. (46)

Since kω � 2n and |βj | < 1
2 , we have |kωβj | < 2n. Therefore,

the modulo operation in Eq. (46) is not needed anymore and

we obtain

exp[i(n,sk,lj)] = exp

[
2πi

(
kωβj

2n

)]
. (47)

Thus we obtained a closed-form, analytical expression for
exp(i).

Although [because of the presence of ϕ(n,b,sk,lj) in
Eq. (35)] not useful for the exact evaluation of (35), a
well-justified approximation performed in Sec. VI allows us
to compute

�(n,lj ,ω) =
K−1∑
k=0

exp[i(n,sk,lj)] (48)

separately. Using the formula for computing geometric sums,
we obtain

�(n,lj ,ω) =
K−1∑
k=0

[exp(2πiωβj/2n)]k

= 1 − exp(2πiωβjK/2n)

1 − exp(2πiωβj/2n)
. (49)

With (9) we obtain

�(n,lj ,ω) ≈ 1 − exp(2πiβj)

1 − exp(2πiβjω/2n)

≈ eiπβj K
sin(πβj)

(πβj)
. (50)

Since ϕ(n,b = n − 1,s,l) = 0, we note in passing that

P̃j (n,b = n − 1,ω) = 1

2nK
|�(n,lj ,ω)|2. (51)

We also need an analytical expression for the maximum value
ϕmax(n,b) of ϕ(n,b,sk,lj), defined as

ϕmax(n,b) = max
k,j

ϕ(n,b,sk,lj). (52)

From (37) it is clear that ϕmax is obtained by setting all s[n−m−1]

and l[μ] values equal to 1. This procedure yields

ϕmax(n,b) = π

n−1∑
m=b+1

m−b−1∑
μ=0

1

2m−μ
. (53)

Only the formula for evaluating geometric sums is needed to
compute the value of ϕmax in Eq. (53). We obtain

ϕmax(n,b) = 2π [2−b−1(n − b) − 2−b + 2−n]. (54)

We now show that a quantum computer performs perfectly, no
matter what b is, if ω is a power of 2, i.e.,

P (n,b,ω) = 1 for ω = 2α, α � 0 integer. (55)

For such an ω, we note that (i) the κth binary digit of any lj is
0 for κ � n − α since, according to (20),

lj = 2n−αj, j = 0,1, . . . ,ω − 1, (56)

is already an integer, which implies βj = 0; and (ii) the ιth
binary digit of any equivalence class element in [s0] [see
Eq. (8)] for 0 � ι < α is identical to that of s0. Thus, we

032333-6

SCALING LAWS FOR SHOR’S ALGORITHM WITH A . . . PHYSICAL REVIEW A 87, 032333 (2013)

write ϕ(n,b,s,l) in Eq. (37) in the form

ϕ(n,b,s,l) = π

⎛
⎝ n−1∑

m=n−α+b+1

m−b−1∑
μ=0

s[n−m−1]l[μ]

2m−μ
+

n−α+b∑
m=b+1

m−b−1∑
μ=0

s[n−m−1]l[μ]

2m−μ

⎞
⎠

=
{

0 if α � b + 1,

π
∑n−1

m=n−α+b+1

∑m−b−1
μ=n−α

s[n−m−1]l[μ]

2m−μ if α > b + 1,
(57)

where the second equality was obtained using observation (i).
Now, we observe that the n − m − 1th digit of s is bounded
between 0 and α − b − 2 inclusively. Then, using observation
(ii), we obtain

ϕ(n,b,s = sk,l = lj) = π

n−1∑
m=n−α+b+1

m−b−1∑
μ=n−α

(sk)[n−m−1](lj)[μ]

2m−μ

= π

n−1∑
m=n−α+b+1

m−b−1∑
μ=n−α

(s0)[n−m−1](lj)[μ]

2m−μ

= ϕ̃j , (58)

where ϕ̃j is a constant for any sk and a given lj . Inserting (58)
in Eq. (35), P̃j (n,b,ω) becomes

P̃j (n,b,ω) = 1

2nK

∣∣∣∣∣
K−1∑
k=0

ei[(n,sk,lj)−ϕ̃j]

∣∣∣∣∣
2

= 1

2nK
|e−iϕ̃j |2

∣∣∣∣∣
K−1∑
k=0

ei(n,sk,lj)

∣∣∣∣∣
2

= 1

2nK
|�(n,lj ,ω)|2 = P̃j (n,b = n − 1,ω), (59)

where we have used (48) and (51). With (23) and (59) we
obtain

P̃ (n,b,ω) =
ω−1∑
j=0

P̃j (n,b = n − 1,ω) = P̃ (n,b = n − 1,ω).

(60)

Therefore, with (22), the normalized probability (the perfor-
mance measure) P (n,b,ω) reads

P (n,b,ω) = P̃ (n,b = n − 1,ω)

P̃ (n,b = n − 1,ω)
= 1, (61)

which completes the proof.
Since ω = 2 always exists (see Appendix A), this is

an important observation, since the corresponding quantum
computer works perfectly in this case for any n and any b. The
trick, of course, is to find the seed x that yields x2 mod N = 1.
This, however, is an unsolved problem for large N .

If ω is not a power of 2, we write it in the form

ω = r2α, r, α integer, (62)

where r is odd. For such an ω, according to (20), we may write
lj as

lj =
(

2n−α

r

)
j + βj . (63)

Therefore, if j is a multiple of r , we have βj = 0 and
P̃j (n,b,ω) = 1/ω, which is proved by following the corre-
sponding steps for the case where ω is a power of 2. This means
that the contribution of these j values to P̃ (n,b,ω) is 1/r . This
is a constant contribution, which does not depend on either n or
b. Therefore, if for large n the contributions to P̃ (n,b,ω) tend
to 0 for the lj peaks for which j is not a multiple of r , we expect
P̃ (n,b,ω) to approach 1/r for large n. This is demonstrated
in Fig. 3, which shows P̃ (n,b = 1,ω = 6) as a function of n.
Since in this case ω = 3 × 21, we expect P̃ (n,b = 1,ω = 6)
to approach 1/3, which is clearly confirmed in Fig. 3.

V. NUMERICAL RESULTS

In this section we explore, numerically, the performance of
Shor’s algorithm supplied with a banded QFT of bandwidth
b. The performance is measured objectively with the help
of the quantitative performance measure P (n,b,ω) defined
in Eq. (22). In contrast to a similar investigation by FH
[15], who use an effective ω for the investigation of the
performance of the banded Shor algorithm, we opted for a more
realistic simulation of the performance of Shor’s algorithm
using ensembles of semiprimes N together with their exact
associated orders ω. Thus, our procedure for computing the
performance measure is as follows. For a given n we choose
an ensemble of semiprimes N = pq such that

n =
2 log2(N) + 1�, (64)

where
· · · � is the floor function [24]. This ensures that n is
at least twice as large as the number of binary digits of N ,
as required to reliably determine the order ω with an n-qubit
quantum computer [18,25,26]. For each N we compute its set

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

5 10 15 20 25 30

~
P

n

FIG. 3. Probability P̃ (n,b = 1,ω = 6) as a function of n for 14
semiprimes N with seeds chosen such that ω = 6. As expected, the
data clearly asymptote to the value 1/3.

032333-7

Y. S. NAM AND R. BLÜMEL PHYSICAL REVIEW A 87, 032333 (2013)

0.01

0.1

1

 10 15 20 25 30 35
n

P

b=1

b=2

b=3

b=4

(a)

0.983

0.992

1

 10 15 20 25 30 35
n

P

b=5

b=6

b=7

b=8

(b)

FIG. 4. Normalized probability P , represented by the properly
averaged performance measure, (65), for successful factorization of
sample semiprimes N of binary length log2 (N) ∼ n/2 as a function
of n for several bandwidths b, ranging from b = 1 to b = 8. (a) b = 1
(triangles), b = 2 (asterisks), b = 3 (diamonds), and b = 4 (squares).
(b) b = 5 (triangles), b = 6 (asterisks), b = 7 (diamonds), and b = 8
(squares). Solid lines through the data points are the fit functions,
(66). Note the visual similarity of (a) and (b), which illustrates the
exponential scaling of ξb in b.

of orders {ω1, . . . ,ωa(N)}, where a(N) is the number of orders
for given N . We also define the multiplicity of a given order ω

as the number ν(ω) of seeds x of order ω. Thus equipped, we
compute the performance PN (n,b) as the properly weighted
average,

PN (n,b) = 1

ϕE(N)

a(N)∑
j=1

ν(ωj)P (n,b,ωj), (65)

where P (n,b,ω) is defied in Eq. (22) and ϕE(N) is Euler’s
totient function [27].

In Fig. 4(a) we show PN (n,b) for various choices of N

for b = 1, . . . ,4 and n ranging from n = 9 to n = 33. Plot
symbols correspond to particular N values and there are up
to 7 semiprimes N per n. Overall we see that the data exhibit
exponential behavior on average, which is well represented by
the fit lines,

P>(n,b) = 2−ξb(n−8), ξb = 1.1 × 2−2b, (66)

drawn through the data points. In Sec. VI B we present an
analytical model that explains the b scaling of (66) and,
in addition, reproduces the prefactor in Eq. (66) within

0.01

0.1

1

 10 15 20 25 30 35

1 – P

n

b=1 b=2

b=3

b=4

(a)

10-5

10-4

10-3

0.01

 10 15 20 25 30 35

1 – P

n

b=5 b=6

b=7

b=8

(b)

FIG. 5. Small-n behavior of 1 − P [see Eq. (65)] for several
sample semiprimes N (symbols) with a proper average over {ω(N)}.
The bandwidth b ranges from b = 1 to b = 8. (a) b = 1 (triangles),
b = 2 (asterisks), b = 3 (diamonds), and b = 4 (squares). (b) b = 5
(triangles), b = 6 (asterisks), b = 7 (diamonds), and b = 8 (squares).
Solid lines are the nonexponential fit functions, (67). Dashed
lines are the fit functions, (66). Crossover points between small-n,
nonexponential behavior and large-n, exponential behavior [i.e., the
intersections of (66) and (67)] are marked by arrows.

10%. Figure 4(b) shows corresponding data for b = 5, . . . ,8.
Again, the data points behave exponentially and are well
approximated by the fit lines defined in Eq. (66). This
illustrates that the b and n scaling in Eq. (66) holds over a
considerable range of b and n values.

While on the large scale of Fig. 4 the data show exponential
behavior, looking more closely at the small-n regime, we
see definite deviations from exponential behavior. Plotting
1 − P (n,b) magnifies the P (n,b) behavior in the small-n
region and clearly brings out the deviations from exponential
behavior. This is illustrated in Fig. 5, which shows the data
in Fig. 4, plotted as 1 − P (n,b). The dashed lines in Fig. 5
are the exponential fit lines defined in Eq. (66). We see that,
even on this magnified scale and in the large-n regime, the
data are well represented by the exponentials, (66). For small
n, however, the data clearly deviate from exponential but are
well fit by the solid lines representing the function [16]

P<(n,b) = P̃<(n,b)/f̄ , (67)

where

f̄ =
∫ 1/2

−1/2

sin2(πβ)

(πβ)2
dβ ≈ 0.774 (68)

032333-8

SCALING LAWS FOR SHOR’S ALGORITHM WITH A . . . PHYSICAL REVIEW A 87, 032333 (2013)

and

P̃<(n,b) =
〈

1

r

〉
+
(

1 −
〈

1

r

〉)(
f̄ − 〈

1
r

〉
1 − 〈

1
r

〉)

× exp
[−ϕ2

max(n,b)/100
]
, (69)

where ϕmax is given in Eq. (54), r is defined in Eq. (62), and
〈 1

r
〉 = 2−(n−8)/2.6 (see Appendix C). Based on our numerical

evidence, we conclude that P (n,b) shows a clear transition
from nonexponential behavior for small n to exponential
behavior for large n. The arrows in Fig. 5 point to the
locations of the transition between the two regimes and are the
intersection points between the functions defined in Eqs. (66)
and (67).

Combining expressions (66) and (67), we derive an ana-
lytical expression, nt (b), for the transition points between the
two different regimes for given b. The transition points nt are
defined as the n value at which (66) equals (67). A useful
analytical formula, approximately valid for b � 8, is obtained
in the following way. For b � 8, we noted numerically that the
1/r terms in Eq. (69) may be neglected, resulting in only a
small shift of nt , about 2 units in n. Therefore, to lowest order,
P<(nt ,b) = P>(nt ,b) results in

ϕ2
max(nt ,b)

100
= ξb ln (2)(nt − 8), (70)

which implies

1.1 × 2−2b ln (2)(nt − 8) = 4π2

100
[2−b−1(nt − b − 2) + 2−nt]2.

(71)

At this point we note that the transitions nt between the two
regimes occur at n values for which

2−nt � 2−b, (72)

which implies that we can safely neglect the 2−nt term in
Eq. (71). This turns (71) into the quadratic equation

n2
t − 2nt (C + b + 2) + 16C + (b + 2)2 = 0, (73)

where we have defined

C = 55 ln(2)

π2
. (74)

Solving (73) yields

nt = b + 5.9 +
√

7.7(b + 2) − 47. (75)

Expression (75) for the transition points shows that the
onset of exponential behavior is shifted toward larger n for
larger b. Formula (75) for the transition points nt (b) is useful
for extrapolating into the practically relevant qubit regime n �
4000, where classical computers cannot follow any more. In
this classically inaccessible regime, we can then decide on
the basis of (75), e.g., whether for given b and very large n,
formula (66) or formula (67) should be used to predict the
performance of the quantum computer. For b = 1, . . . ,4, as
shown in Fig. 5(a), the transition is poorly defined, whereas,
as shown in Fig. 5 (b), the transition is progressively better
defined as b increases. That this trend continues is shown in
Fig. 6, which shows data for b = 10, 15, and 20. We also see
that the quality of the fit of the data with (67) improves for

10-14

10-12

10-10

10-8

10-6

 10 15 20 25 30 35

1 – P

n

b=10

b=15

b=20

FIG. 6. Small-n behavior of semiprimes N for b = 10 (squares),
b = 15 (crosses), and b = 20 (circles). Solid lines represent the non-
exponential performance functions P<(n,b) [see Eq. (67)]. Dashed
lines are the corresponding large-n, exponential fit functions, (66).

increasing b. The sharp cutoff displayed by P<(n,b) in Fig. 6
at n = 11 (b = 10), n = 16 (b = 15), and n = 22 (b = 20) is
also understood since, according to (54), ϕmax(n,b) = 0 for
n = b + 1.

VI. ANALYTICAL RESULTS

Our analytical investigation of the performance measure
starts with (35). Analytically and numerically we found that
(n,sk,lj) is a slow function of k, whereas ϕ(n,b,sk,lj)
is a fast, erratic function of k. Therefore, we can write,
approximately,

P̃j (n,b,ω) ≈ 1

2nK

∣∣∣∣∣
[

K−1∑
k=0

ei(n,sk,lj)

]
〈e−iϕ〉n,b,lj

∣∣∣∣∣
2

= 1

2nK
|�(n,lj ,ω)|2|〈e−iϕ〉n,b,lj |2, (76)

where �(n,lj ,ω) is defined in Eq. (48) and

〈e−iϕ〉n,b,lj = 1

K

K−1∑
k=0

e−iϕ(n,b,sk ,lj). (77)

With (22), (23), and (51) we now obtain

P (n,b,ω) =
∑ω−1

j=0 |�(n,lj ,ω)|2|〈e−iϕ〉n,b,lj |2∑ω−1
j=0 |�(n,lj ,ω)|2 . (78)

We now proceed with a slightly less but still extremely accurate
approximation by separating (78) in j , which then yields

P (n,b,ω) = 1

ω

ω−1∑
j=0

|〈e−iϕ〉n,b,lj |2 = 〈|〈e−iϕ〉k|2〉j , (79)

where 〈· · · 〉k and 〈· · · 〉j are averages over k and j , respectively.
This expression for the performance measure P (n,b,ω) is the
basis of our analytical work.

032333-9

Y. S. NAM AND R. BLÜMEL PHYSICAL REVIEW A 87, 032333 (2013)

10-9

10-6

10-3

100

0 1 2 3 4 5 6 7 8 9

Δ(k)

b

FIG. 7. Relative error �(k) of k separation as a function of b for
several semiprimes N . The data show that the error is negligible.
The fit line, � = 2−2.5b−5.5 (dashed line), shows that the relative error
vanishes exponentially in b.

Since (79) is based on the validity of the separation in k and
j , both are investigated in detail in Sec. VI A. A random model
is used in Sec. VI B to evaluate (79) analytically in the large-n
regime. This yields an analytical explanation for the b scaling
in Eq. (66) and excellent agreement with the prefactor of the
exponential term in Eq. (66). In Sec. VI C, again assuming
separation in k and j , we then arrive at an analytical formula
describing the small-n regime, which predicts the functional
form and the b scaling of (67) very well and, also, provides an
estimate of the overall scaling factor.

A. Separability

In this section we investigate in detail the quality of the
separations in k and in j , which lead to our jump-off point,
(79), for the analytical calculations reported in Sec. VI B and
Sec. VI C. We start with justifying the separation in k. To this
end we define

A(k) =
ω−1∑
j=0

∣∣∣∣∣
K−1∑
k=0

ei(n,sk,lj)−iϕ(n,b,sk ,lj)

∣∣∣∣∣
2

(80)

and

B(k) =
ω−1∑
j=0

∣∣∣∣∣
[

K−1∑
k=0

ei(n,sk,lj)

]
1

K

K−1∑
k′=0

e−iϕ(n,b,sk′ ,lj)

∣∣∣∣∣
2

=
ω−1∑
j=0

|�(n,lj ,ω)|2|〈e−iϕ〉n,b,lj |2 (81)

and compute the relative error

�(k) = |A(k) − B(k)|
|A(k)| (82)

incurred by the k separation. Figure 7 shows �(k) as a function
of b for various choices of N . We clearly see that k separation
is an excellent approximation, which produces negligible,
exponentially small errors. We plotted the line � = 2−2.5b−5.5

through the data to guide the eye. This line shows that the
relative error of k separation vanishes exponentially in b.

10-8

10-5

10-2

101

0 1 2 3 4 5 6 7 8 9

Δ(j)

b

FIG. 8. Relative error �(j) of j separation as a function of b for
several semiprimes N . A fit line, � = 2−2.5b−1.5 (dashed line), is also
shown. Compared with k separation (see Fig. 7), the error decays
with the same exponent; only the overall scale factor is different.

Turning now to the j separation, we define

A(j) = B(k) (83)

and

B(j) =
⎡
⎣ω−1∑

j=0

|�(n,lj ,ω)|2
⎤
⎦ 1

ω

ω−1∑
j=0

|〈e−iϕ〉n,b,lj |2 (84)

and compute the relative error of j separation

�(j) = |A(j) − B(j)|
|A(j)| . (85)

Figure 8 shows �(j) as a function of b for various choices
of N . Apparently, while a bit less accurate than k separation,
j separation is still highly accurate, improving exponentially
with b. This is seen from the fit line � = 2−2.5b−1.5 through the
data in Fig. 8, which also shows that �(k) and �(j) decay with
the same exponential factor in b and are offset by a constant
only.

B. Large-n, exponential regime

In this section we evaluate (79) analytically in a model
in which we treat sk and lj as independent random variables.
This model, obviously, cannot capture the correlations between
sk and lj introduced by ω and yields P (n,b,ω), which is
independent of ω. Therefore, the ω average in Eq. (65) is
trivial and PN (n,b) does not depend on N either. Therefore,
we write PN (n,b) → P (n,b) as the prediction of the random
model. However, even in this model, where ω correlations are
entirely neglected, it is hard to evaluate the expectation value
of the exponential. Therefore, we proceed to evaluate (79) via
its moment expansion,

〈|〈e−iϕ〉k|2〉j = 1 − [〈ϕ2〉kj − 〈〈ϕ〉2
k

〉
j

]+
[

1

12
〈ϕ4〉kj

+ 1

4

〈〈ϕ2〉2
k

〉
j
− 1

3
〈〈ϕ〉k〈ϕ3〉k〉j

]
± · · · , (86)

032333-10

SCALING LAWS FOR SHOR’S ALGORITHM WITH A . . . PHYSICAL REVIEW A 87, 032333 (2013)

where we have used 〈· · · 〉kj = 〈〈· · · 〉k〉j = 〈〈· · · 〉j 〉k in cases
where the averages commute. We start by computing

〈ϕ2〉kj = π2
n−1∑

m,m′=b+1

m−b−1∑
μ=0

×
m′−b−1∑

μ′=0

〈s[n−m−1]s[n−m′−1]〉k〈l[μ]l[μ′]〉j
2m+m′−μ−μ′ , (87)

where we have made use of the assumed independence of s

and l. Taking into account that the binary digits of s and l can
only take the values 0 and 1, we obtain

〈s[α]s[β]〉k = 1
2δαβ + 1

4 (1 − δαβ) (88)

and a similar expression for 〈l[μ]l[μ′]〉j . Because of (88), the
evaluation of the quadruple sum, (87), is lengthy but can be
performed analytically. The result is

〈ϕ2〉kj =
(

π2

144

)
2−2b[9x2+ 21x − 10 + 9(2 + x)2−x+ 2−2x],

(89)

where

x = n − b − 2. (90)

Next, we evaluate 〈〈ϕ〉2
k〉j . With (88) and following the same

procedures that lead to (89), we obtain

〈〈ϕ〉2
k

〉
j

=
(

π2

96

)
2−2b[6x2 + 6x − 4 + 6(1 + x)2−x + 2−2x],

(91)

where x is defined in Eq. (90). We define

σ̂ 2 = 〈ϕ2〉kj − 〈〈ϕ〉2
k

〉
j
, (92)

which, on the basis of the results (89) and (91), is explicitly
given by

σ̂ 2 =
(

π2

288

)
2−2b(24x − 8 + 18 × 2−x − 2−2x). (93)

With (79) and up to second order in the moment expansion
(86), the performance measure is now given by

P (n,b) ≈ 1 − σ̂ 2. (94)

Comparing (94) with the fit function (66) and using (90), we
see that (94), to leading order in n, is the first-order expansion
of

P (a)(n,b) ∼ 2−ξ
(a)
b n, (95)

where

ξ
(a)
b =

[
π2

12 ln (2)

]
× 2−2b ≈ 1.19 × 2−2b. (96)

This analytical result recovers the 2−2b scaling of the fit line
(66) and is within 10% of the exponential prefactor in Eq. (66).

The analytical evaluation of the fourth-order terms in
Eq. (86) is technically straightforward, but tedious, and not
essential at this point. Our numerical calculations show that
the fourth-order terms are approximately given by (σ̂ 2)2/2
and are, therefore, very small. This has two consequences: it

shows (i) that up to fourth order in ϕ the probability measure
P (n,b) for fixed b is consistent with exponential decay in n and
(ii) that, because of their smallness, it is currently not necessary
to evaluate the fourth-order terms analytically.

To conclude this section, we compute

〈ϕ〉kj = π

4

n−1∑
m=b+1

m−b−1∑
μ=0

1

2m−μ
, (97)

which is needed in the following section. Using the summation
formula for the evaluation of geometric sums, we obtain

〈ϕ〉kj = π

4
[2−b(n − b − 2) + 21−n] = 1

4
ϕmax, (98)

where we have related 〈ϕ〉kj to ϕmax via (54).

C. Small-n, nonexponential regime

Our starting point is again Eq. (79), but in this section
we focus on the small-n regime, i.e., n < nt (b) [see (75)].
We first derive some useful relations that can then be used
to evaluate (79) approximately in this regime. We start by
inspecting ϕ(n,b,s,l) in Eq. (37). We note that

ϕ(n,b,s,l) = π

2n−1

n−b−2∑
i=0

[(2i s[i]l) mod 2n−b−1]. (99)

Since the modulus of the product of two numbers is smaller
than or equal to the product of the moduli of two numbers, we
obtain

ϕ(n,b,s,l) � π

2n−1

n−b−2∑
i=0

[
(2i s[i] mod 2n−b−1)(l mod 2n−b−1)

]
= π

2n−1
[(s mod 2n−b−1)(l mod 2n−b−1)], (100)

where the equality is obtained by using(
n−b−2∑

i=0

2i s[i]

)
mod 2n−b−1 = (s mod 2n−b−1) mod 2n−b−1

= s mod 2n−b−1. (101)

In order to compensate for the difference between (99) and
(100), we introduce an effective parameter l̄ in Eq. (100) such
that

ϕ = π

2n−1
(s mod 2n−b−1)l̄ � ϕmax, (102)

where the inequality is obtained from the definition of ϕmax in
Eq. (52). Since this inequality must hold for any s, inequality
(102) implies

π2−bl̄ < ϕmax, (103)

where we have used max(s mod 2n−b−1) ≈ 2n−b−1. Assuming
the random model used in Sec. VI B, in particular, its
assumption of statistical independence of s and l, we compute
the average of (102). With (98) we obtain

〈ϕ〉kj = ϕmax

4
= π

2n−1
〈s mod 2n−b−1〉k〈l̄〉j = π

2
2−b〈l̄〉j .

(104)

032333-11

Y. S. NAM AND R. BLÜMEL PHYSICAL REVIEW A 87, 032333 (2013)

Hence, solving for 〈l̄〉j , and dropping the small term 2−n in
Eq. (54), we expect

〈l̄〉j � n − b − 2

2
. (105)

We note that 〈l̄〉j in Eq. (105) fulfills (103). Next, by writing
the order of a seed as ω = 2αr [see Eq. (62)], and by using the
form of an element sk of an equivalence class [s0] defined in
Eq. (8), we obtain

sk mod 2n−b−1 = kr2α mod 2n−b−1

= (kr mod 2n−α−b−1)2α, (106)

where we have assumed s0 = 0 for analytical simplicity. We
note that (kr mod 2n−α−b−1) is a random integer variable in k

for k an integer, which spans the entire integer space 0 � k �
2n−α−b−1 − 1. Now, we compute ϕ

ϕmax
, using (54), (102), and

(106):

ϕ(n,b,sk,l)

ϕmax
= π

2n−1

(sk mod 2n−b−1)l̄

2π [2−b−1(n − b) − 2−b + 2−n]

≈ l̄

n − b − 2

kr mod 2n−α−b−1

2n−α−b−1
, (107)

where we have again dropped the small 2−n term. Thus, we
write

ϕ(n,b,sk,l) ≈ l̄ϕmax

n − b − 2
R̄k, (108)

where we have used

R̄k = kr mod 2n−α−b−1

2n−α−b−1
, (109)

which is a random variable in k whose range is [0,1).
We are now ready to evaluate (79). Inserting (108) in

Eq. (79), we obtain

P (n,b) = 〈|
〈

exp

(
−iR̄k

ϕmax l̄

n − b − 2

)〉
k

|2〉j . (110)

Assuming that R̄k is uniformly distributed in [0,1), we turn the
k average into an integral and obtain

P (n,b) ≈
〈∣∣∣∣
∫ η

0
e−iR̄ 1

η
dR̄

∣∣∣∣
2〉

j

, (111)

where we have defined

η = l̄ϕmax

n − b − 2
. (112)

Evaluation of (111) yields

P (n,b) ≈
〈

2

η2
[1 − cos(η)]

〉
j

. (113)

Since η defined in Eq. (112) is small for n < nt , we Taylor-
expand (113), which results in

P (n,b) ≈
〈

2

η2

[
1 −

(
1 − η2

2
+ η4

24

)]〉
j

= 1 − 〈η2〉j
12

. (114)

Inserting η defined in Eq. (112) into (114), we obtain

P (n,b) ≈ 1 − ϕ2
max〈l̄2〉j

12(n − b − 2)2
. (115)

We compute 〈l̄2〉j in the following way. Computing the average
of the square of (102), we obtain

〈ϕ2〉kj = π2

22n−2
〈(s mod 2n−b−1)2〉k〈l̄2〉j

=
(

π2

3

)
2−2b〈l̄2〉j , (116)

where we have used the assumed independence of s and l of
the random model. According to (89), and to leading order in
x [defined in Eq. (90)], we have

〈ϕ2〉kj ≈
(

π2

16

)
2−2b(n − b − 2)2. (117)

Equating (116) and (117), we obtain

〈l̄2〉j = 3
16 (n − b − 2)2. (118)

Inserting (118) into (115), we obtain

P (n,b) ≈ 1 − ϕ2
max

64
≈ exp

[− ϕ2
max(n,b)/64

]
. (119)

Compared with the numerical fit line, (67) [in particular,
Eq. (69)], this analytical result predicts the functional form
of the b scaling exactly and the overall scaling factor within a
factor of 2.

VII. COMPARISON WITH THE WORK OF FOWLER
AND HOLLENBERG

Our work is closely related to the work of FH [15]. The
purpose of this section is to discuss similarities and differences
between the two approaches. The notation in Ref. [15] differs
from ours. In order to avoid confusion, we translate the notation
in Ref. [15] into our notation. As argued in Ref. [15] and
here, because of the sensitivity of quantum gates to noise and
decoherence, it is important to reduce the number of gates
and gate operations as much as possible. This provides the
motivation for studying the performance of Shor’s algorithm
as a function of bandwidth b of the QFT, since a small b

results in substantial savings in gates to be implemented and
gate operations to be executed. Both works conclude that
for large n the period-finding part of Shor’s algorithm scales
exponentially in n, P (n,b) ∼ 2−ξbn, where ξb = γ 2−2b and γ

is a constant. FH quote γ = 2; we find γ = 1.1. Thus, while
the research goals are the same, and the central results are
similar, there are substantial differences in how the research
programs are executed, and there are new findings in our work.
Among the new findings is the existence of a nonexponential
regime for small n (see Sec. V), analytical results for the
nonexponential and exponential regimes (see Sec. VI), and
the existence of a provable bound for the maximal possible
period ω of a given semiprime N (see Appendix B).

The main difference between [15] and our work concerns
the choice of ω in the simulations. While in our work
we simulate the period-finding part of Shor’s algorithm for
actual semiprimes N and actual, associated ω values, FH
use an effective ω = 2 + N/2. Thus, our calculations are
more realistic than those reported in Ref. [15] and check and
complement the calculations in Ref. [15] under more realistic

032333-12

SCALING LAWS FOR SHOR’S ALGORITHM WITH A . . . PHYSICAL REVIEW A 87, 032333 (2013)

0

 1000

 2000

 3000

 4000

 5000

0 2000 4000 6000 8000 10000
N

<ω>

(a)

0

 500

 1000

 1500

 2000

0 2000 4000 6000 8000 10000
N

<<ω>>

(b)

FIG. 9. Average ω as a function of N . (a) Scatterplot of 〈ω〉
defined according to (120); (b) double-averaged, binned 〈〈ω〉〉 defined
according to (121).

conditions. Our first comment in this connection concerns the
choice of FH’s effective ω value. It was chosen as a good
representative of ω values in Fig. 5 of Ref. [15]. However, the
ω values in that figure extend up to ω = N , which is more
than 2 times larger than the maximal possible ω, which is
smaller than N/2 (see Appendix B for the proof). Therefore,
rather than being located in the middle of Fig. 5 in Ref. [15],
FH’s effective ω actually lies beyond the allowed range of ω.
However, this is not expected to make any difference in the
conclusions in Ref. [15], since, as shown in Fig. 5 in Ref. [15],
according to the simulations reported in Ref. [15], P (n,b)
exhibits flat plateaus in ω.

In this connection it may be interesting to present more
information on the distribution of allowed ω values. In Fig. 9(a)
we show the properly averaged ω values,

〈ω〉 = 1

ϕE(N)

a(N)∑
j=1

ν(ωj)ωj , (120)

as a function of N in the form of a scatterplot. The symbols in
Eq. (120) have the same meaning as explained in connection
with (65), i.e., ϕE(N) is Euler’s totient function, a(N) is
the number of ω values for a given N , and ν(ω) is the
multiplicity of ω. We see that 〈ω〉 is a sensitive function of
N with a large spread over the entire allowed 〈ω〉 range, i.e.,
2 � 〈ω〉 < N/2. To make more sense of the raw 〈ω〉 data,
Fig. 9(b) shows a binned average of the 〈ω〉 data in Fig. 9(a),

defined as

〈〈ω〉〉(N (i)
)

= 1

χ (N (i)+ 250) − χ (N (i)− 250)

χ(N (i)+250)∑
λ=χ(N (i)−250)+1

〈ω〉λ,
(121)

N (i) = 500

(
i − 1

2

)
, i = 1, . . . ,20,

where χ (N) is the semiprime counting function and 〈ω〉λ is the
average ω [see Eq. (120)] associated with the λth semiprime.
Figure 9(b) shows that the twice-averaged 〈〈ω〉〉 are linear in
N with

〈〈ω〉〉 ≈ N/5. (122)

Therefore, according to Fig. 9(b), a representative ω value for
a given N is an allowed ω value in the vicinity of N/5.

In contrast to our choice of a single l state representing a
Fourier peak, FH choose two l states to represent a Fourier
peak, one to the left and one to the right of the position of
the peak’s maximum. This choice is more symmetrical than
ours, but because of the uniform response of all states under
a Fourier peak (see Fig. 2 and the discussion in Sec. IV), one
representative is sufficient.

FH quote γFH = 2 as a safe estimate, which is about a factor
of 2 larger than our, more optimistic, γ = 1.1. On the basis
of the data in Fig. 6 of Ref. [15] we computed the actual γFH

corresponding to the six panels in FH’s Fig. 6 and obtained
γFH = 0.5 (b = 0), 1.85 (b = 1), 1.83 (b = 2), 1.79 (b = 3),
1.78 (b = 4), 1.77 (b = 5), 1.73 (b = 6), and 1.57 (b = 7).
Discarding the γFH value for b = 0 (it is not generic, since it
involves only H and M gates and no rotation gate) and the γFH

values for b = 6 and b = 7 (given the numerical range of the
data, the exponential regime displayed in Fig. 6 of Ref. [15]
is very short, resulting in uncertainty in the decay constant of
an exponential fit), the γFH values are well characterized by
γFH ≈ 1.8, slightly more optimistic than the quoted γFH = 2.
What is interesting to us is that γFH = 1.8 is already closer to
our value of γ = 1.1.

Finally, what difference does it make for the performance
of a quantum computer if γ = 2 or γ = 1.1? The answer
depends on the performance level of the quantum computer.
Since a factor 2 difference in γ is the difference between the
performance and the square of the performance, a factor of 2
difference in γ has basically no effect if the quantum computer
operates with close to 100% performance but has a large effect
if the quantum computer operates, e.g., on the 10% level.

Because of the critical need for quantum error correction
and fault-tolerant operation [28], FH also present an error-
tolerant, approximate construction of rotation gates, consisting
of more fundamental elementary gates. In fact, each single-
qubit rotation gate, as written in the quantum algorithm, may
result in thousands of gates when decomposed. Unlike FH,
we do not discuss the actual realization of gates, since, in this
paper, we focus on the algorithmic aspects of Shor’s algorithm,
in particular, on the scaling of the performance with n and b. In
any case, as shown by FH, the actual experimental realization
of fault-tolerant gates may require large numbers of additional,
ancillary gates and qubits, motivating and emphasizing the

032333-13

Y. S. NAM AND R. BLÜMEL PHYSICAL REVIEW A 87, 032333 (2013)

critical need to reduce required quantum resources as much as
possible by optimizing the quantum algorithms.

Given that error correction and fault-tolerant operation may
introduce many additional auxiliary gates and qubits, what
happens to our scaling laws in this case? Since our scaling
laws depend on two parameters, b and n, the answer has two
parts. (i) Error correction will not affect the b scaling, since
the possibility of reducing the full QFT to a narrow-band QFT
with bandwidth b is an intrinsic property of the mathematical
structure of the Fourier transform itself that has nothing to do
with quantum error correction. In fact, under noisy conditions,
it may not even be a good idea to increase the bandwidth of
the QFT, because the algorithmic accuracy of the transform
gained might be more than offset by the errors introduced
by the additional gates that are now exposed to noise and
decoherence. (ii) It is clear that each computational qubit in
Shor’s algorithm has to be protected with quantum circuits that
consist of additional qubits. However, since the scaling laws
derived in this paper refer to the number n of computational
qubits, our scaling laws remain unchanged.

Summarizing the discussion in this section, we see our work
as complementary to the pioneering work of FH, adding new
insights and confirming the major conclusions of FH, using an
independent approach based on period-finding simulations of
actual semiprimes N , supported by analytical results.

VIII. DISCUSSION

An absolute limit of classical computing is reached when
the physical requirements exceed the resources of the universe.
According to this definition we can safely say that a classical
computer, no matter its precise architecture, using the best
currently available factoring algorithms, will never be able
to factor a semiprime with 5000 decimal digits or more.
We see this in the following way. The best currently known
algorithm for factoring large, “hard” semiprimes (more than
∼130 decimal digits; no small factors) is the general number
field sieve (GNFS) [1]. It was recently used by Kleinjung
et al. [8] to factor the RSA challenge number RSA-768 (232
decimal digits). This factorization took the equivalence of 2000
years on a 2.2-GHz Opteron workstation [8]. The performance
of the GNFS scales approximately as [1]

P (N) ∼ exp{1.9[ln(N)]1/3[ln ln(N)]2/3}, (123)

where N is the semiprime to be factored. If we take the
Kleinjung et al. factorization as the current, best benchmark
and estimate an Opteron processor to consist of roughly 1025

particles, then we can factor a 232-decimal-digit semiprime
with 2000 × 12 × 1025 ≈ 2 × 1029 particles in the time span
of a month. According to (123), then, in order to factor
a 5000-decimal-digit number in the span of a month we
need

2 × 1029 × P (105000)/P (10232) ≈ 1089 (124)

particles. This exceeds the number of particles in the uni-
verse (≈1080) by several orders of magnitude. Clearly, the
factorization of a 5000-decimal-digit semiprime is physically
impossible to perform within a reasonable time (∼1 month)
on a classical computer. Even if we allow substantial progress
in computer development, for instance, replacing the current

MOSFET transistors [29] used in computer chips with single-
electron transistors [30] and increasing the clock speed of a
processor from 2.2 GHz to the optical regime of ∼1015 Hz, we
gain only insignificantly. Therefore, in the absence of a break-
through in the design of classical factoring algorithms, if we
want to make any progress in factoring large numbers, we need
a different computing paradigm. This is provided by switching
from classical computing to quantum computing, i.e., running
Shor’s algorithm on a quantum computer. Instead of scaling
(sub)exponentially, according to (123), Shor’s algorithm scales
∼O[(ln N)2(ln ln N)(ln ln ln N)] [11] and thus provides an
exponential speedup that allows us, in principle, to tackle
semiprimes vastly in excess of N = 105000. Obviously, for the
practical implementation of powerful quantum computers, any
optimization of quantum algorithms is welcome. Addressing
this point, our paper shows that replacing the full QFT in Shor’s
algorithm with a narrow-band version incurs only a negligible
performance penalty. We also show how the performance of
such a streamlined version of Shor’s algorithm scales with the
number of qubits n.

In order to objectively characterize the performance of a
quantum computer with n qubits, equipped with a banded QFT
of bandwidth b, we defined the performance measure P (n,b,ω)
in Sec. IV [see Eq. (22)]. This measure was carefully chosen
to accurately reflect the performance of the quantum computer
in terms of the probability of a successful factorization,
yet not excessively expensive to compute numerically and,
most importantly, a convenient starting point for analytical
computations. As shown in Secs. V and VI, our performance
measure fulfills both goals. Although any given peak in the
QFT contains several l states with significant overlap with
the Fourier peak, and useful for factorization in classical
postprocessing [10,18], our performance measure defined in
Eq. (22) is based only on a single l state, i.e., the state |lj 〉
closest to the central maximum of the Fourier peak number j

[see Eq. (20)]. This, no doubt, is convenient for analytical
calculations, as successfully demonstrated in Sec. VI, and
for the following reason it is also justified. Numerically
investigating the response of the Fourier peaks to a reduction in
the bandwidth b, we found that the width of the Fourier peaks
stays the same (about one state), while the height of the Fourier
peaks is reduced. Thus, all l states under a Fourier peak respond
in unison to a change in b (see Fig. 2), and since the width
of the Fourier peaks stays the same, the number of significant
states in a peak is conserved too. This means that a single state
under the peak, for instance, the state with maximal overlap,
accurately represents the response of any other state under the
peak, in particular, the states useful for factorization. Thus,
summarizing our choice of performance measure, we may say
that, of course, choosing all those states under a Fourier peak
that are useful for factorization would be best. However, this
is computationally prohibitively expensive and not useful for
analytical calculations. A proxy is necessary. Because of the
uniform response of all states in a Fourier peak, this proxy is
provided, e.g., by the state closest to the central peak, |lj 〉, and
leads directly to our performance measure P (n,b) defined in
Eq. (22).

The exponential fit function in Eq. (66) is shifted by 8
units in n. A possible explanation is the following. n = 8
corresponds to N = 15, the smallest odd semiprime. However,

032333-14

SCALING LAWS FOR SHOR’S ALGORITHM WITH A . . . PHYSICAL REVIEW A 87, 032333 (2013)

for N = 15 all possible orders ω are powers of 2. Therefore,
according to the discussion in Sec. IV, Shor’s algorithm
performs perfectly in this case for all b. This means that
P (n = 8,b,ω) = 1 for all b, which is true independently
of b only if ξb is multiplied with n − 8 in the exponent
of (66).

The largest RSA challenge number [31] is RSA-2048. It
has 2048 binary digits, which corresponds to 617 decimal
digits. Factoring this number on a quantum computer requires
a minimum of 4096 qubits. As an illustrative example, let us
assume that we factor this number on a quantum computer
with b = 8. Since no numerical simulation data are available
in this very-large-n regime, we have to rely on our results,
(66) and (67), to estimate the performance of the quantum
computer. Which of the two formulas to use depends on which
regime, exponential or nonexponential, we are in. For b = 8,
and according to (75), the transition point nt for b = 8 occurs
at nt = 20. Therefore, since n � nt in this case, we are sure
that we are not in the nonexponential regime. However, how
certain can we be that the exponential law (66) is valid all the
way up to n = 4096, when we checked it numerically only up
to n ≈ 30 (see Sec. V)?

We answer this question in the following way. The moment
expansion (86) is certainly valid out to n values for which
our low-order Taylor expansion of exp(−iϕ) is valid, i.e., for
ϕ < 1. Since ϕ < ϕmax, the safest estimate for the validity
of (66) is n � 2b+1/(2π), which is obtained from (54) for
n � b. For b = 8 this implies n < 81. This is already deeply
in the n regime where current numerical simulations cannot
follow. However, we can do better than that. The moment
expansion, (86), together with our numerical observation that
the fourth-order terms are given by (σ̂ 2)2/2, shows that the
relevant expansion parameter of (86) is not ϕ but σ̂ 2, which
is much smaller than ϕ2

max. Therefore, we can safely assume
exponential decay out to n values for which σ̂ 2 < 1. According
to (93), then, this yields the estimate n < 12 × 22b/π2, which
amounts to n < 79 682 for b = 8, much larger than the n =
4096 required for the factorization of RSA-2048. We conclude
that, for b = 8, we may safely use the exponential law, (66), to
estimate the performance of the quantum computer. Therefore,
using n = 4096 and b = 8 in Eq. (66), we obtain P (n,b) =
0.954; i.e., a quantum computer with a bandwidth of only
b = 8 can factor the RSA challenge number RSA-2048 with a
performance of better than 95%. If we increase b = 8 by only
1 unit, to b = 9, the performance increases to 98%.

Concluding this section, we briefly discuss the paper by
Barenco et al. [32], which also investigates the effect of the
banded QFT on the performance of the period-finding part of
Shor’s algorithm. In fact, their performance measure Q, based
on the probability of obtaining an |l〉 state closest to 2n/ω,
is, up to normalization, identical to our performance measure.
However, the main focus of [32] is the effect of decoherence
on Q, and similarly to the work of FH [15], Barenco et al. do
not use factoring of actual semiprimes N in their numerical
simulations. Finally, the analytical performance estimates in
Ref. [32] require b > log2(n) + 2, which, for b = 8, implies
n < 64. Therefore, for small b � 8, the analytical formulas
of [32] are not applicable to the performance of a quantum
computer in the technically and commercially interesting
small-b, large-n regime with n � 4000.

IX. SUMMARY AND CONCLUSIONS

Given that quantum computers are difficult to build,
any advance in the optimization of quantum algorithms is
welcome. Accordingly, in this paper, we have investigated the
performance of Shor’s algorithm equipped with a banded QFT.
Our predictions are based on the following five substantial
advances.

(1) Properly ω-averaged numerical simulations of factor-
ing actual semiprimes N for qubit numbers ranging from n = 9
to n = 33, yielding the numerical performance estimates (66)
in the large-n regime and (67) in the small-n regime.

(2) Analytical and numerical justification of the separation
of the k and j sums in the definition of the performance
measure as the foundation of analytical computations of the
performance measure in the large-n and small-n regimes. It
is shown that both separations are exponentially accurate,
with exponential improvement of accuracy for increasing
bandwidth b of the QFT.

(3) Analytical computation of the performance measure in
the exponential, high-n regime, which predicts the 2−2b scaling
exactly and the prefactor in ξb within 10% of the numerical
result, (66).

(4) Analytical computation of the performance measure in
the small-n regime, which predicts the functional form of the
performance measure accurately and provides a reasonable
estimate of a single, overall scaling factor.

(5) Analytical formula (75) for the crossover points nt ,
which mark the transition from the nonexponential regime to
the exponential regime of quantum computer performance.
For a given bandwidth b and number of qubits n, this allows
a quick, accurate, and convenient decision of whether the
resulting finite-bandwidth quantum computer is working in
the exponential or nonexponential regime.

In addition, in Appendix A, we prove the existence and
uniqueness of an order 2 seed for any semiprime N , which, in
Appendix B, is used to prove that the maximal possible order ω

of a seed is less than N/2 (see Figs. 9 and 10). The maximally
allowed ω is smaller than the effective, representative ω chosen
in Ref. [15]. However, due to the insensitivity of the results in
Ref. [15] with respect to the chosen ω (see Fig. 5 of Ref. [15]),

0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

0 20000 40000 60000 80000 100000

m
ax

im
um

 o
rd

er

N

FIG. 10. Maximal possible orders ω (maximum order) computed
and displayed for each N in the complete list of semiprimes in the
interval 0 < N < 105. Apparently, the maximal possible order never
exceeds N/2, a fact proved in the text.

032333-15

Y. S. NAM AND R. BLÜMEL PHYSICAL REVIEW A 87, 032333 (2013)

this fact is not expected to change the results predicted in
Ref. [15]. Finally, we investigate the statistical properties of
an inverse factor of ω in Appendix C.

In our opinion, and based on the numerical and analytical
results presented in this paper, we conclude that the period-
finding part of Shor’s algorithm equipped with a banded QFT
of bandwidth b is now essentially understood. However, period
finding is not the most demanding part of Shor’s algorithm to
implement. This distinction is reserved for the f -mapping part
of Shor’s algorithm (the modular exponentiation part), which
feeds register II with f (s) values (see Sec. II) and, compared
with the period-finding part of Shor’s algorithm, requires vastly
more quantum resources to implement [25,33–35]. Therefore,
attention now has to be directed toward optimizing the f -
mapping part of Shor’s algorithm.

APPENDIX A: EXISTENCE AND UNIQUENESS OF AN
ELEMENT OF ORDER 2

In support of the result that the probability of encountering
a seed with a small order is small, we provide here a proof that
there is one and only one seed x of order 2 for any semiprime
N = pq, where p �= q are primes larger than 2. A seed is any
positive integer, larger than 1, that is relatively prime to N . Let
us collect all possible seeds xj , j = 1, . . . ,L − 1, including
the unit 1, into a set GN = {1,x1,x2, . . . ,xL−1}. This way, GN

forms a multiplicative group modulo N [36] containing L

elements.
The computation of L is straightforward. There are at most

N − 1 numbers that are relatively prime to N = pq. (By
definition, the unit element 1 is relatively prime to N [27], but
N is not.) However, p − 1 of these numbers contain a factor
q and q − 1 of these numbers contain a factor p, and these
numbers are all different. Therefore, there are L = (N − 1) −
(p − 1) − (q − 1) = N − p − q + 1 group elements. Since
N , p, and q are odd, L is even. At this point we cite a
well-known theorem of elementary algebra that states that each
group with an even number of elements has at least one element
that is different from the unit element and is of order 2 [27].
Applied to our group GN this means that there exists at least
one seed x �= 1 with x2 = 1 modulo N , i.e., a seed of order 2.

At this point it is important to observe that if there is a seed
x with x2 mod N = 1, then there is a mirror seed z = N − x,
which is also of order 2, since z2 mod N = (N2 − 2Nx + x2)
mod N = x2 mod N = 1. Therefore, without restriction of
generality, we restrict ourselves to the range of seeds smaller
than N/2 and prove that there is only one x < N/2 with x2

mod N = 1, where N = pq.
We already proved that there is at least one x with

x2 mod N = 1. (A1)

Without restriction of generality, we can choose this x to be
smaller than N/2, since, if it is larger than N/2, its mirror will
be smaller than N/2. Assume that there exists another seed of
order 2, y < N/2, with y > x (no restriction of generality) and

y2 mod N = 1. (A2)

Since x2 mod N = 1 and y2 mod N = 1, we have

(y2 − x2) mod N = (y − x)(y + x) mod N = 0. (A3)

This equation holds if either (i) at least one of the factors is
divisible by N or (ii) (y − x) contains p and (y + x) contains
q, or vice versa. However, case i is impossible: Since both x

and y are smaller than N/2, (y + x) < N is, therefore, never
divisible by N . For the same reason (y − x) is divisible by
N only if (y − x) = 0, which is excluded, since, according to
assumption, y �= x. This leaves case ii.

Since x2 mod N = 1, we have (x − 1)(x + 1) mod N =
0. Since (x − 1) < N and (x + 1) < N , for any N > 2, neither
factor is divisible by N and the product is divisible by N only
if (x − 1) is a multiple of p and (x + 1) is a multiple of q.
There is no restriction of generality here, since which factor of
the product is divisible by which factor of N (p or q) is merely
a matter of properly labeling the factors of N . So, let us write

x − 1 = λp, (A4)

x + 1 = μq, (A5)

where λ and μ are positive integers. We observe immediately
that λ cannot contain a factor q, since otherwise (x − 1) would
be divisible by N . In the same way we reason that μ cannot
contain a factor p. We record this observation as

λ mod q �= 0, (A6)

μ mod p �= 0. (A7)

We also have y2 mod N = 1, i.e., (y − 1)(y + 1) mod N =
0, which now implies two possibilities, since in Eqs. (A4)
and (A5) we already chose the naming convention for the two
factors, p and q, of N . The two cases are

(A) (y − 1) is a multiple of p, (y + 1) is a multiple of q;

(A8)

(B) (y − 1) is a multiple of q, (y + 1) is a multiple of p.

(A9)

Let us look at case A first. Let us write

(y − 1) = αp, (A10)

(y + 1) = βq. (A11)

In analogy with the reasoning that led us to (A6) and (A7) we
have

α mod q �= 0, (A12)

β mod p �= 0. (A13)

Then, because of x,y < N/2, (A3), and the discussion
following (A3), we need to prove that either (y − x) contains
a factor p and (y + x) a factor q or vice versa. We write

y + x = (y − 1) + (x + 1) = αp + μq. (A14)

But since α is not divisible by q [see Eq. (A12)] and μ is not
divisible by p [see Eq. (A7)], (y + x) is divisible neither by
p nor by q. Therefore, case A leads to a contradiction, which
implies that, according to case A, a second order 2 seed y �= x

does not exist.
Let us now look at case B. Let us write

(y − 1) = γ q, (A15)

(y + 1) = νp, (A16)

032333-16

SCALING LAWS FOR SHOR’S ALGORITHM WITH A . . . PHYSICAL REVIEW A 87, 032333 (2013)

where, again, in analogy with the reasoning that led us
to (A6) and (A7), we have

γ mod p �= 0, (A17)

ν mod q �= 0. (A18)

Then

y − x = (y − 1) − (x − 1) = γ q − λp, (A19)

which, because of (A17) and (A18), is divisible neither by p

nor by q. Therefore, case B, too, leads to a contradiction.
As a result, we obtain that the existence of an additional

order 2 seed y �= x, y < N/2 is impossible. Therefore, x is a
unique order 2 seed with x < N/2. This means that for any
given semiprime N = pq, there are exactly two order 2 seeds,
x < N/2 and its mirror N − x > N/2.

APPENDIX B: MAXIMAL ORDER

In connection with Shor’s algorithm, for a given semiprime
N , we consider seeds x with an even order ω = 2�, where
� � 1 is a positive integer. The purpose of this section is to
show that the largest possible even ω is smaller than N/2.

A seed x, 1 � x < N is a positive integer, relatively prime
to N = pq, where p �= q are prime numbers larger than 2. As
discussed in Appendix A, the set of seeds x forms a group GN

with

|GN | = N − p − q − 1 = (p − 1)(q − 1) (B1)

elements. We note that, according to (B1), |GN | is divisible
by 4, a fact which becomes relevant below. If x is relatively
prime to N , so is N − x. Therefore, if x is a seed, so is N − x,
which implies (i) a symmetry of seeds with respect to N/2 and
(ii) that there is an even number of seeds. We use implication
i to define a set ĜN , consisting of elements x̂ = (x,N − x),
where x and N − x are identified. The set ĜN forms a group.
This is so since ĜN contains the unit element 1̂ = (1,N − 1),
the product x̂ŷ of two elements of ĜN is again in ĜN , and
with each x̂, we also find its inverse (x̂)−1 in ĜN . Because of
implication i the group ĜN has

|ĜN | = |GN |/2 (B2)

elements.
Let us form the set G∗

N , which contains the squares of x

modulo N . Since G∗
N contains the unit element 1, and since

with each x2 and y2 in G∗
N , the product

(x2)(y2) mod N = (xy)2 mod N (B3)

is also in G∗
N , and since with each x2 we also find its inverse

(x2)−1 mod N = (x−1)2 mod N (B4)

in G∗
N , the set G∗

N is a group. In the same way we form the set
Ĝ∗

N from the squares of x̂ in ĜN . Because of the definition of
ĜN , identifying x and N − x, and because of

(N − x)2 mod N = x2 mod N, (B5)

which shows that the squares of x and N − x are identical,
the groups G∗

N and Ĝ∗
N have the same number of elements.

In addition, as is easily verified, groups G∗
N and Ĝ∗

N are
isomorphic, which implies that the order of an element in Ĝ∗

N

is the same as the order of an element in G∗
N . Let us denote

the number of elements in these two groups

|G∗
N | = |Ĝ∗

N | = M. (B6)

Then, because of (B2), and because Ĝ∗
N is a subgroup of ĜN ,

we have that

M = |Ĝ∗
N | divides |ĜN | = |GN |/2. (B7)

One possibility is M = |GN |/2. However, since the group Ĝ∗
N

of squares is a subgroup of ĜN , M = |GN |/2 is possible only
if there are as many squares x̂2 in Ĝ∗

N as there are elements x̂

in ĜN . However, because of the existence of a nontrivial order
2 element â (see Appendix A), this is impossible, since both
1̂2 = 1̂ and â2 = 1̂, which immediately implies M < |GN |/2.
Therefore, the largest possible M that divides |GN |/2 (an even
number) is |GN |/4, which implies

M � |GN |/4. (B8)

According to Euler’s totient theorem [27], we have, for any x̂2

in Ĝ∗
N ,

(x̂2)M = 1̂, (B9)

which implies that the order of any element x̂2 in Ĝ∗
N is at

most M = |GN |/4. Because of the isomorphism between Ĝ∗
N

and G∗
N , this implies that the order of any x2 in G∗

N is at most
|GN |/4. This, finally, implies that the order of any element x

in GN is at most |GN |/2, i.e.,

ω � |GN |/2 < N/2. (B10)

We note that since an essential element of the proof is to
consider the group of squares of x, the proof indeed applies
only to even ω. An illustration of (B10) is provided in Fig. 10,
which shows the maximum even orders of all semiprimes N

ranging up to N = 100 000. The figure illustrates (i) that the
maximal order is indeed smaller than N/2 and (ii) that the
maximal order of a given semiprime N is not always close
to N/2 but still has to divide the group order. Therefore, in
addition to the line ∼N/2, we also see the lines corresponding
to ∼N/4, ∼N/6, etc.

 0.0001

 0.001

 0.01

 0.1

1

5 10 15 20 25 30 35 40
n

1⎯r〈 〉

FIG. 11. The fraction 〈 1
r
〉 as a function of n for several

semiprimes. The fit line (solid line) is the function 〈 1
r
〉 = 2−(n−8)/2.6.

032333-17

Y. S. NAM AND R. BLÜMEL PHYSICAL REVIEW A 87, 032333 (2013)

APPENDIX C: 1/r AVERAGE

For analytical formula (69), we need the average 〈 1
r
〉 of 1/r

as a function of n, where r is defined in Eq. (62). We computed
it in the following way. First, we computed all possible orders,
ωj , of a given semiprime N with their associated multiplicities,
ν(ωj). Then we extracted the odd part of the obtained orders,
r , as defined in Eq. (62). Denoting the odd part of a specific
order ωj by rj , in analogy with (65) and (120), we obtain

〈
1

r

〉
= 1

ϕE(N)

a(N)∑
j=1

ν(ωj)
1

rj

, (C1)

where the symbols in Eq. (C1) share the same definition as
shown in Eqs. (65) and (120), i.e., ϕE(N) is Euler’s totient
function and a(N) is the number of orders for given N .
Figure 11 shows the computed 〈 1

r
〉 according to (C1) as a

function of n, the number of qubits needed for a reliable
determination of the order as described in connection with
(64). By graphically extracting the n dependence of 〈 1

r
〉 using

the fit line in Fig. 11, we find

〈
1

r

〉
= 2−(n−8)/2.6. (C2)

[1] C. Pomerance, Notices Amer. Math. Soc. 43(12), 1473 (1996).
[2] R. Rivest, A. Shamir, and L. Adleman, Comm. ACM 21, 120

(1978).
[3] D. Boneh, Notices Amer. Math. Soc. 46(2), 203 (1999).
[4] S. Robinson, SIAM News 36(5) (2003).
[5] C. Pomerance, in Computational Methods in Number Theory,

Part I, Math. Centre Tract, Vol. 154, edited by H. W. Lenstra, Jr.,
and R. Tijdeman (Mathematisch Centrum, Amsterdam, 1982),
pp. 89–139.

[6] R. D. Silverman, Math. Comput. 48, 329 (1987).
[7] J. P. Buhler, H. W. Lenstra, Jr., and C. Pomerance, in The

Development of the Number Field Sieve, Lecture Notes in
Mathematics Vol. 1554, edited by A. K. Lenstra and H. W.
Lenstra, Jr. (Springer, New York, 1993), pp. 50–94.

[8] T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé,
J. W. Bos, P. Gaudry, A. Kruppa, P. L. Montgomery, D. A. Osvik,
H. te Riele, A. Timofeev, and P. Zimmermann, in CRYPTO’10
Proceedings of the 30th Annual Conference on Advances in
Cryptology (Springer, Berlin, 2010), pp. 333–350.

[9] E. Barker and A. Roginsky, NIST Special Publication 800-131A
(NIST, Gaithersburg, MD, 2011).

[10] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cambridge,
2000).

[11] P. W. Shor, in Proceedings of the 35th Annual Symposium on
the Foundations of Computer Science, edited by S. Goldwasser
(IEEE Press, Los Alamitos, CA, 1994), pp. 124–134.

[12] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni,
M. H. Sherwood, and I. L. Chuang, Nature 414, 883 (2001).

[13] E. Martı́n-López, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou,
and J. L. O’Brien, arXiv:1111.4147.

[14] D. Coppersmith, arXiv:quant-ph/0201067.
[15] A. G. Fowler and L. C. L. Hollenberg, Phys. Rev. A 70, 032329

(2004).
[16] Y. S. Nam and R. Blümel, Phys. Rev. A 86, 044303 (2012).

[17] R. Blümel, Foundations of Quantum Mechanics—From Photons
to Quantum Computers (Jones and Bartlett, Sudbury, MA, 2010).

[18] N. D. Mermin, Quantum Computer Science (Cambridge
University Press, Cambridge, 2007).

[19] C.-Y. Lu, D. E. Browne, T. Yang, and J.-W. Pan, Phys. Rev. Lett.
99, 250504 (2007).

[20] B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri,
D. F. V. James, A. Gilchrist, and A. G. White, Phys. Rev. Lett.
99, 250505 (2007).

[21] A. Politi, J. C. F. Matthews, and J. L. O’Brien, Science 325,
1221 (2009).

[22] R. B. Griffiths and C.-S. Niu, Phys. Rev. Lett. 76, 3228 (1996).
[23] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,

Numerical Recipes in Fortran 77, 2nd ed. (Cambridge University
Press, Cambridge, 1992).

[24] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete
Mathematics: A Foundation for Computer Science, 2nd ed.
(Addison-Wesley, Reading, MA, 1994).

[25] A. Ekert and R. Jozsa, Rev. Mod. Phys. 68, 733 (1996).
[26] P. W. Shor, arXiv:quant-ph/9508027v2.
[27] N. Jacobson, Basic Algebra I (Dover, Mineola, NY, 2009).
[28] D. S. Wang, A. G. Fowler, and L. C. L. Hollenberg, Phys. Rev.

A 83, 020302(R) (2011).
[29] R. G. Lerner and G. L. Trigg, Encyclopedia of Physics, 2nd ed.

(VCH, New York, 1991).
[30] M. A. Kastner, Ann. Phys. (Leipzig) 9, 885 (2000).
[31] http://www.rsa.com/rsalabs/node.asp?id=2093.
[32] A. Barenco, A. Ekert, K.-A. Suominen, and P. Törmä, Phys. Rev.

A 54, 139 (1996).
[33] I. Garcı́a-Mata, K. M. Frahm, and D. L. Shepelyansky, Phys.

Rev. A 75, 052311 (2007).
[34] V. Vedral, A. Barenco, and A. Ekert, Phys. Rev. A 54, 147 (1996).
[35] R. Van Meter and K. M. Itoh, Phys. Rev. A 71, 052320 (2005).
[36] M. Hazewinkel, N. Gubareni, and V. V. Kirichenko, Algebras,

Rings and Modules, Vol. 1 (Kluwer, Dordrecht, 2010).

032333-18

http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1090/S0025-5718-1987-0866119-8
http://dx.doi.org/10.1038/414883a
http://arXiv.org/abs/arXiv:1111.4147
http://arXiv.org/abs/arXiv:quant-ph/0201067
http://dx.doi.org/10.1103/PhysRevA.70.032329
http://dx.doi.org/10.1103/PhysRevA.70.032329
http://dx.doi.org/10.1103/PhysRevA.86.044303
http://dx.doi.org/10.1103/PhysRevLett.99.250504
http://dx.doi.org/10.1103/PhysRevLett.99.250504
http://dx.doi.org/10.1103/PhysRevLett.99.250505
http://dx.doi.org/10.1103/PhysRevLett.99.250505
http://dx.doi.org/10.1126/science.1173731
http://dx.doi.org/10.1126/science.1173731
http://dx.doi.org/10.1103/PhysRevLett.76.3228
http://dx.doi.org/10.1103/RevModPhys.68.733
http://arXiv.org/abs/arXiv:quant-ph/9508027v2
http://dx.doi.org/10.1103/PhysRevA.83.020302
http://dx.doi.org/10.1103/PhysRevA.83.020302
http://dx.doi.org/10.1002/1521-3889(200011)9:11/12<885::AID-ANDP885>3.0.CO;2-8
http://www.rsa.com/rsalabs/node.asp?id=2093
http://dx.doi.org/10.1103/PhysRevA.54.139
http://dx.doi.org/10.1103/PhysRevA.54.139
http://dx.doi.org/10.1103/PhysRevA.75.052311
http://dx.doi.org/10.1103/PhysRevA.75.052311
http://dx.doi.org/10.1103/PhysRevA.54.147
http://dx.doi.org/10.1103/PhysRevA.71.052320

