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Multipartite entanglement and hypergraph states of three qubits
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Several entanglement measures are used to define equivalence classes in the set of hypergraph states of three
qubits. Our classifications reveal that (i) under local unitary transformations, hypergraph states of three qubits
are split into six classes and only one of them is not equivalent to any graph state; (ii) under stochastic local
operations with classical communication, for the single-copy case hypergraph states of three qubits, partitioned
into five classes which cannot be converted into a W state, are equivalent to graph states; and (iii) when bipartite
entanglement in three qubits is considered, hypergraph states of three qubits are split into five classes and only
one of them has the same entangled graph as the W state.
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I. INTRODUCTION

Any graph state [1–4] can be constructed on the basis
of a (simple and undirected) graph. Although graph states
can describe a large family of entangled states including
cluster states [5], Greenberger-Horne-Zeilinger (GHZ) states,
stabilizer states [6], etc., it is clear that they cannot represent
all entangled states. To go beyond graph states and still keep
the appealing connection to graphs, Ref. [7] introduces an
axiomatic framework for mapping graphs to quantum states
of a suitable physical system, and extends this framework
to directed graphs and weighted graphs. Several classes
of multipartite entangled states, such as qudit graph states
[8], Gaussian cluster states [9], projected entangled pair
states [10], and quantum random networks [11] emerge from
the axiomatic framework. In [12], we generalize the above
axiomatic framework to encoding hypergraphs into so-called
quantum hypergraph states.

It is known that hypergraph states include graph states
[12]. One may ask whether hypergraph states are equiv-
alent to graph states under local unitary transformations
or stochastic local operations with classical communication
(SLOCC), that is, whether hypergraph states can describe
more quantum states than graph states under local unitary
transformations or SLOCC. The main aim of this work is
to answer the above question for the single-copy case of
three-qubit hypergraph states. For this, we will address the
issue of quantifying and characterizing the entanglement of
three-qubit hypergraph states by means of several bipartite
and tripartite entanglement measures including concurrence
[13], the entopic measure [14], the three-tangle measure [13],
and the Schmidt measure [15]. Several publications have
shown that there are several classifications of three-qubit
pure states by means of the above measures. In [16], for the
single-copy case all three-qubit pure states are split into six
classes, called A-B-C, A-BC, B-AC, C-AB, GHZ type, and W

type, by SLOCC. In Ref. [17] all pure states of three qubits
are partitioned into eight classes [18] by means of the so-
called entangled graph. In this paper, we will define different
equivalence classes in the set of three-qubit hypergraph
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states according to the approaches shown in [16,17]. Our
classifications reveal that (i) a class of three-qubit hypergraph
states is not equivalent to any graph state under local unitary
transformations; (ii) any state in the above class is equivalent to
a graph state (up to local unitaries equivalent to the GHZ state)
under SLOCC, which implies that hypergraph states cannot
describe the W -type class [16] including a W state; and (iii)
when bipartite entanglement in three qubits is considered, for
any state in the above class each qubit pair is entangled like
the W state, i.e., its entangled graph contains three edges.

This paper is organized as follows. In Sec. II, we recall
notations of hypergraphs, hypergraph states, etc. In Sec. III,
we quantify the entanglement of three-qubit hypergraph
states by means of local entropic measures and prove the
existence of six classes of hypergraph states of three qubits
under local unitary transformations. In Sec. IV, we quantify
the entanglement of genuine tripartite entangled hypergraph
states of three qubits by means of the three-tangle measure
and spilt three-qubit hypergraph states into five classes
under SLOCC. We also indicate that no hypergraph state
can be converted into a W state by SLOCC. In Sec. V, we
evaluate the entanglement of hypergraph states of three qubits
by means of the Schmidt measure. In Sec. VI, we discuss
bipartite entanglement of hypergraph states of three qubits
using the concurrence and draw the corresponding entangled
graphs. Section VII contains our conclusions.

II. PRELIMINARIES

Formally, a hypergraph is a pair (V,E), where V is the set of
vertices, E ⊆ ℘(V ) is the set of hyperedges and ℘(V ) denotes
the power set of the set V . Let V ≡ {A,B,C} since we consider
only three-vertex hypergraphs in this paper. Moreover, for a
set of hyperedges F ⊆ ℘(V ), adding all hyperedges of F to a
hypergraph g = (V,E) will give a new hypergraph g + F ≡
(V,E�F ), where E�F denotes the symmetric difference
between E and F , that is, E�F = E ∪ F − E ∩ F .

Let I be the 2 × 2 identity matrix and Zk be the 2k × 2k

diagonal matrix which satisfies

(Zk)jj =
{

−1, j = 2k,

1 otherwise,
(1)
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where k ∈ {0,1,2,3}. Suppose e ⊆ V . Then the three-qubit
hypergraph gate Ze is defined as Z|e| ⊗ I⊗3−|e| which means
that Z|e| acts on the qubits in e while the identity I acts on the
rest.

A three-qubit hypergraph state |g〉 can be constructed
using g = (V,E) as follows. Each vertex labels a qubit
(associated with a Hilbert space C2) initialized in |φ〉 =
|+〉 ≡ 1√

2
(|0〉 + |1〉). The state |g〉 is obtained from the initial

state |+〉⊗3 by applying the hyperedge operator Ze for each
hyperedge e ∈ E, that is,

|g〉 =
∏
e∈E

Ze|+〉⊗3 (2)

Thus hypergraph states of three qubits correspond to
(C2,|+〉,{Zk|0 � k � 3}) by the axiomatic approach while
graph states are related to (C2,|+〉,Z2) [7,12].

It is known that real equally weighted states [19] are
equivalent to hypergraph states [12]. In fact, we define a
mapping c on ℘(V ) as

∀ e ⊆ V, c(e) =
{

1, e = �,∏
k∈e xk, e �= �.

Then we can construct a 1:1 mapping u between hyper-
graphs and Boolean functions which satisfies ∀ g = (V,E),

u(g) =
⊕
e∈E

c(e), (3)

where ⊕ denotes the addition operator over Z2. Thus we have

|g〉 =
∏
e∈E

Ze|+〉⊗3 = 1√
23

23−1∑
x=0

(−1)
⊕

e∈E
c(e)|x〉 ≡ |ψu(g)〉,

(4)

where |ψu(g)〉 is just the real equally weighted state associated
with the Boolean function u(g).

For the single-copy case it is known that two pure states
can be obtained with certainty by means of LOCC if and only
if they are related by local unitaries [14]. Moreover, they can
be converted by means of SLOCC if and only if they are
associated with an invertible local operator [16]. Let g and g′
be two hypergraphs. We say that they are LU equivalent, if
there exists a local unitary U such that

|g〉 = U |g′〉, (5)

i.e., |g〉 and |g′〉 are equivalent under local unitary operations.
If there exists an invertible local operator O such that

|g〉 = O|g′〉, (6)

that is, |g〉 and |g′〉 are equivalent under SLOCC, then we say
that g and g′ are SLOCC equivalent.

III. ENTROPIC MEASURE AND LU-EQUIVALENT
CLASSES

Given three qubits A, B, and C, we can regard the three-
qubit system as a bipartite system. For instance, A is one
part of the system and the remaining two qubits B and C is
the other. Correspondingly, a pure state |φ〉 of three qubits

can be viewed as a bipartite state |φA(BC)〉. The local entropic
measure EA

2 (|φ〉) is given by the smallest eigenvalue of the
reduced density matrix ρA ≡ TrBC(|φ〉〈φ|). Similarly, we also
can define EB

2 (|φ〉) and EC
2 (|φ〉). It is known the local entropic

measures are an entanglement monotone for the single-copy
case and invariant under local unitary operations.

Proposition 1. All three-vertex hypergraphs are split into
six LU-equivalence classes as follows:

G0 = {(V,E)|E ∈ ℘({{�},{A},{B},{C}})},
G1 = {g + {{B,C}}|g ∈ G0},
G2 = {g + {{A,C}}|g ∈ G0}, G3 = {g + {{A,B}}|g ∈ G0},
G4 = {g + E|E ⊆ {{A,B},{A,C},{B,C}} ∧ |E|

� 2 ∧ g ∈ G0}, G5 = {(V,E)|V ∈ E}. (7)

Proof. We first prove that for 0 � k � 5 any two hy-
pergraphs in Gk are LU equivalent. Let g0 ≡ (V,�), g1 ≡
(V,{{B,C}}), g2 ≡ (V,{{A,C}}), and g3 ≡ (V,{{A,B}}). It is
clear for 0 � k � 3 that the hypergraph gk is LU equivalent to
any hypergraph in Gk . Let g4 ≡ (V,{{A,B},{B,C},{A,C}}).
It is known that g4 and (V,{{A,B},{A,C}}) are LU equivalent
[1]. Thus the hypergraph g4 is LU equivalent to any hypergraph
in G4. Let g5 ≡ (V,{V }). According to Proposition 2 in [12],
the hypergraph g5 is also LU equivalent to any hypergraph in
G5.

Now we prove that any two hypergraphs in {gk|0 � k � 5}
are not LU equivalent by means of local entropic measures.
For any g = (V,E), it is known that |g〉 = |ψu(g)〉 by (4). Thus
the reduced density matrix ρA(g) of |g〉 is obtained from

ρA(g) = TrBC(|g〉〈g|) = [
a

(A)
ij

]
2×2, (8)

where a
(A)
ij = 1

8

∑1
xB,xC=0 (−1)u(g)(i,xB ,xC )⊕u(g)(j,xB ,xC ). By sim-

ple computation, we can obtain

ρA(g) =
[

1
2 a

a 1
2

]
, (9)

where a ≡ a
(A)
01 = 1

8

∑1
xB,xB=0 (−1)u(g)(0,xB ,xC )⊕u(g)(1,xB ,xC ).

According to (3), we get

u(g0)(xA,xB,xC) = 0, u(g1)(xA,xB,xC) = xBxC,

u(g2)(xA,xB,xC) = xAxC,

u(g3)(xA,xB,xC) = xAxB, (10)

u(g4)(xA,xB,xC) = xAxB ⊕ xAxC ⊕ xBxC,

u(g5)(xA,xB,xC) = xAxBxC.

Thus it is easy to obtain the values of the local entropic
measures of EA

2 , EB
2 , and EC

2 for all states in {|gk〉| 0 � k � 5}.
These values are shown in Table I. Clearly, any two hy-
pergraphs in {gk|0 � k � 5} are not LU equivalent since
the local entropic measures are invariant under local unitary
operations. �

Note that the state |g4〉 is, up to local unitaries, equivalent to
a GHZ state. Clearly, any three-vertex (simple and undirected)
graph belongs to one of G0, G1, G2, G3, and G4 while it does
not belong to G5. From the above proposition, it follows that
any state associated with G5 is not equivalent to graph states
under local unitary transformations.
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TABLE I. Values of several entanglement measures associated
with different hypergraph subsets.

EA
2 EB

2 EC
2 τ CAB CAC CBC

G0 0 0 0 0 0 0 0
G1 0 1

2
1
2 0 0 0 1

G2
1
2 0 1

2 0 0 1 0

G3
1
2

1
2 0 0 1 0 0

G4
1
2

1
2

1
2 1 0 0 0

G5
1
4

1
4

1
4

1
4

1
2

1
2

1
2

IV. THREE-TANGLE MEASURE AND
SLOCC-EQUIVALENT CLASSES

Let a three-qubit pure state |φ〉 = ∑1
i,j,k=0 aijk|ijk〉. The

three-tangle measure τ (|φ〉) is given by

τ (|φ〉) = 2

∣∣∣∣∑ aijkai ′j ′manpk′an′p′m′εii ′εjj ′εkk′εmm′εnn′εpp′

∣∣∣∣,
(11)

where ε01 = −ε10 = 1 and ε00 = ε11 = 0 [13]. It is known
that the measure is an entanglement monotone and invariant
under local unitary transformations. Moreover, the three-
tangle measure is also invariant under permutations of the
qubits.

Proposition 2. All three-qubit hypergraph states are parti-
tioned into five classes under SLOCC, that is, in the set of
three-vertex hypergraphs there exist five SLOCC-equivalence
classes G0, G1, G2, G3, and G4 ∪ G5 which are respectively
associated with the classes A-B-C, A-BC, B-AC, C-AB, and
GHZ type defined in [16].

Proof. By (10) and (11), it is easy to obtain τ (|gk〉) =
0(0 � k � 3), τ (|g4〉) = 1, and τ (|g5〉) = 1

4 . According to
the method shown in [16], we can use the values of the
local entropic measures and three-tangle measure to obtain
that three-vertex hypergraphs are split into five SLOCC-
equivalence classes: G0, G1, G2, G3, and G4 ∪ G5, which
correspond to the classes A-B-C, A-BC, B-AC, C-AB, and GHZ
type. �

Clearly, three-vertex hypergraphs are SLOCC equivalent to
graphs of three vertices, that is, three-qubit hypergraph states
are equivalent to graph states of three qubits under SLOCC. In
particular, any hypergraph state associated with G4 ∪ G5 can
be converted into a GHZ state by means of SLOCC. According
to the above proposition, any hypergraph state of three qubits
is not of the W -type class defined in [16]. Thus we can obtain
the following corollary, which implies that hypergraph states
do not represent all states of three qubits:

Corollary 1. A three-qubit hypergraph state cannot be
converted into a W state by SLOCC.

V. SCHMIDT MEASURE

Any pure state |φ〉 of three qubits can be represented as

|φ〉 =
R∑

i=1

ai

∣∣φ(A)
i

〉 ⊗ ∣∣φ(B)
i

〉 ⊗ ∣∣φ(C)
i

〉
, (12)

where ai ∈ C(i = 1,2, . . . ,R), and |φ(A)
i 〉, |φ(B)

i 〉, and |φ(C)
i 〉

are one-qubit pure states. The Schmidt measure of |φ〉 is
defined as

ES(|φ〉) = log2(r), (13)

where r is the minimal number R of terms in the sum of (12)
over all linear decompositions into product states. It is known
that the measure is an entanglement monotone and invariant
under local unitary transformations.

Proposition 3. The Schmidt measure of any three-qubit
hypergraph state is either 0 or 1.

Proof. In Ref. [16] it was shown that the Schmidt measure
ES of any state in the class A-B-C is 0 while ES of any state in
the classes A-BC, B-AC, C-AB, and GHZ type is 1. However,
the Schmidt measure of any state in the W -type class is equal
to log2(3). According to Corollary 1, the Schmidt measure of
any three-quibt hypergraph state is equal to either 0 or 1. �

VI. CONCURRENCE AND ENTANGLED GRAPHS

Concurrence is a famous bipartite entanglement measure.
Let |φ〉 be a pure state of three qubits A, B, and C. The reduced
density matrix ρAB of |φ〉 is defined as ρAB ≡ TrC(|φ〉〈φ|).
One can evaluate the so-called spin-flipped operator defined
as

ρ̃AB = (σy ⊗ σy)ρ∗
AB(σy ⊗ σy), (14)

where σy is the Pauli matrix and an asterisk denotes complex
conjugation. Let λ1, λ2, λ3, and λ4 be eigenvalues of the matrix
ρABρ̃AB in decreasing order. The concurrence CAB between
two qubits A and B is defined as

CAB ≡ max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}. (15)

It is known that ρAB is separable or disentangled if and only
if CAB = 0. Moreover, the concurrence CA(BC) between one
qubit A and the other two qubits is equal to 2

√
det ρA where

ρA = TrBC(|φ〉〈φ|). Thus we can obtain

CA(BC) = 2
√

EA
2

(
1 − EA

2

)
. (16)

Similarly, we can also define CAC , CBC , CB(AC) and CC(AB).
From (16), we can evaluate the values of CA(BC), CB(AC),

and CC(AB) for three-qubit hypergraph states by using the local
entropic measures obtained in Sec. III. Since τ ≡ τABC =
C2

A(BC) − C2
AB − C2

AC (which is the original definition of the
three-tangle measure [13]) and τ is variant under permutations
of the qubits, it is easy to obtain the values of CAB , CAC , and
CBC for three-qubit hypergraph states. These values are shown
in Table I.

Reference [17] introduces the concept of an entangled graph
such that each qubit of a multipartite system is associated with
a vertex, while a bipartite entanglement between two specific
qubits is represented by an edge between these vertices. The
entangled graph of an n-qubit state can visually show how
a bipartite entanglement is “distributed” among n qubits.
According to CAB , CAC , and CBC , we can draw entangled
graphs of three-qubit hypergraph states, which are shown
in Fig. 1. Thus all hypergraph states of three qubits are
classified into five classes as follows. The entangled graph
associated with G0 ∪ G4 has no edge while that related to
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FIG. 1. Entangled graphs associated with three-vertex hypergraphs.

G1 ∪ G2 ∪ G3 has only one edge. Moreover, the entangled
graph corresponding to G5 is a complete graph with three
vertices, which means that for any hypergraph state associated
with G5 each qubit pair is entangled in the same way as the W

state, i.e., its entangled graph is the same as that of the W state.
However, hypergraph states of three qubits do not represent all
the states whose entangled graphs have just two edges. This
implies that hypergraph states do not represent all states of
three qubits.

VII. CONCLUSIONS

This work uses several bipartite and tripartite entanglement
measures to quantify and characterize the entanglement of
hypergraph states of three qubits, as shown in Table I.

According to the values of these measures, we define the
equivalence classes of hypergraph states and prove that the
states associated with G5 are not equivalent to any graph state
under local unitary transformations. However, hypergraph
states of three qubits are equivalent to graph states under
SLOCC. And no hypergraph state of three qubits can be
converted into a W state by SLOCC. Thus hypergraph states
cannot represent all pure states of three qubits. Moreover, when
bipartite entanglement in three qubits is considered, the states
corresponding to G5 are related to an entangled graph which
contains three edges, while entangled graphs of graph states
include at most one edge. Although any hypergraph state
associated with G5 is not (up to local unitaries or SLOCC)
equivalent to the W state, its every qubit pair is entangled as in
the W state. This property of bipartite entanglement of the W

state has been used in some quantum information processing
tasks. Thus it would be helpful for these tasks that the W state
be replaced by a state |g5〉 which might be prepared more
easily than the W state in some cases.
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