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The ideal Bennett-Brassard 1984 (BB84) quantum-key-distribution protocol is based on the preparation and
measurement of qubits in two alternative bases differing by an angle of π/2. Any real implementation of the
protocol, though, will inevitably introduce misalignments in the preparation of the states and in the alignment
of the measurement bases with respect to this ideal situation. Various security proofs take into account (at
least partially) such errors, i.e., show how Alice and Bob can still distill a secure key in the presence of these
imperfections. Here, we consider the complementary problem: How can Eve exploit misalignments to obtain
more information about the key than would be possible in an ideal implementation? Specifically, we investigate
the effects of misalignment errors on the security of the BB84 protocol in the case of individual attacks, where
necessary and sufficient conditions for security are known. Though the effects of these errors are small for
expected deviations from the perfect situation, our results nevertheless show that Alice and Bob can incorrectly
conclude that they have established a secure key if the inevitable experimental errors in the state preparation and
in the alignment of the measurements are not taken into account. This gives further weight to the idea that the
formulation and security analysis of any quantum cryptography protocol should be based on realistic assumptions
about the properties of the apparatus used. Additionally, we note that BB84 seems more robust against alignment
imperfections if both the x and z bases are used to generate the key.
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I. INTRODUCTION

The use of quantum systems to accomplish cryptographic
tasks promises levels of security unachievable with any
classical system. With these benefits, however, comes an added
difficulty. Unlike classical protocols intended for execution
on a digital computing device and whose security is purely
based on the mathematical properties of the device’s outputs,
quantum protocols make use of analog systems and their
security is intrinsically physical: it depends on the fact
that device’s output was obtained by measuring, e.g., the
polarization of a single photon along well defined orientations.
Deviations from the ideal situation, which are an all-or-nothing
affair in a digital algorithm and can typically be eliminated
with some very large probability, therefore become inevitable
to some degree in quantum protocols.

The Bennett-Brassard 1984 (BB84) protocol [1] for quan-
tum key distribution (QKD) [2,3], for instance, requires
that one party (“Alice”) prepares and sends a sequence of
random qubits taken from the set {|ψbm〉}, where the indices
b,m ∈ {0,1} can be interpreted as a choice of basis and bit,
respectively. The other party (“Bob”) then randomly measures
each qubit he receives in one of two bases {|φ00〉,|φ01〉} or
{|φ10〉,|φ11〉}. In its ideal formulation, the states {|ψb0〉,|ψb1〉}
prepared by Alice are supposed to form a basis and therefore
to be orthogonal,

〈ψb0|ψb1〉 = 0 for b = 0,1. (1)

Furthermore, the two bases on Alice’s and on Bob’s sides are
supposed to differ exactly by an angle of π/2, i.e., to satisfy
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the relations1

|ψ10〉 = 1√
2
[|ψ00〉 + |ψ01〉], (2a)

|ψ11〉 = 1√
2
[|ψ01〉 − |ψ00〉], (2b)

and

|φ10〉 = 1√
2
[|φ00〉 + |φ01〉], (3a)

|φ11〉 = 1√
2
[|φ01〉 − |φ00〉]. (3b)

While existing security proofs for BB84 can deal with an
arbitrary noise in the quantum channel from Alice to Bob,
they usually assume that the states prepared by Alice and that
the measurements performed by Bob satisfy precisely the
conditions (1), (2), and (3). In a realistic execution of the
protocol, however, experimental errors are inevitable. For
instance, the measurement of a polarization qubit cannot
be more precise than 2◦ or 4◦ (on the Bloch sphere) due
to the intrinsic uncertainty of the polarization rotator used.
Such imperfections may allow an eavesdropper to gain more
information about the shared key than existing security proofs
would imply.

Here we illustrate the effects that imperfections in the prepa-
ration of the states and in the alignment of the measurement
bases could have on the performance of quantum cryptography
protocols, using the BB84 protocol as our example.

1In addition, in the ideal formulation of the BB84 protocol, the
bases on Alice’s and Bob’s sides are usually taken to be perfectly
aligned, i.e., |ψbm〉 = |φbm〉. But any misalignment between the two
bases can always be absorbed in the unitary transformation performed
by Eve on the states emitted by Alice and thus has no incidence on
the security of the protocol.
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We note that proofs of security of BB84 have been proposed
that relax conditions (1) and (2) [4,5], conditions (3) [6],
conditions (2) and (3) [7], and also that take into account
certain particular modifications of all three conditions (1),
(2), and (3) in the context of collective attacks [8]. A proof
of security in the asymptotic limit valid against arbitrary
deviations from the three conditions (1), (2), (3) has also
been reported in [9]. These types of analyses, however,
are not routinely considered and scarcely used in practical
implementations of BB84 [10]. The main objective of this
paper is to draw attention to this issue.

Rather than deriving a new security proof, our aim is to
demonstrate an explicit advantage gained by an eavesdropper.
We therefore restrict our analysis to individual attacks—where,
contrarily to more general types of attacks, necessary and suffi-
cient conditions for security are known—and optimize over all
possible attacks of this type in the presence of imperfections.
We emphasize that, though security proofs against more gen-
eral types of attacks, such as those mentioned above, do report
keyrates that are lower than in the ideal case, it is not a priori
clear that these observed reductions in security are genuine
and not an artifact of a suboptimal security proof. In the case
of individual attacks, however, optimal criteria for security are
known, and thus any reduction in the keyrate that we observe il-
lustrates some genuine advantage gained by the eavesdropper.
Furthermore, general security proofs bound security “from be-
low,” ruling out possible successful attacks by an eavesdropper
below a certain threshold. In optimizing explicitly over individ-
ual attacks, we bound security “from above.” Our results can
thus also be viewed as representing an upper bound on security:
we strictly prove that non-ideal BB84 implementations of the
type we consider are insecure above a certain threshold.

For simplicity, we consider the case where the states
emitted by Alice still form two orthonormal bases as in (1).
(Any deviation from (1) can only reinforce the effects of
imperfections that we illustrate here.) We suppose, however,
that Alice’s preparation and Bob’s measurement bases are not
exactly mutually unbiased, but that they differ by angles α

and β, respectively, different from π/2. That is, we suppose
instead of (2) and (3) that

|ψ10〉 = cos
(

α
2

)|ψ00〉 + sin
(

α
2

)|ψ01〉, (4a)

|ψ11〉 = cos
(

α
2

)|ψ01〉 − sin
(

α
2

)|ψ00〉, (4b)

and

|φ10〉 = cos
(

β

2

)|φ00〉 + sin
(

β

2

)|φ01〉, (5a)

|φ11〉 = cos
(

β

2

)|φ01〉 − sin
(

β

2

)|φ00〉. (5b)

It is clear that such errors will in general reduce the security
of BB84. For example, in the extreme case where the two
bases accidentally coincide (α,β = 0), an eavesdropper could
perfectly clone the states sent by Alice without revealing her
presence. Using a combination of analytical techniques and
numerical optimization, we demonstrate here more generally a
reduction in the extractable secret keyrate of the BB84 protocol
against individual attacks, for a given quantum bit error rate
(QBER), when α,β �= π/2.

Though the reduction in the keyrate that we observe is small
for deviations from the ideal situation expected in realistic
implementations, our results nevertheless show that Alice and

Bob can erroneously conclude that they have established a se-
cure key if the inevitable experimental errors in the alignment
of the bases are not taken into account. Though our findings are
restricted to individual attacks, it is reasonable to expect that
similar results hold in full generality. This gives further weight
to the idea that the formulation and security analysis of any
quantum cryptography protocol should be based on realistic
assumptions about the properties of the apparatus used.

This conclusion goes in a similar direction as that which
can be drawn from the recent weaknesses discovered in
certain QKD implementations, such as those in Refs. [11,12].
Note though that our work has a very different perspective.
Indeed, contrary to Refs. [11,12], our results do not uncover
an implementation flaw in an otherwise theoretically secure
scheme—a flaw which could therefore be fixed purely at the
implementation level. The message that we want to convey
here is rather that in any trusted and “secure” QKD imple-
mentation, uncertainties in the preparation of the quantum
states and in the alignment of the measurement bases will
inevitably be present and may affect the security. These
uncertainties must therefore be accounted for at a theoretical
level either by adapting the security proof or by moving
to device-independent [13,14] or semi-device-independent
schemes [15–17].

The present work originates from a loose collaboration
with the authors of Refs. [18,19], who along similar lines
have explored the effect of imperfections in the alignment
of measurement bases on the characterization of quantum re-
sources through quantum state tomography and entanglement
witnesses.

Our results are presented in more detail in Sec. II; technical
details are deferred to Sec. III.

II. RESULTS

A. Problem definition

We begin by briefly recounting the BB84 protocol. As
recalled above, one party (Alice) prepares random qubits from
the set {|ψbm〉}, and transmits them to a second party (Bob).
Bob then measures each qubit that he receives in one of two
bases {|φb0〉,|φb1〉}, randomly choosing between b = 0 and
b = 1 each time, and stores the results. After discarding the
cases where the choices of basis do not match, Alice and Bob
share a so-called sifted key, with Bob’s version of the key likely
containing errors compared with Alice’s. By sacrificing a part
of the sifted key, Alice and Bob can estimate the quantum bit
error rate (QBER) Q, which is defined in terms of the observed
coincidence rates p(b)(m,n) of Alice sending a state encoding
bit m and Bob measuring n, given basis b. Assuming that the
QBER is the same in both bases, it can be defined as

Q = 1

2

∑
b∈{0,1}

[p(b)(0,1) + p(b)(1,0)]. (6)

Following this, error correction and privacy amplification are
applied. In the case of one-way communication from Alice to
Bob, the asymptotic keyrate secure against individual attacks
is given by the Csiszár-Körner bound [20]:

r = I (A : B) − I (A : E), (7)
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where I (A : B) denotes the mutual information between Alice
and Bob and I (A : E) between Alice and Eve. We recall that, in
the case of individual attacks, Eve performs the same unitary
attack on each of Alice’s qubits, but is allowed to possess
a quantum memory and can delay her measurements on the
states in her possession until after the bases are revealed. Fuchs
et al. show in Ref. [21] that the highest secure asymptotic
keyrate under conditions (1), (2), and (3) is given in terms of
Q by

r = h
(

1
2 − √

Q(1 − Q)
) − h(Q), (8)

where h is the binary entropy function.
Our task is to minimize the expression (7) for a given QBER

Q using the preparation and measurement bases defined by (4)
and (5) rather than the ideal ones. To simplify the analysis we
will assume that the errors observed between Alice and Bob
are symmetric, i.e.,

p(0)(0,1) = p(0)(1,0) = p(1)(0,1) = p(1)(1,0). (9)

Given our assumptions about the symmetries in the errors
observed by Alice and Bob, I (A : B) is a simple function
of Q:

I (A : B) = 2 − h(Q). (10)

In general there need not be such symmetries in the joint
probabilities p

(b)
AE(m,q) shared between Alice and Eve, and

I (A : E) is accordingly more complicated. In each basis it
will be convenient to parameterize these quantities in terms of
an error Q

(b)
AE analogous to the QBER, and an offset δ(b):

p
(b)
AE(0,0) = 1

2

(
1 − Q

(b)
AE − δ(b)

)
, (11a)

p
(b)
AE(0,1) = 1

2

(
Q

(b)
AE + δ(b)

)
, (11b)

p
(b)
AE(1,0) = 1

2

(
Q

(b)
AE − δ(b)

)
, (11c)

p
(b)
AE(1,1) = 1

2

(
1 − Q

(b)
AE + δ(b)

)
. (11d)

The inverse relations are Q
(b)
AE = p

(b)
AE(0,1) + p

(b)
AE(1,0) and

δ(b) = p
(b)
AE(0,1) − p

(b)
AE(1,0). The mutual information between

Alice and Eve is given by

I (A : E) = 1 + 1
2 [I (0)(A : E) + I (1)(A : E)], (12)

where I (b)(A : E) is the mutual information in a single basis,
determined by the joint probabilities p

(b)
AE(m,n).

We present results for the numerical optimization of this
problem in the next subsection. Details of the parametrization
and techniques employed are deferred to Sec. III.

B. Optimization results

In numerically evaluating the keyrate, it generally seems
to be the case, as one might expect, that the minimal keyrate
is found for a unitary interaction that gives Eve symmetric
information about the bits in Alice’s possession. In terms of the
parametrization introduced at the end of the previous section,
this is the case where δ(0) = δ(1) = 0 and Q

(0)
AE = Q

(1)
AE ≡ QAE.

The keyrate is then a simple function of Q and QAE:

r = h(QAE) − h(Q). (13)

Supported by a few test cases, this simplification was applied
in the results we now present. (Note that even if Eve’s optimal

c b a
Q

r

0 0.1

1

FIG. 1. (Color online) Variation of keyrate with QBER for
θ = 90◦ [blue (a)], 80◦ [green (b)], and 70◦ [red (c)], corresponding
to the worst-case scenarios for errors of 0◦, 5◦, and 10◦ respectively.

attack does not generally satisfy this symmetry, our results
still represent an upper bound on the secure keyrate, which
conclusively shows that Eve can gain information by exploiting
preparation and measurement imperfections with respect to the
ideal case.)

Figure 1 is a plot of the optimized keyrate as a function of
Q for a few fixed values of α = β = θ . The values of θ used
are 90◦ (the ideal case), 80◦, and 70◦. The latter two are the
worst-case scenarios if there are absolute experimental errors
of respectively 5◦ and 10◦ on the orientations of the bases
both used by Alice and measured by Bob. That is, if Alice
and Bob know, say, that their devices are accurate to within
five degrees, i.e., 80◦ � α,β � 90◦, then the worst keyrate that
we have found corresponds to the situation α = β = θ = 80◦.
The worst-case scenario is thus that the largest possible error
on the orientation of the devices is systematic.

Figure 2 is a plot of the minimized keyrate as a function of
the deviation δθ = π/2 − θ from the ideal case, for QBERs of
1
4Q0, 1

2Q0, and 3
4Q0, where Q0 = 1

2 − 1
4

√
2 ≈ 0.1464 is the

maximum tolerable QBER in the ideal case.
Finally, Fig. 3 is a plot of the upper secure bound on

the QBER as a function of the deviation δθ = π/2 − θ . The
Shor-Preskill bound of 0.11 [22], representing the best known
threshold QBER below which an ideal BB84 implementation
is known to be secure against arbitrary attacks, is added for
comparison.

C. Discussion

Assuming that Alice and Bob observe errors that are
symmetric, according to (9), using a combination of analytical

δθ

r

a

b

c

0

(degrees)
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FIG. 2. (Color online) Variation of keyrate with angle δθ =
90◦ − θ , for Q = 1

4 Q0 [blue (a)], 1
2 Q0 [green (b)], and 3

4 Q0

[red (c)], where Q0 ≈ 0.1464 is the upper secure bound on the QBER.
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FIG. 3. (Color online) Maximum secure QBER as a function of
δθ = 90◦ − θ . The horizontal dashed (red) line (S-P) corresponds to
the Shor-Preskill bound of about 0.11.

and numerical techniques we have determined upper bounds
on the keyrate for preparation and measurement devices
characterized by the misalignment angles α and β defined
in (4) and (5). As soon as α,β �= π/2, we find that these upper
bounds are lower than the optimal keyrate (8) for a given
QBER, therefore showing that imperfections in the preparation
and measurement devices can be exploited by an eavesdropper
if they are not taken into account in the security proof. We also
draw attention to the fact that the threshold QBER illustrated
in Fig. 3 drops below the Shor-Preskill bound of about 0.11 for
deviation angles larger than about 20.7◦, demonstrating that
the Shor-Preskill keyrate is certainly insecure in this case.

The upper bounds that we have obtained correspond to
the best individual attack that is symmetric, i.e., that satisfies
δ(0) = δ(1) = 0 and Q

(0)
AE = Q

(1)
AE ≡ QAE. We have numerically

verified in a few test cases that the best overall individual
attack satisfies this symmetry condition. We thus expect our
upper bounds on the keyrate to actually correspond to the
optimal keyrates in the presence of imperfections of the type
we consider.

If Alice and Bob know that their devices are accurate to
within a given precision δθ , they should assume, for the purpose
of proving security, that their devices are characterized by the
angles α and β compatible with this precision that yield the
worst-case keyrate. We verified in a few test cases that this
happens for the smallest angles α and β consistent with the
set error, at least in the case where the set error is the same
on Alice’s and Bob’s devices. It is for this reason that the
above figures are plotted for values of the angles satisfying
α = β = θ = π/2 − δθ .

All the results that we have presented here were obtained
for the case where both bases are used to establish the secret
key. One may also consider the variant of BB84 in which only
one basis is used to generate the key [23]. In the ideal case, this
results in a keyrate that is asymptotically twice as high, as the
sifting step, where half of the results are discarded, is no longer
necessary. We have also adapted our analysis to this situation
and have found that for high QBERs the two-basis protocol
results in a higher keyrate than the single-basis one, suggesting
that the former is more robust against alignment errors.

Finally, we remind the reader that throughout our analysis,
we have assumed that the states prepared by Alice define
a basis, i.e., satisfy (1). Relaxing this condition could only
strengthen the effects of imperfections observed here.

III. TECHNICAL DETAILS

A. Eve’s interaction

The model applied here is a straightforward adaptation of
the one considered in [21]. In the worst-case scenario the
eavesdropper (Eve) has replaced the quantum channel between
Alice and Bob with a lossless channel, before appending
an ancilla to the state sent by Alice and applying a unitary
operation with the intent of cloning the communication. We
express the interaction as

|ψ00〉|0〉 
→ |	00〉, (14a)

|ψ01〉|0〉 
→ |	01〉, (14b)

in the basis b = 0, and similarly

|ψ10〉|0〉 
→ |	10〉, (15a)

|ψ11〉|0〉 
→ |	11〉, (15b)

in the basis b = 1, where the states {|	bx〉} are states in the
Hilbert space HB ⊗ HE accessible to Bob and Eve. Linearity
of the unitary interaction implies that these states obey the
same relations as {|ψbx〉}. Specifically,

|	10〉 = cos
(

α
2

)|	00〉 + sin
(

α
2

)|	01〉, (16a)

|	11〉 = cos
(

α
2

)|	01〉 − sin
(

α
2

)|	00〉. (16b)

In order to parametrize the interaction, we set

|	00〉 = |φ00〉(|a〉 + |b〉) + |φ01〉(|c〉 + |d〉), (17a)

|	01〉 = |φ01〉(|a〉 − |b〉) + |φ00〉(|c〉 − |d〉), (17b)

and

|	10〉 = |φ10〉(|a′〉 + |b′〉) + |φ11〉(|c′〉 + |d ′〉), (18a)

|	11〉 = |φ11〉(|a′〉 − |b′〉) + |φ10〉(|c′〉 − |d ′〉), (18b)

where |a〉,|b〉,|c〉,|d〉 ∈ HE are (not necessarily normalized)
states accessible to Eve whose “metric” γij = 〈i|j 〉, i,j ∈
{a,b,c,d} completely defines Eve’s interaction. Combining
(17) and (18) with (16) and (5), we extract the relations

|a′〉 = cos(�)|a〉 + sin(�)|d〉, (19a)

|d ′〉 = cos(�)|d〉 − sin(�)|a〉, (19b)

and

|b′〉 = cos(θ )|b〉 + sin(θ )|c〉, (20a)

|c′〉 = cos(θ )|c〉 − sin(θ )|b〉, (20b)

where we have set

� = β − α

2
, (21a)

θ = β + α

2
. (21b)

The problem now is to identify the metric γij which will
maximize the information Eve is able to gain about Alice’s
raw key. Note that this information also depends on the
measurements Eve performs on her part of the states she shares
with Bob. In general these will be positive operator-valued
measures (POVMs) which are allowed to depend on the basis
(since we allow Eve to possess a quantum memory). We
call the POVM elements Fb0 and Fb1, where b ∈ {0,1} and
Fb0 + Fb1 = 1. As will be explained in the next subsection,

032315-4



EFFECTS OF PREPARATION AND MEASUREMENT . . . PHYSICAL REVIEW A 87, 032315 (2013)

we will be able to eliminate the explicit appearance of the
POVM elements in our optimization problem.

B. Eve’s quantum error

As stated in the introduction to this section, we wish
to minimize the extractable secret keyrate, which involves
maximizing the mutual information I (A : E). As a stepping
stone to optimizing this quantity we will consider the QBER in
Eve’s inference of Alice’s bits, QAE, first introduced in Sec. I,
in (11). Working in a single basis b for now, this quantity is
given by

Q
(b)
AE = p

(b)
AE(0,1) + p

(b)
AE(1,0). (22)

In general I (b)(A : E) depends on both this error Q
(b)
AE and the

asymmetry δ(b) also introduced in (11), and is an increasing
function as Q

(b)
AE approaches 1/2 for fixed δ(b). Rather than

attempting to directly optimize the mutual information in
terms of Q

(b)
AE and δ(b), we instead turn our attention to the

combination

Q
(b)
AE(ε) = (1 + ε)p(b)

AE(0,1) + (1 − ε)p(b)
AE(1,0). (23)

In terms of Q
(b)
AE and δ(b) this is

Q
(b)
AE(ε) = Q

(b)
AE + εδ(b). (24)

Optimizing this quantity yields a δ(b), dependent on the
weighting parameter ε, and an optimal Q

(b)
AE given δ(b). By

varying ε one may hope to sweep the range of values of δ(b)

and obtain a profile of minimized Q
(b)
AE as a function of δ(b).

The motivation for this approach becomes apparent when we
express Q

(b)
AE(ε) in terms of Eve’s probe and POVM elements.

In terms of Eve’s interaction and measurement,

p
(b)
AE(0,1) = 1

2 Tr[ρb0Fb1], (25a)

p
(b)
AE(1,0) = 1

2 Tr[ρb1Fb0], (25b)

where ρbx = TrB[|	bx〉〈	bx |], TrB is the partial trace over HB,
and Fbz are POVM elements which sum to unity for each basis.
Substituting into (23) and using that Fb1 = 1 − Fb0, we obtain

Q
(b)
AE(ε) = 1

2 (1 + ε) − 1
2 Tr{[(ρb0 − ρb1) + ε(ρb0 + ρb1)]Fb0}.

(26)

This expression is minimized by taking for Fb0 a projector
which selects the positive eigenvalue part of the operator in
the trace (the Helström bound). The result of optimizing over
Eve’s measurement is

Q
(b)
AE(ε) = 1

2 − 1
4‖(ρb0 − ρb1) + ε(ρb0 + ρb1)‖1, (27)

where for an arbitrary matrix ‖M‖1 = Tr[(M†M)1/2]. This
replaces the explicit appearance of Eve’s POVM with an
eigenvalue problem, leaving only an optimization over Eve’s
interaction. Note that this would not be possible if we instead
attempted to optimize Q

(b)
AE for fixed δ(b), since in that case the

POVM element Fb0 would appear explicitly in the constraint
as well as in the expression to optimize.

Using b = 0 as an example, we now describe how we
approach the problem of maximizing Q

(0)
AE and how we extract

the corresponding values of Q
(0)
AE and δ(0). In terms of the

four states |a〉, |b〉, |c〉, and |d〉 introduced earlier in order to
parametrize the probe,

1
2 (ρ00 − ρ01) = |a〉〈b| + |b〉〈a| + |c〉〈d| + |d〉〈c|, (28a)
1
2 (ρ00 + ρ01) = |a〉〈a| + |b〉〈b| + |c〉〈c| + |d〉〈d|. (28b)

In general our problem is to extract the eigenvalues of an
operator Â given its decomposition

Â = Aij |i〉〈j | (29)

in terms of the states {|i〉 | i ∈ {a,b,c,d}} (where we adopt
the convention of summing over repeated indices). Explicitly
decomposing a vector |u〉 on the same basis as |u〉 = ui |i〉, the
action of Â on |u〉 is

Â|u〉 = Aij |i〉〈j |uk|k〉 = Aijγjku
k|i〉. (30)

It is not difficult to see that determining the eigenvalues and
eigenstates of Â is equivalent to determining the eigenvalues
and eigenvectors of the matrix A�, where A = (Aij ) and � =
(γij ). (This remains true even in the case where the vectors {|i〉}
are not linearly independent.) The matrix whose eigenvalues
we wish to determine may be expressed as D + ε�, where

D =

⎡
⎢⎢⎢⎣

γba b2 γbc γdc

a2 γab γac γad

γda γdb γdc d2

γca γcb c2 γcd

⎤
⎥⎥⎥⎦, (31)

� =

⎡
⎢⎢⎢⎣

a2 γab γac γad

γba b2 γbc γdc

γca γcb c2 γcd

γda γdb γdc d2

⎤
⎥⎥⎥⎦, (32)

and a2 = γaa , and so on. Let the eigenvalues of this matrix
be {λp} and the corresponding (not necessarily normalized)
eigenvectors be {vp}, such that

(D + ε�)vp = λpvp. (33)

In terms of the set of eigenvectors, the operator F00 has the
expression

F00 =
∑
λp>0

|vp〉〈vp|
〈vp|vp〉 , (34)

where |vp〉 = vi
p|i〉, i ∈ {a,b,c,d} and the sum is over the

indices p for which λp > 0. Using this, and the fact that the
|vp〉 are orthogonal, we obtain a matrix expression for the trace
of an arbitrary operator Â multiplied by F00:

Tr[ÂF00] =
∑
λp>0

〈vp|Â|vp〉
〈vp|vp〉 =

∑
λp>0

v
†
p�A�vp

v
†
p�vp

, (35)

The explicit expressions for Q
(0)
AE and δ(0) are

Q
(0)
AE = 1

2
−

∑
λp>0

v
†
p�Dvp

v
†
p�vp

, (36)

δ(0) = 1

2
−

∑
λp>0

v
†
p�2vp

v
†
p�vp

. (37)

032315-5



ERIK WOODHEAD AND STEFANO PIRONIO PHYSICAL REVIEW A 87, 032315 (2013)

With Q
(0)
AE and δ(0) determined, we have an optimized value of

I (0)(A : E) for fixed δ(0), and all that remains is to optimize
I (0)(A : E) over ε.

Finally, the generalization when we consider two bases is
straightforward: we will approach the optimization of I (A : E)
by introducing three weighting parameters ε0, ε1, and ε, instead
of one, optimizing the quantity

QAE(ε0,ε1,ε) = 1
2 (1 + ε)Q(0)

AE(ε0) + 1
2 (1 − ε)Q(1)

AE(ε1), (38)

and then optimizing I (A : E) over (ε0,ε1,ε).

C. Inherent QBER

All that remains now, before being able to optimize (38)
over all of Eve’s possible unitary interactions, is to determine
the full set of constraints on the metric γij , since not all
metrics will represent a unitary interaction, and to determine
the relationship between the metrics γij and γ ′

ij in the two bases
(which depends only on the angles θ and �). This is done in
the next subsection. Before this, we demonstrate that there is
a minimum nonzero QBER if α �= β (in which case Alice and
Bob’s bases cannot be perfectly aligned). This is easily verified
by expressing the QBER Q in terms of a basis {|0′〉,|1′〉}
intermediate between {|	00〉,|	01〉} and {|	10〉,|	11〉}, and a
basis {|0〉,|1〉} midway between {|φ00〉,|φ01〉} and {|φ10〉,|φ11〉}.
Specifically,

|0′〉 = cos
(

α
4

)|	00〉 + sin
(

α
4

)|	01〉, (39a)

|1′〉 = cos
(

α
4

)|	01〉 − sin
(

α
4

)|	00〉, (39b)

and

|0〉 = cos
(

β

4

)|φ00〉 + sin
(

β

4

)|φ01〉, (40a)

|1〉 = cos
(

β

4

)|φ01〉 − sin
(

β

4

)|φ00〉. (40b)

Setting

�z = |0′〉〈0′| − |1′〉〈1′|, (41a)

�x = |0′〉〈1′| + |1′〉〈0′|, (41b)

and

σz = |0〉〈0| − |1〉〈1|, (42a)

σx = |0〉〈1| + |1〉〈0|, (42b)

then with this choice of basis the expression we find for the
quantum error is

Q = 1
2 − 1

4 cos
(

α
2

)
cos

(
β

2

)
Tr[�z(σz ⊗ 1E)]

− 1
4 sin

(
α
2

)
sin

(
β

2

)
Tr[�x(σx ⊗ 1E)]. (43)

Clearly, −2 � Tr[�z(σz ⊗ 1E)] � 2 and −2 � Tr[�x(σx ⊗
1E)] � 2, and we find the bound

Q � 1
2 − 1

2 max{| cos(�)|,| cos(θ )|}, (44)

with � and θ defined as in (21) (this bound is also saturated,
e.g., if Eve does not interfere with the channel, in which case
�z,x = σz,x). The corresponding upper bound is

Q � 1
2 + 1

2 max{| cos(�)|,| cos(θ )|}. (45)

D. Transformation and constraints

We now determine the full set of constraints on the metric
elements γij . First, we impose that the QBER is fixed at Q.
This, combined with 〈	00|	00〉 = 〈	01|	01〉 = 1, imposes

a2 + b2 = 1 − Q, (46a)

c2 + d2 = Q, (46b)

and Re[γab] = Re[γcd ] = 0, with analogous constraints for the
basis b = 1. The components γab, γac, γbd , and γcd transform
between the two bases according to

γ ′
ab = cos(�) cos(θ )γab + cos(�) sin(θ )γac

+ sin(�) cos(θ )γdb + sin(�) cos(θ )γdc, (47a)

γ ′
ac = cos(�) cos(θ )γac − cos(�) sin(θ )γab

+ sin(�) cos(θ )γdc − sin(�) sin(θ )γdb, (47b)

γ ′
db = cos(�) cos(θ )γdb + cos(�) sin(θ )γdc

− sin(�) cos(θ )γab − sin(�) sin(θ )γac, (47c)

γ ′
dc = cos(�) cos(θ )γdc − cos(�) sin(θ )γdb

− sin(�) cos(θ )γac + sin(�) sin(θ )γab. (47d)

For a more compact representation, the transformation ma-
trix from [γab, γac, γdb, γdc]T to [γ ′

ab, γ
′
ac, γ

′
db, γ

′
dc]T can be

expressed as[
cos(�) sin(�)

− sin(�) cos(�)

]
⊗

[
cos(θ ) sin(θ )

− sin(θ ) cos(θ )

]
. (48)

Equations (47a) and (47d) together with the constraint
Re[γab] = Re[γcd ] = 0 imply Re[γac] = Re[γbd ] = 0.

For a′ and d ′, we find

a′2 = cos(�)2a2 + sin(�)2d2 + sin(2�) Re[γad ], (49a)

d ′2 = cos(�)2d2 + sin(�)2a2 − sin(2�) Re[γad ], (49b)

from which we immediately see that a′2 + d ′2 = a2 + d2.
From (49), and taking the real and imaginary parts of

γ ′
ad = − 1

2 sin(2�)(a2 − d2) + cos(�)2γad − sin(�)2γda,

(50)

we find

δ′
ad = cos(2�)δad + sin(2�) Re[γad ], (51a)

Re[γ ′
ad ] = cos(2�) Re[γad ] − sin(2�)δad, (51b)

Im[γ ′
ad ] = Im[γad ], (51c)

where δad = a2−d2

2 . Similarly, b′2 + c′2 = b2 + c2 and

δ′
bc = cos(2θ )δbc + sin(2θ ) Re[γbc], (52a)

Re[γ ′
bc] = cos(2θ ) Re[γbc] − sin(2θ )δbc, (52b)

Im[γ ′
bc] = Im[γbc], (52c)

with δbc = b2−c2

2 . Orthogonality of |	00〉 and |	01〉 implies
Im[γbc] = Im[γad ].

We still require a′2 � 1 − Q and d ′2 � Q individually,
which impose

cos(�)2a2 + sin(�)2d2 + sin(2�) Re γad ] � 1 − Q, (53a)

cos(�)2d2 + sin(�)2a2 − sin(2�) Re[γad ] � Q. (53b)
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Equation (53a) is automatically satisfied, in the sense that
there are no new restrictions on a2, d2, or Re[γad ], if Q � 1

2 −
1
2 | cos(�)|. Equation (53b) is automatically satisfied if Q �
1
2 + 1

2 | cos(�)|. Similarly, we automatically have b′2 � 1 − Q

and c′2 � Q as long as 1
2 − 1

2 | cos(θ )| � Q � 1
2 + 1

2 | cos(θ )|.
Finally, using a′2 + b′2 = a2 + b2 and c′2 + d ′2 = c2 + d2,

we obtain the constraint

sin(2�) Re[γad ] + sin(2θ ) Re[γbc]

= sin(�)2(a2 − d2) + sin(θ )2(b2 − c2). (54)

E. Optimization

The plots given in Figs. 1 and 2 were generated by
numerically maximizing QAE = QAE(ε0 = ε1 = ε = 0), de-
fined by Eq. (38), using MATLAB’s fmincon routine, over all
metrics γij respecting the constraints derived in the preceding
subsection for the reported angles θ and values of QAB

and with � = 0, and calculating the corresponding value
of I (A : E). For simplicity, we performed no systematic
optimization over (ε0,ε1,ε). Optimizing over (ε0,ε1,ε) in a few
test cases generally supported our expectation that the minimal
keyrate would be obtained for the maximal value of QAE

with a symmetric attack (δ(0) = δ(1) = 0 and Q
(0)
AE = Q

(1)
AE).

Similarly, investigating test cases generally found that the
minimal keyrate, given a common error bound on the deviation
of α and β from 90◦, was obtained by setting both to the

worst case such that α = β = θ and � = 0. As a result, the
keyrates given in Sec. II B are an upper bound on the secure
keyrate (which is sufficient to demonstrate a degradation in
performance) which we believe are very likely the optimal
keyrates.

The maximum tolerable QBERs reported in Fig. 3 are those
for which Q = QAE for the angles θ considered, again with
� = 0.

In addition to the keyrates reported in Sec. II B, we also
similarly investigated the case in which only one basis is used
to generate the key, by maximizing only Q

(0)
AE. In this case, the

resulting keyrates (not accounting for sifting) are lower than
those obtained for the case in which both bases are used, for
the same parameters. This suggests that implementations of
BB84 in which both bases are used to generate the key are
likely to be more robust against implementation errors, as we
alluded to in Sec. II C.
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N. Lütkenhaus, and M. Peev, Rev. Mod. Phys. 81, 1301 (2009).

[4] M. Koashi and J. Preskill, Phys. Rev. Lett. 90, 057902 (2003).
[5] M. Koashi, New J. Phys. 11, 045018 (2009).
[6] D. Mayers and A. Yao, in Proceedings of the 39th Annual

Symposium on Foundations of Computer Science, Palo Alto,
CA, 1998 (IEEE Computer Society, Los Alamitos, CA, 1998),
pp. 503–509.

[7] M. Tomamichel and R. Renner, Phys. Rev. Lett. 106, 110506
(2011).

[8] D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill,
Quantum Inf. Comput. 4, 325 (2004).

[9] Ø. Marøy, L. Lydersen, and J. Skaar, Phys. Rev. A 82, 032337
(2010).

[10] N. Gisin (private communication).
[11] F. Xu, B. Qi, and H.-K. Lo, New J. Phys. 12, 113026 (2010).

[12] L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and
V. Makarov, Nat. Photonics 4, 686 (2010).

[13] D. Mayers and A. Yao, Quantum Inf. Comput. 4, 273 (2004).
[14] A. Acı́n, N. Brunner, N. Gisin, S. Massar, S. Pironio, and

V. Scarani, Phys. Rev. Lett. 98, 230501 (2007).
[15] M. Pawłowski and N. Brunner, Phys. Rev. A 84, 010302

(2011).
[16] E. Woodhead, C. C. W. Lim, and S. Pironio, Theory of

Quantum Computation, Communication, and Cryptography,
Lecture Notes in Computer Science 7582, 107 (2013).

[17] H.-K. Lo, M. Curty, and B. Qi, Phys. Rev. Lett. 108, 130503
(2012).

[18] J.-D. Bancal, N. Gisin, Y.-C. Liang, and S. Pironio, Phys. Rev.
Lett. 106, 250404 (2011).
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