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The entanglement-assisted (EA) formalism is a generalization of the standard stabilizer formalism, and it can
transform arbitrary quaternary classical linear codes into entanglement-assisted quantum error correcting codes
(EAQECCs) by using of shared entanglement between the sender and the receiver. Using the special structure
of linear EAQECCs, we derive an EA-Plotkin bound for linear EAQECCs, which strengthens the previous
known EA-Plotkin bound. This linear EA-Plotkin bound is tighter then the EA-Singleton bound, and matches the
EA-Hamming bound and the EA-linear programming bound in some cases. We also construct three families of
EAQECCs with good parameters. Some of these EAQECCs saturate this linear EA-Plotkin bound and the others
are near optimal according to this bound; almost all of these linear EAQECCs are degenerate codes.
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I. INTRODUCTION

Since the pioneering works of Shor and Steane [1,2], quan-
tum error-correcting codes (QECCs) have been extensively
studied in the literature [3–11]. The most widely studied
class of quantum codes are stabilizer (or additive) quantum
codes, both binary [3–6] and nonbinary [8,9]. Under the
stabilizer formalism [4,6], binary stabilizer codes can be
constructed from classical codes over finite fields F2 or F4

with certain self-orthogonal (or dual containing) properties,
where F2 is the binary field and F4 is the quaternary field.
The self-orthogonal properties form a barrier to importing all
classical codes in QECCs [10–12]. It is pointed out in [12]
that “Unfortunately, the need for a self-orthogonal parity check
matrix is a substantial obstacle to importing the classical theory
in its entirety, especially in the context of modern codes such
as low-density parity check (LDPC) codes”.

In [12], Brun, Devetak, and Hsieh devised the
entanglement-assisted (EA) stabilizer formalism which in-
cludes the standard stabilizer formalism as a special case; they
showed that if shared entanglement between the encoder and
decoder is available, classical linear quaternary (and binary)
codes that are not self-orthogonal can be transformed into
EAQECCs. Following [12], there has been further study of
EAQECCs [13–22], and Refs. [17–22] show that entanglement
can improve the performance of EAQECCs.

An [[n,k,dea; c]] EAQECC encodes k information qubits
into n channel qubits with the help of c pairs of maximally
entangled Bell states. The code can correct up to � dea−1

2 �
errors acting on the n channel qubits, where dea is the
minimum distance of the code. In [21,22], Lai et al. discussed
the construction of optimal EAQECCs. An [[n,k,dea; c]]
EAQECC is optimal in the sense that dea is the highest
achievable minimum distance for given parameters n,k, and
c. To judge the optimality of an [[n,k,dea; c]] EAQECC,
people deduced some bounds for EAQECCs, such as the
EA-Singleton bound in [12]

n + c − k � 2(dea − 1),

*liruihu2008@yahoo.com.cn

and the EA-Hamming bound for nondegenerate EAQECCs
[11]

2n+c−k �
t∑

i=0

3i

(
n

i

)
,

where t = � dea−1
2 �.

Lai, Brun, and Wilde [22] introduced the dual concept of
an EAQECC, presented the EA-linear programming bound
and the EA-Plotkin bound for EAQECCs, and compared the
tightness of their EA-Plotkin bound with the EA-Singleton
bound, the EA-Hamming bound, and the EA-linear program-
ming bound. Their EA-Plotkin bound is as follows.

Lemma 1.1 (EA-Plotkin bound [22]). If Qea =
[[n,k,dea; c]], then

dea � 3n × 4k

4(4k − 1)
.

They also commented that: “This Plotkin bound applies to
arbitrary EAQECCs. However, note that c does not appear in
the bound, and consequently, this bound best describes the
characteristics of maximal-entanglement EAQEC codes. And,
for large k, the bound is approximately 3

4n. Hence, this bound
is useful only for small values of k.”

In this work, we will strengthen this bound in the case of
linear EAQECCs, an [[n,k,dea; c]] is a linear EAQECC if it is
constructed from a linear code over F4. And we construct three
families of linear EAQECCs from low-dimensional quaternary
linear codes, some of these EAQECCs saturate our linear EA-
Plotkin bound and the others are near optimal.

This work is structured as follows. Section II reviews the
symplectic space, the original EA-stabilizer formalism of [12]
and two equivalent EA-stabilizer formalisms given in [18]. The
additive EA-stabilizer formalism of [18] allows us to work with
additive codes over F4 rather than subgroups of the Pauli group.
In Sec. III, we present our main theorem, discuss tightness of
our bound and known bounds for EAQECCs, and improve
a proposition, i.e., Proposition 0.3 of [12]. Section IV gives
explicit constructions of linear EAQECCs and discusses the
optimality of these codes. Section V compares our codes with
known EAQECCs in the literature and draws a final remark by
putting forward a conjecture.
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II. THE EA-STABILIZER FORMALISM
AND ADDITIVE CODES

To prove our main result, we briefly review the basic
concepts of symplectic space, Pauli group, and additive code
[6,23], the EA-stabilizer formalism of [12], and two equivalent
EA-stabilizer formalisms given in [18]. For more details,
please see [6,12,24].

Let F2 be the binary field and F2n
2 be the 2n-dimensional

symplectic space whose elements are denoted as (a | b) where
a,b ∈ Fn

2. The symplectic inner product of (a | b) and (a
′ | b

′
)

is defined to be ((a | b),(a
′ | b

′
))s = a(b

′
)T + b(a

′
)T . For a

subspace S of F2n
2 , its symplectic dual is defined as S⊥s =

{(a|b) | ((a|b),(a
′ |b′

))s = 0 for any (a
′ |b′

) ∈ S}. A subspace S

is called totally isotropic if S ∩ S⊥s = S and nonisotropic if
S ∩ S⊥s = {0}, see [23]. A totally isotropic subspace is called
an isotropic subspace in [12,13], and a nonisotropic subspace
is call an symplectic subspace in [12] and an entanglement
subspace in [13,14].

LetGn be the n-fold Pauli group, whose elements are written
as g = iλX(a)Z(b) where λ ∈ Z4 and (a | b) ∈ F2n

2 [6]. The
center of Gn is Z(Gn) = {±I,±iI }, and the quotient group
Ḡn = Gn/Z(Gn) is isometry isomorphism to the symplectic
space F2n

2 under the map τ (iλX(a)Z(b)) = (a | b) [6]. If A is a
subgroup of Gn, then τ (A) is a subspace of F2n

2 . For a subgroup
A, denote its centralizer as Z(A), then τ (Z(A))= τ (A)⊥s ,
where τ (A)⊥s is the symplectic dual space of τ (A). If τ (A)
is a totally isotropic subspace of F 2n

2 , A is called an isotropic
subgroup of Gn. If τ (A) is a nonisotropic subspace of F2n

2 , A is
called a symplectic subgroup ofGn in [12] and an entanglement
subgroup in [13], respectively. The EA formalism of [12] is as
follow.

Theorem 2.1 [12,22]. Let S be a subgroup of Gn of size 2m,
SI an isotropic subgroup of size 2l , and SE an entanglement
subgroup of size 22c. If S= SI × SE , then S can be extended
into an Abelian subgroup S̃ of Gn+c with c maximally
entangled pairs. S̃ fixes an EAQECC Qea = [[n,k,dea; c]],
where k = n + c − m = n − c − l, dea = min{wt(g) | g ∈
Z(S)\SI }, and Z(S) is the centralizer of S. S is called the
EA stabilizer of Qea .

Let the EA stabilizer of Qea = [[n,k,dea; c]] be S. If all
nonidentity elements in SI have weights greater than dea , then
Qea is called a nondegenerate EAQECC, otherwise it is a
degenerate one.

Remark 2.1. To simplify statements in the following
sections, we always assume that for each Qea = [[n,k,dea; c]]
EAQECC in this paper, c is the optimal number of entangled
bits that S requires [16]. According to [18,24], in such a case
0 � k + c � n. If c + k = n the EAQECC [[n,k,dea; n − k]]
is called a maximal-entanglement EAQECC in [22].

It is very hard to construct EAQECCs using the framework
of Theorem 2.1. In [18], using the relationships among Gn,
F2n

2 , and Fn
4, Li gave two equivalent EA-stabilizer formalisms

of Theorem 2.1. To give the two formalisms of [18], we also
need the concepts of additive codes over F4.

Let F4 = {0,1,ω,� } be the field of four elements, with
� = 1 + ω = ω2, ω3 = 1, and the conjugation is defined by
x = x2. Let Fn

4 be the n-dimensional row vector space over
F4. For u = (u1,u2, . . . ,un) and v = (v1,v2, . . . ,vn) ∈ Fn

4,
their trace inner product is defined as (u,v)t = tr(uvT ) =

∑n
1(ujvj + ujvj )= ∑n

1(ujv
2
j + u2

j vj ), and their Hermitian
inner product is defined as (u,v)h = ∑n

1 ujvj = ∑n
1 ujv

2
j .

An additive code C of length n over F4 is a subgroup of
Fn

4; if its size is 2m, it is denoted as (n,2m) in [6]. If C is
an (n,2m) additive code, its trace dual is defined as C⊥t =
{u ∈ Fn

4 | (u,v)t = 0 for all v ∈ C}, and C⊥t is an (n,22n−m)
additive code. If C is an [n,s]4 linear code, its Hermitian dual
is defined as C⊥h = {u ∈ Fn

4 | (u,v)h = 0 for all v ∈ C}, and
C⊥h is an [n,n − s]4 linear code. An [n,s]4 linear code C is
an (n,22s) additive code, and for such a code C⊥t = C⊥h is an
(n,22(n−s)) additive code. The symplectic space F2n

2 is isometry
isomorphism to Fn

4 under the map φ((a | b)) = ωa + �b, and
Ḡn = Gn/Z(Gn) is isometry isomorphism to Fn

4 under the map
φ ◦ τ .

Now, we can reformulate Theorem 2.1 as the following
equivalent Theorems 2.2 and 2.3.

Theorem 2.2 [18]. If S is an m-dimensional subspace
of F 2n

2 , R(S) = S ∩ S⊥s is an l-dimensional subspace, and
2c = m − l, then there is an EAQECC Qea = [[n,k,dea; c]],
where k = n + c − m = n − c − l and dea = min{wts(α) |
α ∈ S⊥s \ R(S)}. S is called the symplectic EA stabilizer of
Qea .

Theorem 2.3 [18]. IfC is an (n,2m) additive code and R(C) =
C ∩ C⊥t is an (n,2l) additive code, then there is an EAQECC
Qea = [[n,k,dea; c]], where k = n − c − l, 2c = m − l, and
dea = min{wt(α) | α ∈ C⊥t \ R(C)}. C is called the additive
EA stabilizer of Qea . If C is a linear code over F4, Qea is
called a linear EAQECC.

For a given subspace S of F 2n
2 in Theorem 2.2 (or additive

code C in Theorem 2.3), using S⊥s (or C⊥t ) as an EA stabilizer,
one can obtain another EAQECC Qea⊥ = [[n,c,d⊥

ea ; k]]. This
EAQECC Qea⊥ is just the dual code (see [22] for definition)
of the EAQECC Qea = [[n,k,dea; c]] stabilized by S (or C).
Thus, using terminology of symplectic space or additive code,
the concept of dual code of an EAQECC can be describe in
two equivalent forms as follows.

Corollary 2.4 [24]. (1) Let S be given in Theorem 2.2.
Then S⊥s stabilizes an EAQECC Qea⊥ = [[n,c,d⊥

ea; k]],
where k = n − c − l, 2c = m − l, and d⊥

ea = min{wt(α) | α ∈
S \ R(S)}. (2) Let C be given in Theorem 2.3. Then there
is an EAQECC Qea⊥ = [[n,c,d⊥

ea; k]], where k = n − c − l,
2c = m − l and d⊥

ea = min{wt(α) | α ∈ C \ R(C)}. The code
Qea⊥ = [[n,c,d⊥

ea ; k]] is called the dual code of Qea =
[[n,k,dea; c]] stabilized by S (or C).

III. STRENGTHENING THE EA-PLOTKIN BOUND
FOR LINEAR CODES

In this section, inspired by the result of [25] for linear
standard QECCs, we will prove a EA-Plotkin bound for linear
EAQECCs, and compare this bound with known upper bounds
for EAQECCs. Then, we also improve a proposition of [12]
on linear EAQECCs.

To give our EA-Plotkin bound, we also need a concept of
equivalence of codes over F4 [26,27]. Two [n,s]4 linear codes
C1 and C2 are equivalent provided there is a monomial matrix
M and an automorphism γ of F4 such that C2 = γ (C1M).
Two equivalent codes over F4 have the same geometric
characteristics [24,26], any [n,s]4 code is equivalent to a code
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with generator matrix G = (Is A), where Is is the identity
matrix of size s × s and A is a matrix of size s × (n − s), see
Theorem 1.6.2 of [27].

Theorem 3.1 (Linear EA-Plotkin bound). If k � 1 and
Qea = [[n,k,dea; c]] is a linear EAQECC, then dea �

3·4k

8(4k−1) (n + c + k).
Proof. Let C = [n,s]4 be the linear EA stabilizer of Qea

with r = dim R(C). Then one can deduce k = n − s − r and
c = s − r from Theorem 2.3. This implies s = (n − k + c)/2
and r = (n − k − c)/2. Thus C⊥h = [n,n − s]4 with n − s =
k + r .

Since R(C) is an [n,r]4 code, according to the equivalence of
quaternary codes given by [26,27], without loss of generality,
we can assume R(C) is generated by GR = (Ir X), where
Ir is the identity matrix of size r × r and X is a matrix of
size r × (n − r), and C⊥h is generated by G = ( Ir X

A1 A2
). Using

elementary row operations over F4, one can reduce G into G′
where

G′ =
(

Ir X

0k×r B1

)
.

Let (0k×r B1) generate a code B and B1 generates a code C1.
Then C1 = [n − r,k,d1] = [(n + k + c)/2,k,d1] for some d1

and dea � d(B) = d(C1)= d1. According to the Plotkin bound
for quaternary linear codes [27,28], one has d1 � 3·4k

4(4k−1) ×
(n + c + k)/2. Thus, we can derive dea � d1 � 3·4k

8(4k−1) (n +
c + k).

Remark 3.1. If R(C) = {0}, then c + k = n and our bound
is reduced into dea � 3n·4k

4(4k−1) which is the EA-Plotkin bound
of [22]. If R(C) 	= {0}, then c + k < n and our bound is
tighter than the EA-Plotkin bound of [22]. If k = 1, this
linear EA-Plotkin is the same as the EA-Singleton bond. For
k � 2, the linear EA-Plotkin is tighter than the EA-Singleton
bond for n � 2k. If k � 3 and 4 � n � 15, the linear EA-
Plotkin bound, the EA-linear programming bound, and the
EA-Hamming bound match. For k > 3 or k = 3 and n � 16,
we cannot determine the tightness of these three bounds.

For any [n,s,d]4 linear code, using C⊥h as an EA stabilizer,
Brun et al. showed that the following Proposition 3.2 holds
(the presentation of [12] has some errors; for the correct form
of this result, see [14], Proposition 8).

Proposition 3.2 [12,14]. If a classical [n,s,d]4 code exists,
then an [[n,2s − n + c,d; c]] EAQECC exists for some non-
negative integer c.

The statement on parameters of the EAQECC is accurate
only for nondegenerate EAQECCs; however, it is a little rough
for degenerate ones. We will specify their result explicitly
in Proposition 3.2

′
, give the value of c and dea in detail.

Then present a method of completely determining dea of the
EAQECC stabilized by C⊥h.

Proposition 3.2
′
. If C is an [n,s,d]4 linear code and

R(C) = C ∩ C⊥h is an [n,r,d ′]4 linear code, then C⊥h sta-
bilizes a Qea= [[n,2s − n + c,dea ; c]] = [[n,s − r,dea; n −
s − r]] linear EAQECC, where dea = min{wt(α) | α ∈ C \
R(C)} � d. Especially, if d ′ > d, then Qea = [[n,s − r,d; n −
s − r]] is a nondegenerate EAQECC.

Proof. Since C is an [n,s]4 linear code, it is known that C⊥h

is [n,n − s]4 linear code and an (n,22n−2s) additive code. As

R(C) is an (n,22r ) additive code, according to Theorem 2.3,C⊥h

stabilizes an [[n,k′,dea; c] EAQECC with 2c = 2(n − s) − 2r ,
k′ = n + c − 2(n − s) = s − r , and dea = min{wt(α) | α ∈
C \ R(C)}. It is obvious that 2s − n + c = 2s − n + (n − s −
r) = s − r = k′ and dea � d � min{d,d ′}, hence the proposi-
tion holds.

The minimal distance dea in Proposition 3.2
′

can be
determined as follows: Let the weight distribution of C be the
sequence A0,A1, . . . ,An, where Ai is the number of vectors in
C of weight i. The polynomial A(z) = ∑n

i=0 Aiz
i is called the

weight polynomial of C. And let the weight polynomial of R(C)
be R(z) = ∑n

i=0 Riz
i . Then Ai � Ri for 0 � i � n. Suppose

Aj = Rj for 0 � j � w − 1 and Aw > Rw, then dea = w.
Moreover, if d < w, then Qea is a degenerate EAQECC.

IV. CONSTRUCTION OF LINEAR EAQECCS

In this section, we will construct [[n,2; n − 4]], [[n,2; n −
6]], and [[n,3; n − 5]] EAQECCs for each n � 7; some of
these EAQECCs saturate the linear EA-Plotkin bound. Our
method of constructing EAQECCs is based on proposition
3.2

′
and the idea of dual EAQECCs of [22]. This construction

differs from those of [21,22] for constructing EA repetition
codes, [[n,1,n; n − 1]] codes with odd n, and [[n,1,n − 1; n −
1]] codes for even n. First, we make some notations for later
use.

Notation 4.1. In the following sections, in each generator
matrix of linear codes, we use 2 and 3 to represent ω and
� , respectively. For a matrix P , the conjugate transpose of
P is denoted as P †, and the juxtaposition (P,P, . . . ,P ) of s

copies of P is denoted as sP . We judge the optimality of linear
EAQECCs only by the linear EA-Plotkin bound.

Let 1m = (1,1, . . . ,1) and 0m = (0,0, . . . ,0) be the all one
vector and the all zero vector of length m, respectively. Let

S2 =
(

0 1 1 1 1
1 0 1 2 3

)
,

S3 =
(

S2 02×1 S2 S2 S2

05 1 15 215 315

)
.

Then S2S
†
2 = 0 and S3S

†
3 = 0. From [27], we know S2 and

S3 generate the [5,2,4]4 and the [21,3,16]4 Simplex codes,
and their weight polynomials are 1 + 15y4 and 1 + 63y16,
respectively. We give our constructions in three cases.

Case A. Construction of [[n,2; n − 4]] EAQECC. In this
case, we discuss the construction of [[n,2; n − 4]] code

from [n,3]4 code Cn with dim R(Cn) = 1. Let G3,4 = (
1111
0123
0213

).

Then G3,4G
†
3,4 = (

000
010
001

). Hence G3,4 generates a code C4 with

dim R(C4 ) = 1, and R(C4) has weight polynomial 1 + 3z4.

For each given matrix A2,l of size 2 × l, denote A3,l = (
01×l

A2,l
)

and construct G3,n = (G3,4 | A3,l) for n = 4 + l. By choosing
a suitable A2,l , we can make G3,n generates a code Cn, such
that R(Cn) is generated by the first row of G3,n and its weight
polynomial is 1 + 3y4.

Theorem 4.1. (1) If t � 2 and n = 5t + i for 0 � i � 1,
then there are [[n,2,n − t − 2; n − 4]] EAQECCs; these codes
are near optimal. (2) If t � 1 and n = 5t + i for 2 � i � 4,
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then there are [[n,2,n − t − 2; n − 4]] EAQECCs; these codes
saturate the linear EA-Plotkin bound.

Proof. Let A2,3 = ( 001
112 ), A2,4 = ( 1011

0123 ), A2,6 = ( 111100
223311 ),

A2,7 = (1111001
0033111 ).

(1) For t � 2, construct A2,5t−4 = (A2,6 | (t − 2)S2),
A2,5t−3 = (A2,7 | (t − 2)S2), G3,5t = (G3,4 | A3,5t−4),
G3,5t+1 = (G3,4 | A3,5t−3). Since the codes with generator
matrices G3,10 and G3,11 have weight polynomials W10(y) =
1 + 3y4 + 12y6 + 12y7 + 18y8 + 12y9 + 6y10 and W11(y) =
1 + 3y4 + 6y7 + 30y8 + 12y9 + 6y10 + 6y11, respectively,
then for n = 5t + i and 0 � i � 1, the code with
generator matrices G3,n has the weight polynomial
Wn(y) = 1 + 3y4 + [W10+i(y) − 1 − 3y4]y4(t−2). Thus,
C⊥h

n stabilizes an [[n,2,n − t − 2; n − 4]] EAQECC.
For n = 5t + i and 0 � i � 1, the distances of these
[[n,2,n − t − 2; n − 4]] codes are one less than the linear
EA-Plotkin bound, hence they are near optimal codes at least.

(2) For t � 1, construct A2,5t−2 = (A2,3 | (t − 1)S2),
A2,5t−1 = (A2,4 | (t − 1)S2), and A2,5t = (tS2). Construct
G3,5t+i = (G3,4 | A3,5t+i−4) for 2 � i � 4. The codes with
generator matrices G3,7, G3,8, G3,9 have the weight polyno-
mials

W7(y) = 1 + 21y4 + 12y5 + 18y6 + 12y7,

W8(y) = 1 + 3y4 + 12y5 + 30y6 + 12y7 + 6y8,

W9(y) = 1 + 3y4 + 18y6 + 24y7 + 18y8

respectively. Hence, for n = 5t + i and 2 � i � 4, the code
with generator matrices G3,n has weight polynomials Wn(y) =
1 + 3y4 + [W5+i(y) − 1 − 3y4]y4(t−1) for 2 � i � 4. Thus,
C⊥h

n EA stabilizes an EAQECC [[n,2,n − t − 2; n − 4]].
These EAQECCs saturate the linear EA-Plotkin bound.

Case B. Construction of [[n,2; n − 6]] EAQECC. In this
case, we discuss construction of [[n,2; n − 6]] code from
[n,4]4 code Cn with dim R(Cn) = 2.

Let G4,6 = (
111100
001111
010101
000011

). Then G4,6G
T
4,6 = (

0000
0000
0011
0010

). The code C6

generated by G4,6 satisfies dim R(C6) = 2; R(C6) is generated
by the first two rows of G4,6 and its weight polynomial is
W2,6(z) = 1 + 9y4 + 6y6.

For a given matrix A′
2,l , denote A4,l = (02×l

A′
2,l

). For each
n = l + 6 � 6, we will construct a matrix G4,n = (G4,6 |
A4,l) with suitable A′

2,l such that G4,n generates a code Cn,
R(Cn) is generated by the first two rows of G4,n and with
weight polynomial W2,n(z) = 1 + 9y4 + 6y6. Thus we have
the following theorem.

Theorem 4.2. If t � 1 and n = 5t + i for 1 � i � 5, then
there are [[n,2,n − t − 3; n − 6]] EAQECCs. The [[n,2,n −
t − 3; n − 6]] EAQECCs for 1 � i � 2 are near optimal; the
[[n,2,n − t − 3; n − 6]] EAQECCs for 3 � i � 5 saturate the
linear EA-Plotkin bound.

Proof. Let A′
2,1 = ( 1

2 ), A′
2,2 = ( 10

21 ), A′
2,3 = ( 101

213 ), A′
2,4 =

( 1011
2131 ), and A′

2,5t = (tS2) for t � 1. Construct A′
2,5+i = (A′

2,i |
S2) for 1 � i � 5 and G4,5+j = (G4,6 | A4,j−1) for 2 � j �
5. Let A′

2,5t+i = (A′
2,5+i | (t − 1)S2) and G4,5t+i = (G4,6 |

A4,5(t−1)+i−1) for t � 2 and 1 � i � 5.
Let Cn be the code generated by G4,n. It is easy to

check that R(Cn) is generated by the first two rows of G4,n

and with weight polynomial W2,n(y) = 1 + 9y4 + 6y6. For

6 � n � 10, the weight polynomials of Cn’s are as follows:

W6(y) = 1 + 9y2 + 24y3 + 99y4 + 72y5 + 51y6,

W7(y) = 1 + 9y3 + 69y4 + 54y5 + 90z6 + 33y7,

W8(y) = 1 + 30y4 + 48y5 + 96z6 + 48y7 + 33y8,

W9(y) = 1 + 9y4 + 21y5 + 90z6 + 54y7 + 60y8 + 21y9,

W10(y) = 1 + 9y4 + 39y6 + 72y7 + 90y8 + 24y9 + 21y10.

For t � 2, n = 5t + i, and 1 � i � 5, the weight poly-
nomial of Cn is Wn(y) = 1 + 9y4 + 6y6 + [W5+i(y) − 1 −
9y4 − 6y6]y4(t−1). Thus, one can derive the minimal weight
dea of Cn \ R(Cn) is n − t − 3. Hence C⊥h

n EA stabilizes an
[[n,2,n − t − 3; n − 6]] EAQECC.

For n = 5t + i, t � 1, and 1 � i � 5, it is easy to
check that the [[n,2,n − t − 3; n − 6]] EAQECCs for 1 �
i � 2 have minimal distances that are one less than the
linear EA-Plotkin bound, hence are near optimal codes at
least; the [[n,2,n − t − 3; n − 6]] EAQECCs for 3 � i � 5
saturate the linear EA-Plotkin bound. Thus, the theorem
holds.

Case C. Construction of [[n,3; n − 5]] EAQECC. In this
case, we discuss construction of [[n,3; n − 5]] code from

[n,4]4 code Cn with dim R(Cn) = 1. Let G = G′
4,6 = (

111100
012310
001110
000011

).

Then GG† = (
0000
0001
0011
0110

), and the code C6 generated by G′
4,6

satisfies dim R(C6) = 1, and R(C6) has the weight polynomial
W1,6(z) = 1 + 3z4.

Denote D4,21 = ( 01×21
S3

), B4,l = ( 01×l

B3,l
) for a given matrix

B3,l . For each n = l + 6 + 21t � 7, we will construct a matrix
G4,n = (G4,6 | B4,l | tD4,21) with suitable B3,l , such that G4,n

generates a code Cn and R(Cn) with the weight polynomial
W1,n(z) = 1 + 3z4, and the minimal weight dea of Cn \ R(Cn)
is as large as possible. Using C⊥h

n as the EA stabilizer,
one can obtain an [[n,3,dea; n − 5]] EAQECC. Our results
are the following Theorem 4.3; for its proof please see the
Appendix.

Theorem 4.3 (1) If 7 � n � 19, then there are the following
EAQECCs: [[n,3,n − 4; n − 5]] for 7 � n � 9, [[n,3,n −
5; n − 5]] for 10 � n � 14, and [[n,3,n − 6; n − 5]] for 15 �
n � 19.

(2) If t � 1, −1 � i � 1, and n = 21t + i, then there is an
[[n,3,16t + i − 2; n − 5]] EAQECC.

(3) If t � 1, 2 � i � 6, and n = 21t + i, then there is an
[[n,3,16t + i − 3; n − 5]] EAQECC.

(4) If t � 1, 7 � i � 9, and n = 21t + i, then there is an
[[n,3,16t + i − 4; n − 5]] EAQECC.

(5) If t � 1, 10 � i � 14, and n = 21t + i, then there is an
[[n,3,16t + i − 5; n − 5]] EAQECC.

(6) If t � 1, 15 � i � 19, and n = 21t + i, then there is an
[[n,3,16t + i − 6; n − 5]] EAQECC.

The [[14,3,9; 9]], [[18,3,12; 13]], and [[19,3,13; 14]]
EAQECCs in (1), the codes [[21t + 6,3,16t + 3; 21t + 1]],
[[21t + 14,3,16t + 9; 21t + 9]], [[21t + 18,3,16t +
12; 21t + 13]], and [[21t + 19,3,16t + 13; 21t + 14]]
for t � 1 in (3)–(6) are optimal codes and saturate the
linear EA-Plotkin bound, the others in (1)–(6) are near
optimal.
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V. DISCUSSION AND CONCLUDING REMARKS

In this paper we have derived an EA-Plotkin bound
for linear EAQECCs, and constructed three families of
EAQECCs with good parameters; some of these codes
also saturate this linear EA-Plotkin bound and the others
are near optimal according to this bound. Almost all the
linear EAQECCs we constructed are degenerate, except the
[[7,2,4; 3]], [[8,2,5; 4]], [[7,2,3; 1]], [[8,2,4; 2]], [[7,3,3; 2]],
and [[8,3,4; 3]] codes. For n � 9, all our [[n,2; n − 4]],
[[n,2; n − 6]], and [[n,3; n − 5]] EAQECCs are degenerate
codes; the [[7,2,4; 3]], [[7,2,3; 1]], [[8,2,4; 2]], [[7,3,3; 2]],
and [[8,3,4; 3]] EAQECCs are nondegenerate codes; the
[[8,2,5; 4]] and [[8,3,4; 3]] EAQECCs have been obtained
by [21], and the [[8,2,5; 4]] code is degenerate.

Our results implicate that some optimal EAQECCs can
be constructed from “poor” classical codes; the resulting
EAQECCs are degenerate codes. Hence, the current idea
(given in [12]) of constructing good EAQECCs from good
classical codes may be an illusion in some cases, and the
assertion “the performance of EAQECC constructed from
classical code is determined by the performance of the classical
code” in [13] is not always true. The reasons are as follows.
The classical codes C and C⊥h we used for constructing
EAQECCs are “poor” codes, and both of their distances
cannot exceed 4. For example, according to Theorem 4.1,
there is a [[49,2,38; 45]] = [[5 × 9 + 4,2,4 × 9 + 2; 5 × 9]]
degenerate EAQECC, which is constructed from classical
codes C with C = [49,3,4]4 and C⊥h = [49,46,2]4. According
to Grassl’s table on optimal quaternary linear codes [29],
an optimal [49,3]4 code has minimum distance 36; using
a [49,3,36]4 optimal quaternary linear code, one can only
obtain a [[49,2,36; 45]] or a [[49,3,36; 46]]. It is not difficult
to check that an optimal nondegenerate [[49,2; 45]] EAQECC
has d � 37 [30]. Generally, for n = 5t + 49 and t � 0, one can
check that an optimal [[5t + 49,2,4t + 38; 5t + 45]] must be a
degenerate EAQECC. All this evidence shows that EAQECCs
have some properties different from those of classical codes
and standard QECCs.

We have checked that all known EAQECCs in [21,22] with
k � 1, linear or nonlinear, also obey the linear EA-Plotkin
bound. We guess that this linear EA-Plotkin bound may hold
for all EAQECCs with k � 1. So, we put forward the following
conjecture.

Conjecture: If there is an [[n,k,dea; c]] EAQECC, then
dea � 3·4k

8(4k−1) (n + c + k).
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APPENDIX: PROOF OF THEOREM 4.3

To prove Theorem 4.3, we give our discussion in three
steps. First, we construct B3,i for 1 � i � 21, such that
G4,n = (G′

4,6 | B4,i) generates a code Cn and R(Cn) is a one-
dimensional code with weight polynomial W1,n(z) = 1 + 3z4.

The matrices B3,i for 1 � i � 21 are as follows:

B3,1 =
⎛
⎝ 1

0
3

⎞
⎠ , B3,2 =

⎛
⎝ 11

03
12

⎞
⎠ , B3,3 =

⎛
⎝ 111

023
133

⎞
⎠ ,

B3,4 =
⎛
⎝ 1011

0113
1122

⎞
⎠ , B3,19 =

⎛
⎝ 0110111010101111011

1031123100011221113
1120313211300132322

⎞
⎠ ,

B3,5 =
⎛
⎝ 11111

01301
33112

⎞
⎠ , B3,18 =

⎛
⎝ 111111001101111111

122303112012001031
012211123002132332

⎞
⎠ ,

B3,6 =
⎛
⎝ 110110

201011
122320

⎞
⎠ , B3,17 =

⎛
⎝ 11000111101010111

31011301310131212
20133123121200123

⎞
⎠ ,

B3,7 =
⎛
⎝ 0111101

1330211
0122123

⎞
⎠ , B3,16 =

⎛
⎝ 0111110101111101

1321011013010113
0110021222311333

⎞
⎠ ,

B3,8 =
⎛
⎝ 11110111

30311102
11223333

⎞
⎠ , B3,15 =

⎛
⎝ 101101110011111

012312331120012
200133223113102

⎞
⎠ ,

B3,9 =
⎛
⎝ 110101111

131211012
332102302

⎞
⎠ , B3,14 =

⎛
⎝ 11110011010111

31231102111313
11302122200223

⎞
⎠ ,

B3,10 =
⎛
⎝ 1011111110

1100122321
3031232103

⎞
⎠ , B3,13 =

⎛
⎝ 0111101011111

1010313102213
0103221321323

⎞
⎠ ,

B3,11 =
⎛
⎝ 11101011110

22111130231
12233313331

⎞
⎠ , B3,12 =

⎛
⎝ 110010111111

021131210103
111230303321

⎞
⎠ ,

B3,20 =
⎛
⎝ 12310221122301303001

02121230320221132213
21012331211012203203

⎞
⎠ ,

B3,21 =
⎛
⎝ 011011111111100011101

001132030202211113113
100121123321212231203

⎞
⎠ .

Second, using the matrices B3,i for 1 � i � 21, we con-
struct G4,n for n � 7 as follows.

(1) Let G4,n = (G′
4,6 | B4,n−6) for 7 � n � 19.

(2) If t � 1, −1 � i � 6, and n = 21t + i, let G4,21t+i =
(G′

4,6 | B4,15+i | (t − 1)D4,21).
3) If t � 1, 7 � i � 19, and n = 21t + i, let G4,21t+i =

(G′
4,6 | B4,i−6 | tD4,21).
Let Cn be the code generated by G4,n and the weight

polynomial of Cn be Wn(z) for n � 7. Then R(Cn) is a one-
dimensional code with weight polynomial W1,n(z) = 1 + 3z4,
and all the weight polynomials of these Wn(z) can be derived
from Wi(z) for 7 � i � 27. It is not difficult to check that
Wi(z) for 7 � i � 27 are as follows:

W7(z) = 1 + 15z3 + 45z4 + 90z5 + 66z6 + 39z7,

W8(z) = 1 + 24z4 + 72z5 + 60z6 + 72z7 + 27z8,
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W9(z) = 1 + 3z4 + 39z5 + 66z6 + 78z7 + 42z8 + 27z9,

W10(z) = 1 + 3z4 + 63z6 + 72z7 + 36z8 + 72z9 + 9z10,

W11(z) = 1 + 3z4 + 18z6 + 57z7 + 54z8 + 78z9

+ 36z10 + 9z11,

W12(z) = 1 + 3z4 + 21z7 + 78z8 + 66z9 + 30z10 + 57z11,

W13(z) = 1 + 3z4 + 39z8 + 78z9 + 48z10 + 60z11

+ 21z12 + 6z13,

W14(z) = 1 + 3z4 + 54z9 + 75z10 + 72z11 + 24z12

+ 18z13 + 9z14,

W15(z) = 1 + 3z4 + 15z9 + 54z10 + 78z11 + 42z12

+ 51z13 + 12z14,

W16(z) = 1 + 3z4 + 15z10 + 84z11 + 60z12

+ 48z13 + 33z14 + 12z15,

W17(z) = 1 + 3z4 + 48z11 + 54z12 + 69z13

+ 54z14 + 18z15 + 9z17,

W18(z) = 1 + 3z4 + 51z12 + 84z13 + 36z14 + 60z15 + 21z16,

W19(z) = 1 + 3z4 + 63z13 + 90z14 + 54z15 + 18z16 + 27z17,

W20(z) = 1 + 3z4 + 33z13 + 54z14 + 72z15 + 42z16

+ 33z17 + 12z18 + 6z19,

W21(z) = 1 + 3z4 + 51z14 + 60z15 + 36z16 + 72z17

+ 21z18 + 12z19,

W22(z) = 1 + 3z4 + 51z15 + 60z16 + 78z17 + 42z18

+ 15z19 + 6z20,

W23(z) = 1 + 3z4 + 30z15 + 39z16 + 72z17 + 42z18

+ 42z19 + 21z20 + 6z22,

W24(z) = 1 + 3z4 + 24z16 + 75z17 + 54z18 + 54z19

+ 18z20 + 15z21 + 12z22,

W25(z) = 1 + 3z4 + 66z17 + 51z18 + 42z19 + 36z20

+ 30z21 + 21z22 + 6z23,

W26(z) = 1 + 3z4 + 51z18 + 72z19 + 36z20 + 72z21 + 21z22,

W27(z) = 1 + 3z4 + 84z19 + 51z20 + 60z21 + 36z22 + 21z24.

For n = 21t + i > 27, from the construction of G4,n, we
can deduce that the weight polynomial Wn(z) of Cn must be
W21t+i(z) = 1 + 3z4 + (W21+i(z) − 1 − 3z4)z16(t−1) for −1 �
i � 6, and W21t+i(z) = 1 + 3z4 + (Wi(z) − 1 − 3z4)z16t for
7 � i � 19.

Third, from the weight polynomial Wn(z) of Cn(n � 7),
one can deduce the minimal weight dea(n) of Cn \ R(Cn). For
n = 21t + i, the dea(n) are

dea(21t + i) = 16t + i − 2 for t � 1, − 1 � i � 1,

dea(21t + i) = 16t + i − 3 for t � 1, 2 � i � 6,

dea(21t + i) = 16t + i − 4 for t � 1, 7 � i � 9,

dea(21t + i) = 16t + i − 5 for t � 1, 10 � i � 14,

dea(21t + i) = 16t + i − 6 for t � 1, 15 � i � 19.

It is trivial to verify that the EAQECCs [[14,3,9; 9]],
[[18,3,12; 13]], and [[19,3,13; 14]] in (1) and the EAQECCs
[[21t + 6,3,16t + 3; 21t + 1]], [[21t + 14,3,16t + 9; 21t + 9]],
[[21t + 18,3,16t + 12; 21t + 13]], and [[21t + 19,3,16t +
13; 21t + 14]] for t � 1 in (3)–(6) are optimal codes and
saturate the linear EA-Plotkin bound; the others in (1)–(6) are
near optimal codes. Summarizing the above discussions, the
theorem follows.
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