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Entanglement verification and steering when Alice and Bob cannot be trusted
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Various protocols exist by which a referee can be convinced that two observers share an entangled resource.
Such protocols typically specify the types of communication allowed, and the degrees of trust required, between
the referee and each observer. Here it is shown that the need for any degree of trust of the observers by the referee
can be completely removed via the referee using classical and quantum communication channels appropriately.
In particular, trust-free verification of Bell nonlocality, Einstein-Podolsky-Rosen steering, and entanglement,
respectively, requires two classical channels, one classical and one quantum channel, and two quantum channels.
These channels correspond to suitable inputs of quantum randomness by the referee, which prevent the observers
from mimicking entanglement using shared classical randomness. Our results generalize recent work by Buscemi
[Phys. Rev. Lett. 108, 200401 (2012)], and offer a perspective on the operational significance of that work. They
also offer the possibility of simpler experimental demonstrations of the basic idea of quantum-refereed nonlocality
tests.
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I. INTRODUCTION

Quantum entanglement is a remarkable and nonintuitive
phenomenon, with no parallel in classical physics. It also
provides much more than a philosophical conversation piece—
various types of entanglement have been shown to provide
useful physical resources [1], for tasks ranging from secure
key generation [2] to distinguishing between two quantum
channels [3].

For two observers to convince a referee that they share
an entangled resource, they must demonstrate a real physical
effect that could not be achieved otherwise. If the referee does
not have direct access to the resource, and does not trust the
observers, this is a nontrivial task—a protocol is required that
rules out all other possible explanations of the effect, and in
particular rules out generation of the effect by purely local
classical means.

For example, it is clearly insufficient for the observers,
after being isolated from each other, to each transmit a list of
local measurement settings and measurement outcomes to the
referee. Even if two such lists, when combined, violate a Bell
inequality [4], they could simply have been generated before
isolation via a conspiracy by the observers [1].

To prevent the possibility of such conspiracies misleading
the referee, it is necessary to have a protocol that negates the
effects of any preexisting classical shared randomness between
the observers. As will be shown here, this can always be done
via a suitable injection of quantum randomness by the referee.
This is a consequence of, and offers an operational perspective
on, recent work by Buscemi [5].

In particular, Buscemi has shown that entanglement can
always be witnessed by a suitable “semiquantum” game,
involving one-way quantum channels from the referee to the
observers. Nonorthogonality of the quantum states sent by the
referee, via these channels, provides the necessary quantum
randomness to ensure that the observers cannot conspire to
mimic entanglement by classical means. Buscemi concludes,

as per the title of his paper, that all entangled quantum states
are nonlocal [5]. It is important to note in this regard that
“nonlocal,” as used by Buscemi, does not correspond to the
usual sense of there being no local hidden variable model
for a given quantum state [4]. Indeed, it is well known that
some entangled states have precisely such a model [6]. Rather,
nonlocal in Buscemi’s sense is relative to complete trust by the
referee in quantum randomness.

Hence, while Buscemi’s paper provides an important new
method of witnessing entanglement, it is critical to examine the
role played by trust in comparison to previous methods. The
aim of this paper is to show that the significance of Buscemi’s
semiquantum games, in this respect, is that while the referee
needs to trust quantum mechanics and his or her own quantum
state preparation devices, the referee does not need to trust the
distant parties. Thus, we can think of his result as implying the
existence of quantum-refereed entanglement tests. Further, we
can generalize Buscemi’s result by noting that, by modifying
the type of randomness injected by the referee, the games can
embody a lesser degree of trust in quantum mechanics by the
referee, and thereby test a stronger degree of nonlocality.

In particular, we show that the nature of the states
needed to be sent by the referee depends on the type of
entangled resource that the observers claim to share, as
indicated in Fig. 1. The strongest type of nonlocality available
through quantum mechanics, Bell inequality violations [4],
only requires the referee to provide classical randomness,
corresponding to two classical channels. The strictly weaker
nonlocal phenomenon of steering [7,8] [violating an Einstein-
Podolsky-Rosen (EPR)-steering inequality [9]] requires one
quantum channel and one classical channel. The still weaker
phenomenon of entanglement witnessing (violating a sepa-
rability inequality) [10], requires two quantum channels, as
considered by Buscemi. The protocols in Fig. 1 are very
similar to those considered in Jones et al. [8], where only
classical communication channels were used, together with
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FIG. 1. (Color online) Quantum-refereed games replace trust by
quantum channels. Shaded regions indicate trust by the referee,
Charlie, in the indicated party and in the quantum mechanical
description of his or her apparatus. (Charlie’s trust in himself is
only indicated when he has a quantum state preparation device
which he must trust.) Dashed lines represent classical channels and
full lines represent quantum channels. The first column represents
conventional nonlocality tests with classical channels, with trust
in the appropriate parties as introduced in Refs. [7,8]; the second
column represents the corresponding quantum-refereed tests. Trust
in Alice and/or Bob can thus be substituted by trust in Charlie’s state
preparation devices and quantum channels to the corresponding party,
to demonstrate (a) entanglement and (b) EPR steering. Demonstration
of (c) Bell nonlocality is unaltered as no party is assumed to be
trusted.

varying degrees of trust by the referee of the observers; here,
such “trust” is replaced by one-way quantum communication
channels.

This paper is arranged as follows. In Sec. II we review
the results of [5], showing how for every entangled state
there exists a “semiquantum nonlocal game” that witnesses
the entanglement. In Sec. III we discuss the foundational
implications of that result, and in particular in what sense it
can be said that “all entangled states are nonlocal.” In Sec. IV
we review the nonlocality hierarchy of entanglement, EPR
steering and Bell nonlocality, and how this has previously
been formulated in terms of trust by a referee in various
parties during performance of an entanglement-verification
task [8,9,11]. In Sec. V we show how “semiquantum games”
mandate a revision in the required degrees of trust: With
quantum-refereed games, trust from a referee in a distant party
can be replaced by the combination of (i) trust by the referee
on his own preparation device and (ii) a quantum channel to
the untrustworthy parties. We show how this is also the case

in the asymmetric task of EPR steering [7–9]. In Sec. VI we
offer some concluding remarks.

II. SEMIQUANTUM GAMES AND ENTANGLEMENT
WITNESSES

The work of Buscemi [5] centers on demonstrating the
equivalence of two orderings on bipartite quantum states.
While these orderings are not of primary interest per se
for our observations, they and their equivalence are briefly
reviewed here to introduce Buscemi’s semiquantum nonlocal
game protocol, and to clarify the close connection of the latter
with entanglement witnesses.

A. Local operations and shared randomness ordering of states

The first ordering on bipartite states is defined via the class
of completely positive maps corresponding to local operations
and shared randomness (LOSR) [5,12]. Such maps have the
form

∑
j νj Ej ⊗ Fj , where {νj } is a classical probability

distribution and Ej and Fj are arbitrary completely-positive
trace-preserving maps on the respective components of the
state. Two separated observers can generate an LOSR map on
a shared bipartite state, without using any communication, via
shared classical randomness corresponding to the distribution
{νj }. It is clear that the class of LOSR maps forms a subset
of the class of maps defined by local operations and classical
communication (LOCC), since one can share any probability
distribution νj by sampling it and communicating the result(s)
classically.

A state ρ is defined to be LOSR sufficient for another
bipartite state σ , written ρ � σ , if and only if ρ can be
converted to σ via some LOSR map. Thus,

ρ � σ if and only if σ =
∑

j

νj (Ej ⊗ Fj )(ρ) (1)

for some set {νj ,Ej ,Fj }. It is straightforward to show that ρ �
σsep for any separable state σsep, and that the converse, σsep �
ρ, only holds if ρ is also separable [5]. Thus the separable
states form an equivalence class of bipartite states with respect
to this ordering [13].

B. Semiquantum game ordering of states

The second ordering is defined via the class of semiquantum
nonlocal games, which we will abbreviate here to semiquan-
tum games. These are games involving two experimenters,
Alice and Bob, sharing a bipartite state ρAB , and a referee,
Charlie, who will question them and receive answers, which
he uses to calculate their payoff. The term semiquantum,
introduced by Buscemi [5], refers to the fact that while Alice’s
and Bob’s answers are of the usual (classical) sort, Charlie’s
questions are actually quantum states.

To formalize the game protocol, Charlie (i) sends state τ s

to Alice (representing a “question” labeled s), encoded on a
subsystem A0, with probability p(s), and (ii) sends state ωt

to Bob (representing a “question” labeled t), encoded on a
subsystem B0, with probability q(t). It is assumed that Alice
and Bob cannot communicate with each other, although they
may have agreed on a strategy beforehand. For each question
asked by Charlie, Alice and Bob must transmit their respective
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answers, x and y, back to Charlie. These answers may have
been produced by Alice and Bob each carrying out a local joint
measurement on the subsystem they received from Charlie and
their component of ρAB , but no such assumption is made by
Charlie. Their goal is to maximize the average value of some
preagreed payoff function, ℘(x,y,s,t). This protocol defines a
semiquantum game Gsq [5]. The quantum states Charlie uses to
encode the questions are, in general, not mutually orthogonal,
while the answers from Alice and Bob, being classical, could
be represented by mutually orthogonal quantum states.

Without loss of generality we can represent the measure-
ments of Alice and Bob as positive operator valued measures
(POVMs) P = {P x

A0A
} and Q = {Qy

BB0
}, acting on AA0 and

BB0, respectively. The maximum average payoff for a given
shared state ρAB and game Gsq is then given by

℘�(ρAB,Gsq) := max
P,Q

∑

s,t,x,y

p(s)q(t)μ(x,y|s,t) ℘(x,y,s,t),

where

μ(x,y|s,t) := Tr
[(

P x
A0A

⊗ Q
y

BB0

) (
τ s
A0

⊗ ρAB ⊗ ωt
B0

)]
.

It is natural to define a bipartite state ρ to have greater utility
for semiquantum games than bipartite state σ , written ρ �sq σ ,
if the maximum average payoff for ρ is always at least as much
as that for σ , for any semiquantum game, i.e.,

ρ �sq σ if and only if℘�(ρ,Gsq) � ℘�(σ,Gsq) ∀Gsq. (2)

C. Entanglement witnesses via equivalence of orderings

The main result of Buscemi is that the two orderings, ρ �
σ and ρ �sq σ , in Eqs. (1) and (2), are equivalent [5]. An
immediate corollary is that any equivalence class of bipartite
states with respect to LOSR maps is also an equivalence class
with respect to semiquantum games. That is, defining ρ ��
σ if and only if ρ and σ can be obtained from each other via
suitable LOSR maps, one has

ρ �� σ if and only if℘�(ρ,Gsq) = ℘�(σ,Gsq) ∀Gsq.

As noted earlier, the set of separable states forms an equiva-
lence class. Hence, it follows, in particular, that all separable
states must yield the same maximum average payoff ℘�

sep(Gsq),
for any game Gsq, i.e.,

℘�(σsep,Gsq) = ℘�
sep(Gsq) (3)

for any separable state σsep. It is this result that leads to the
direct connection of semiquantum games with entanglement
witnesses.

In particular, it follows from Eq. (3) that a given bipartite
state ρ is entangled if there is some corresponding semi-
quantum game Gsq such that ℘�(ρ,Gsq) > ℘�

sep(Gsq). Hence,
if ℘PQ(ρ,Gsq) denotes the average payoff for this game
when Alice and Bob make measurements corresponding to
POVMs P and Q, respectively, then this average payoff is an
entanglement witness for ρ whenever

℘PQ(ρ,Gsq) > ℘�
sep(Gsq). (4)

Because the use of quantum states by Charlie obviates his need
to trust Alice and Bob, we call such a protocol a quantum-

refereed entanglement test. It is important to note that Alice
and Bob do not need to make optimal choices of P and Q to
verify that ρ is entangled, as long as they achieve an average
payoff for this game that is strictly larger than the maximum
possible payoff for any separable state.

The equivalence between the LOSR ordering and the
ordering induced by semiquantum games further implies that
a given bipartite state ρ is entangled only if there is some
corresponding semiquantum game Gsq such that ℘�(ρ,Gsq) >

℘�
sep(Gsq). The proof is as follows. Suppose that a given

entangled state ρ has a maximum payoff ℘�(ρ,Gsq) that is
not larger than the maximum payoff ℘�

sep(Gsq) for separable
states, for all Gsq. From the equivalence between LOSR
and semiquantum-game orderings, it thus follows that ρ can
be obtained by LOSR from a separable state. But LOSR
transformations cannot create entanglement, and hence the
assumption must be false. Thus, every entangled state must
have a maximum payoff larger than that for separable states,
for some semiquantum game.

III. ARE ALL ENTANGLED QUANTUM STATES
NONLOCAL?

We now return to the title claim of Buscemi’s paper, i.e., that
“all entangled quantum states are nonlocal.” The title and some
of the introduction may suggest Buscemi is referring to Bell
nonlocality [4], but clearly this cannot be the case, as it would
imply no local hidden-variable (LHV) model could explain
the correlations of any entangled state. In particular, it is well
known that there are entangled states which have an explicit
LHV model for all possible measurement schemes [6]. Indeed,
in the concluding paragraph of Buscemi’s paper, he actually
equates “nonlocality” with the property that the state has a
greater utility than any separable state for semiquantum games
[5]. By his own results, as described in Sec. II above, this is in
fact equivalent to equating nonlocality with “entanglement.”

Now, all entangled states are obviously nonlocal in the sense
of not being describable by a separable quantum state, and it is
well known that for every entangled state there exists a witness,
based on correlations between local measurements, that will
detect the entanglement. The result of [5] would be trivial if
this is all it were saying. The correct interpretation is a bit
more subtle. It is that prior to this result, it was believed that to
construct an appropriate entanglement witness protocol, it was
necessary to trust Alice and Bob to perform the appropriate
measurements at their local systems. The result of Buscemi
lifts the need for this trust on the distant parties, making it
possible for entanglement to be detectable for all entangled
states, even in an adversarial nonlocal game.

However, since Charlie encodes the questions in nonorthog-
onal states, he still needs to trust the devices used to prepare
those states, and more importantly, he needs to trust quantum
theory in the sense that Alice and Bob should not be able
to distinguish those nonorthogonal states any more than is
allowed by quantum theory. If those states were distinguishable
in a theory superseding quantum mechanics, then Alice and
Bob could obtain information about which question was
encoded by Charlie in each run, and the situation reverts to
that where the questions are encoded in orthogonal states.
Or rather, the semiquantum nonlocal game protocol does not
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rule out the possibility that some local hidden variables in
the question systems A0 and B0 may carry instructions for
the devices of Alice and Bob that would be sufficient for
them to “win” the game even when they share a separable
state.

In other words, while the proof of [5] is device independent
for the distant parties, it is not fully device independent as
it requires trust in the preparation device of the referee, and
it is not theory independent, unlike the case for the proof of
nonlocality allowed by a violation of a Bell inequality. The
deep significance of Buscemi’s result lies, therefore, not in a
broader concept of nonlocality that subsumes the notion of
entanglement, but rather in the removal of the need for a third
party to trust Alice and Bob when verifying they share an
entangled state—even when there is an LHV model for this
state.

IV. TRUST AND THE NONLOCALITY HIERARCHY

While the result of [5] does not have the foundational
implication that one might assume from its title, it does carry a
significant innovation in allowing the trust by the referee in the
distant parties to be replaced by (i) trust in a local preparation
device and (ii) one-way quantum channels from the referee
to the parties. This could have important implications for
quantum communication. In Sec. V we further contextualize
Buscemi’s result in this setting by showing how his proof
can be generalized to quantum-refereed EPR-steering games.
These require a one-way quantum channel on only one of
two sides. In particular, we show that all steerable states give
an advantage over all nonsteerable states in such games. The
implication is that the formalism of [5] mandates a revision
of the existing definitions of the three nonlocality classes of
entanglement, EPR steering, and Bell nonlocality in terms of
trust, which were introduced in [7] and further developed in
Refs. [8,9,11]. We now describe them briefly, with special
attention to the notion of steering.

In Ref. [8] the nonlocality hierarchy of entanglement,
steering, and Bell nonlocality was presented in terms of a
task wherein a referee, Charlie, wants to verify that Alice and
Bob share an entangled state. Alice and Bob share a number
of copies of a bipartite state ρAB , and for each of those Charlie
will ask them to perform one of a number of measurements
chosen by Charlie at random. If Charlie trusts Alice and Bob
(and their apparatuses), then it will be sufficient for Alice and
Bob to violate a separability criterion; if Charlie trusts neither
Alice nor Bob, then they will need to violate a Bell inequality;
if Charlie trusts Bob (say), but not Alice, then they will need
to demonstrate that Alice can steer Bob’s system.

Let us consider the task of steering, or EPR steering as
this task is denoted in [9] (where the concept of EPR-steering
inequalities was defined). The term refers to a phenomenon
identified by Schrödinger in a 1935 article [14], motivated by
the effect discovered by Einstein, Podolsky, and Rosen in their
seminal paper in that same year [15]. Schrödinger noted that
it was “rather discomforting” that, despite having no direct
access to Bob’s system, Alice was able, by different choices of
measurement on her system, labeled by s ∈ S, to “steer” Bob’s
state into states from distinct ensembles Es ≡ {ρ̃x|s

B : x ∈ Xs}.
Here Xs denotes the set of possible measurement outcomes,

and the tilde indicates that those states are unnormalized, their
trace being the probability of outcome x given s.

In the EPR-steering task, Alice must be able to prove that
she is able to steer Bob’s system. This is impossible if, and only
if, for all s ∈ S and for all x ∈ Xs there exists an ensemble
{p(ξ )ρξ

B : ξ ∈ 
} of local quantum states for Bob’s system
and a stochastic map p(x|s,ξ ) such that

ρ̃
x|s
B =

∑

ξ∈


p(x|s,ξ )p(ξ )ρξ

B. (5)

In other words, Alice can succeed if and only if the reduced
ensembles for Bob cannot be generated by a model wherein
Bob has a local quantum state that is classically correlated with
some variables in Alice’s possession. To use the terminology
of Refs. [7,8], steering is demonstrated if and only if their
correlations cannot be explained in terms of a local hidden
state model for Bob.

V. REPLACING TRUST BY QUANTUM RANDOMNESS

As mooted in Sec. IV, we generalize Buscemi’s semi-
quantum games by noting that the type of randomness input
to each observer by the referee naturally falls into one of
two types: classical randomness, corresponding to sending
classical signals to the observer (represented by mutually
orthogonal input states in the protocol); and quantum random-
ness, corresponding to sending arbitrary quantum signals to the
observer. These categories may be represented by classical and
quantum communication channels, respectively. Hence, the
types of nonlocality verified via semiquantum games naturally
fall into one of three categories, depending on whether two
classical channels, one quantum and one classical channel, or
two quantum channels, are required by the referee. It is shown
below that these categories correspond to verifying one of
Bell nonlocality, EPR steering, or entanglement, respectively,
as per Fig. 1.

A. Quantum-refereed verification of entanglement

We begin by explaining in more detail how semiquantum
games allow a referee, Charlie, to verify that Alice and Bob
share some entangled state, without Charlie having to trust
either of Alice and Bob. First, Alice and Bob may choose
to tell Charlie the density operator, ρAB , describing their
state. This is not an essential part of the protocol, but that
would be in their best interest for the purposes of verifying
entanglement, as it would allow Charlie to optimize the choice
of game for their particular state. The referee then chooses
a suitable semiquantum game Gsq corresponding to suitable
input ensembles {τ s ; p(s)} and {ωt ; q(t)} and payoff function
℘(x,y,s,t), and informs Alice and Bob of his choice. They are
allowed to consult on a strategy to decide on suitable POVMs
P and Q, and from then on cannot communicate with each
other. The game is then played, and entanglement is verified
by Charlie if the average payoff is larger than the maximum
separable payoff ℘�

sep(Gsq) for that game, as per Eq. (4).
Note that even if Alice and Bob use measurements and/or

shared randomness—for example, to discriminate as well as
possible between nonorthogonal states sent by Charlie—this
does not allow them to cheat in the above protocol. No such
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strategy can make their shared state appear more entangled
than it is. In particular, any cheating strategy corresponds to
applying some LOSR map

∑
j νj Ej ⊗ Fj to the joint state

τ s
A0

⊗ ρAB ⊗ ωt
B0

, before the measurement of POVMs P and
Q. However, this is formally equivalent to instead making a
joint measurement, on τ s

A0
⊗ ρAB ⊗ ωt

B0
, corresponding to the

POVM {J xy}, with J xy = ∑
j νj Ed

j (P x) ⊗ Fd
j (Qy), where φd

denotes the dual of map φ [16]. Hence, the strategy yields an
average payoff given by the mean value

∑
j μj ℘j of the aver-

age payoffs ℘j corresponding to Alice and Bob measuring the
POVMs {Ed

j (P x)} and {Fd
j (Qy)}. Since this mean value cannot

be greater than the largest value of ℘j , which in turn is bounded
by ℘�(ρAB,Gsq), Alice and Bob cannot use any such strategy
to obtain a higher average payoff than is possible for ρAB .

Thus, Charlie can be sure, as long as Alice and Bob
cannot communicate during the game, that an average payoff
greater than ℘�

sep(G), as per Eq. (4), is a genuine signature
of entanglement. The referee does not have to know what
Alice and Bob actually do, or or trust what they say—knowing
that they are limited to LOSR maps and local measurements,
Alice and Bob can be treated purely as black boxes into which
quantum states are input by Charlie, and measurement results
are output to Charlie, permitting calculation of the average
payoff. In this way quantum-refereed games can witness
entanglement with no trust of Alice and Bob by Charlie.

The mechanism that allows such lack of trust is the injection
of sufficient randomness by Charlie, via the use of suitable
input ensembles {τ s ; p(s)} and {ωt ; q(t)}. This randomness
negates the possibility of conspiracies between Alice and
Bob of the type mentioned in Sec. I, and more generally the
possibility of cheating via any LOSR map as above. We note
here that Charlie could use entangled states instead of quantum
channels, to allow him to make (random) choices of signals
after Alice and Bob have sent their measurement results, or,
alternatively, in a region that is spacelike separated from Alice
and Bob. In this case Charlie sends half of an entangled state
to Alice (or Bob), and makes a measurement on his half. The
measurement result establishes s (or t) for Charlie, and is
equivalent to sending the reduced state ωs (or τt ) of the other
component to Alice (or Bob), with probability p(s) [or q(t)].

B. Verification of Bell nonlocality

We say a state is Bell nonlocal, if it violates some Bell
inequality [4]. To test for Bell inequality violation, without
trusting Alice and Bob, Charlie only needs to send classical
signals s and t to Alice and Bob, respectively, via classical
communication channels (or, equivalently, states from mutual
orthogonal sets {πs

A0
} and {πt

B0
}). The corresponding games

may be called Bell games, or nonlocal games [5,17,18]. Since
only classical signals are sent and received, Charlie need not
even trust quantum mechanics to verify Bell nonlocality.

As shown by Buscemi, for any state that enables the
violation of some Bell inequality, there is always a suitable
Bell game for which that state will perform better than all
unentangled states [5,18]. To make this clear, assume that Alice
and Bob claim their correlations violate the Bell inequality

∑

x,y,s,t

w(x,y,s,t)p(x,y|s,t) � B, (6)

where the upper bound B holds for any correlations modeled
by a local hidden variable theory [4] (and in particular
for any separable state). A corresponding Bell game, GBell,
is defined by Charlie sending signals s and t with two
arbitrary nonvanishing probability distributions p(s) and q(t),
respectively, and choosing the payoff function ℘(x,y,s,t) =
w(x,y,s,t)/[p(s) q(t)].

Alice and Bob could produce correlations violating the
inequality by sharing an appropriate Bell-nonlocal state ρAB ,
and through appropriate choices of POVMs {P x

A(s)} and
{Qy

B(t)} such that p(x,y|s,t) = Tr{[P x
A(s) ⊗ Q

y

A(t)]ρAB} (or
equivalently, through appropriate choices of POVMs {P x

A0A
}

and {Qy

BB0
} such that p(x,y|s,t) = Tr[(P x

A0A
⊗ Q

y

BB0
)(πs

A0
⊗

ρAB ⊗ πt
B0

)]). However, no such assumption is made by
Charlie about the mechanism by which Alice and Bob produce
their results. Thus a violation of a Bell inequality demonstrates,
in a theory-independent way, that the correlations produced by
Alice and Bob cannot be explained locally.

C. Quantum-refereed verification of EPR steering

To derive the existence of quantum-refereed verification of
EPR steering, a nontrivial modification of Buscemi’s proof for
entanglement verification is required. It is nontrivial because
the relevant class of maps is no longer the LOSR class (see
Sec. II), but the class of “local operations with steering and
shared randomness”; a suitable “steerability” ordering must
be defined on bipartite states; and the role of separable states
must be replaced by nonsteerable states. However, when
these concepts are suitably defined, it becomes relatively
straightforward to apply the methods of Ref. [5] to allow
verification of EPR steering in the case where the referee does
not trust Alice or Bob.

1. Local operations with steering and shared randomness
ordering of bipartite states

As per Sec. IV, Alice steers Bob’s component of a shared
bipartite state ρ to the ensemble Es = {ρ̃x|s

B } by carrying out a
local measurement labeled by s with outcomes labeled by x. If
the POVM element corresponding to Alice’s outcome x, given
measurement s, is denoted by P

x|s
A , and the corresponding

measurement operation by Ex|s , then

ρ̃
x|s
B = TrA

[(
P

x|s
A ⊗ 1B

)
ρ
] = TrA[(Ex|s ⊗ IB)(ρ)], (7)

where 1B and IB denote, respectively, the identity operator
and identity operation for Bob’s component. Noting that Bob
can also operate locally on Es , by applying any completely-
positive trace-preserving map F , and that Alice could choose,
for a given value of the label s, to measure some POVM
{P x|s

A (i)} with probability ν(i), it follows that with shared
randomness they can steer Bob’s component to any ensemble
{ρ̃x|s

B } such that

ρ̃
x|s
B = φx|s(ρ) :=

∑

i

ν(i)TrA
[(
Ex|s

i ⊗ Fi

)
(ρ)

]
. (8)

We will refer to such maps φx|s as “local operations with
steering and shared randomness” (LOSSR) maps. The set of
ensembles that Bob’s component can be steered to via LOSSR
maps will be denoted by SB(ρ).
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It is natural to define bipartite state ρ to be LOSSR sufficient
for bipartite state σ , written ρ �st σ , if and only if Bob’s
component of ρ can be steered to any ensemble that Bob’s
component of σ can be steered to, via LOSSR maps, i.e.,

ρ �st σ if and only ifSB(σ ) ⊆ SB(ρ). (9)

As might be expected, ρ �st σnst for any non-steerable state
σnst. This is because the correlations of any non-steerable state
σnst, i.e., any state admitting a local hidden state model of
the form of Eq. (5), can be given a classical-quantum model
[19] σcq = ∑

ξ p(ξ )πξ
α ⊗ ρ

ξ

B , where the πξ
α are orthogonal

projectors on a sufficiently enlarged Hilbert space Hα . Since
σcq is a separable state, it can be generated ab initio via shared
randomness from any state ρ via a “discard and prepare”
LOSR map (with ν(ξ ) ≡ p(ξ ) and (Eξ ⊗ Fξ )(ρ) := πξ ⊗ ρ

ξ

B).
Defining the POVM {P x|s

α } via P x|s
α := ∑

ξ p(x|s,ξ )πξ
α , then

σ̃
x|s
cq,B = Trα[(P x|s

α ⊗ 1B)σcq] = ∑
ξ p(ξ )p(x|s,ξ )ρξ

B , thus re-
producing, via LOSSR, the steering ensembles that Alice
can prepare for Bob from σnst. It follows immediately that
SB(σnst) = SB(σcq) ⊆ SB(ρ). Hence, ρ �st σnst as claimed.

Conversely, no steerable state ρ can be obtained from a
nonsteerable state σnst via an LOSSR map [since such maps,
as per Eqs. (7) and (8), preserve the existence of a local hidden
state model as per Eq. (5) for Bob’s ensembles]. It immediately
follows that the nonsteerable states form an equivalence class
with respect to �st, which lies at the bottom end of the
ordering. Note that since the set of separable states is a proper
subset of the set of nonsteerable states [7,8], it follows that the
LOSSR ordering is weaker than the LOSR ordering defined
by Buscemi (see Sec. II above).

2. Steering-game ordering of bipartite states

We now define quantum-refereed steering games. These
games are a hybrid of nonlocal games (Bell nonlocality games)
and Buscemi’s semiquantum games (quantum-refereed en-
tanglement verification). In the case of steering verification,
Charlie picks with probability p(s) a question s ∈ S for Alice
and encodes it in a state from an orthonormal set π = {πs}, and
with probability q(t) a question t ∈ T for Bob and encodes it in
a state from an arbitrary set of normalized states ω = {ωt }. As
before, Alice and Bob must compute their answers x ∈ X and
y ∈ Y without communicating with each other, but may share
an arbitrary bipartite quantum state ρAB . For each combination
of (s,t,x,y) they receive a payoff ℘(s,t,x,y).

The maximum average payoff which can be obtained for
state ρ, via a given quantum-refereed steering game Gst, will
be denoted by ℘�(ρ,Gst). It is natural to define state ρ to have
greater utility for such games than state σ , written ρ �st σ ,
if and only if the maximum payoff for ρ is always at least as
great as the maximum payoff for σ , i.e.,

ρ �st σ if and only if℘�(ρ,Gst) � ℘�(σ,Gst) ∀Gst. (10)

Note the close analogy with the ordering �sq in Eq. (2).

3. Equivalence of orderings and steering witnesses

With the above definitions, it is now possible to prove the
equivalence of the two orderings, i.e.,

ρ �st σ if and only ifρ �st σ, (11)

via a suitable modification of the derivation in the Supplemen-
tal Material of Ref. [5]. Indeed, the asymmetry between Alice
and Bob in quantum-refereed steering games leads to some
simplifications relative to the semiquantum game case. The
details are given in the Appendix.

Since the set of nonsteerable states form an equivalence
class with respect to ρ �st, it immediately follows that they
form an equivalence class with respect to �st, and hence
that the maximum payoff function of any quantum-refereed
steering game Gst has the same value ℘�

nst(Gst) for any
nonsteerable state σnst, i.e.,

℘�(σnst,Gst) = ℘�
nst(Gst). (12)

Further, for any steerable state ρ, there must be at least one
quantum-refereed steering game Gst such that

℘�(ρ,Gst) > ℘�
nst(Gst). (13)

Such a game provides a witness to Alice and Bob sharing
a steerable bipartite state, in direct analogy to the role of
semiquantum games witnessing sharing of an entangled
state (see Sec. II). Note that unlike the semiquantum game
scenario, Charlie only needs one quantum channel to witness
steering, when neither Alice nor Bob are trusted, as illustrated
in Fig. 1.

VI. CONCLUSIONS

In this paper we have analyzed and generalized recent work
by Buscemi [5]. Our analysis shows that the foundational
implication of that work needs to be carefully considered—it
does not imply that all entangled states are Bell nonlocal as one
may naı̈vely suspect from the title claim. On the other hand,
Buscemi’s work carries interesting implications for quantum
communications, as it allows, through the use of quantum
channels from the referee to the distant parties in a nonlocality
test, for the substitution of trust in the distant parties by trust
in the referee’s quantum devices.

Thus we can think of Charlie (the referee) suitably
“quantizing” the instructions sent by him to Alice and Bob
regarding their measurement settings, in order that he not
have to trust them. Adopting this viewpoint, we were able to
generalize Buscemi’s work from entanglement verification
to EPR-steering verification. In the latter case, the transfer
of trust takes place for only one party, via a quantum channel
from the Charlie to (say) Bob, while the channel to Alice
becomes classical. This defines a quantum-refereed steering
game. Analogously to the case of entanglement verification
considered by Buscemi, we have shown that a state is steerable
(i.e., it cannot be described by a local hidden state model [7])
if and only if there exists a quantum-refereed steering game
for which it does better than all nonsteerable states.

It is important to note that our proof does not provide an
explicit method for constructing a quantum-refereed game
that will demonstrate EPR steering for a given steerable state,
just as the proof of Ref. [5] does not show how to construct a
semiquantum nonlocal game for witnessing entanglement of
a given entangled state. However, the construction of suitable
quantum-refereed steering games should prove a tractable
problem for highly symmetric states such as Werner states [6],
for which the hierarchy of entanglement is well understood [8].
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Moreover, the details of the proof given in the Appendix
imply—analogously to the case of Ref. [5]—that there is
always a suitable game for verifying steerability in which
Bob makes a generalized Bell-state measurement—where it
is experimentally feasible to implement such measurements
for two-qubit states [20]. Hence, it is expected that
quantum-refereed steering games can be designed for specific
states.

For experimental implementations, it is noted that quantum-
refereed EPR steering [21–23] as introduced here would pre-
sumably be considerably easier to test than quantum-refereed
entanglement witnessing as introduced by Buscemi. The
reason is that the former only requires one joint measurement
to be reliably made in each run, by Bob (over the portion of
his shared system and the quantum input sent by Charlie),
whereas the latter requires two joint measurements (i.e.,
by each one of Alice and Bob) [24]. Thus we expect the
quantum-refereed EPR-steering we have introduced here to
allow the first experimental application of Buscemi’s idea of
quantized measurement settings.

Note added. Independently of this work, a method for
explicitly constructing quantum-refereed nonlocal games was
developed in [25]. The possibility of modifying this method,
to allow an analogous construction of quantum-refereed
steering games, is under investigation.
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APPENDIX: PROOF OF EQ. (11)

To prove the equivalence of orderings in Eq. (11), we
use methods and notation inspired by Buscemi’s proof of the
equivalence of the orderings in Eqs. (1) and (2) [5].

Consider first the case ρ −→st σ . Hence, SB(σ ) ⊆ SB(ρ),
so that any steering ensembles generated from σ can also
be generated from ρ via LOSSR. It is therefore trivial that
the maximum payoff for ρ must be at least as great as the
maximum payoff for σ for any quantum-refereed steering
game, i.e., that ρ �st σ .

To prove the converse direction, define π̃ s := p(s)πs and
ω̃t := q(t)ωt . Consider a particular quantum-refereed steering
verification game Gst. The average payoff when Alice and Bob
measure POVMs P = {P x

A0A
: x ∈ X } and Q = {Qy

BB0
: y ∈

Y}, is given by

g(ρAB ; Gst; P,Q) =
∑

s,t,x,y

℘(s,t,x,y)μP,Q(s,t,x,y), (A1)

where

μP,Q(s,t,x,y) = Tr
[(

P x
A0A

⊗ Q
y

BB0

)(
π̃ s

A0
⊗ ρAB ⊗ ω̃t

B0

)]
.

(A2)

Imagine now the set of all probabilities μP,Q(s,t,x,y) that
Alice and Bob can obtain by varying P and Q in Eq. (A2),

and keeping ρAB , {πs}, and {ωt } fixed. This is not a convex
set, since it is not the case that, for all w ∈ [0,1] and all
local measurements P ′,P ′′,Q′,Q′′, one can find other local
measurements P and Q such that wμP ′,Q′(s,t,x,y) + (1 −
w)μP ′′,Q′′ (s,t,x,y) = μP,Q(s,t,x,y). The reason is that in
general w(P ′ ⊗ Q′) + (1 − w)(P ′′ ⊗ Q′′) cannot be written
as a product measurement P ⊗ Q. As our proof relies
on convexity properties, we extend this set by considering
arbitrary convex combinations of local POVMs, Z

x,y

A0ABB0
:=∑

i ν(i)P x
A0A

(i) ⊗ Q
y

BB0
(i), where ν(i) are probabilities. Note

however, that since Eq. (A1) is linear in P ⊗ Q (and thus, in
particular, convex), and since a convex function on a convex
set attains its maximum at the extreme points, the maximum
payoff for a given quantum-refereed steering verification game
Gst given a quantum state ρAB is given by

℘∗(ρAB ; Gst) := maxZ

∑

s,t,x,y

℘(s,t,x,y)μZ(x,y,s,t). (A3)

We now assume that ρAB �st σA′B ′ , i.e., that ℘∗(ρAB ; Gst) �
℘∗(σA′B ′ ; Gst) for all quantum-refereed steering verification
games Gst. Following [5], this implies that for any choice of
S,T ,X ,Y,A0,B0,π,ω, and for any POVMs Z, there exists a
POVM Z̄ such that

Tr
[
Z̄

x,y

A0ABB0

(
π̃ s

A0
⊗ ρAB ⊗ ω̃t

B0

)]

= Tr
[
Z

x,y

A0A′B ′B0

(
π̃ s

A0
⊗ σA′B ′ ⊗ ω̃t

B0

)]
, (A4)

for all s,t,x,y. We now, on the referee’s behalf, choose A0

and B0 to be such that HA0 ≡ HA′ and HB0 ≡ HB ′ , introduce
a further auxiliary system B1 with HB1 ≡ HB0 , and choose a
particular set {ωt } given by

ωt
B0

= TrB1 [(1B0 ⊗ ϒt
B1

)�+
B0B1

], (A5)

where �+ denotes a maximally entangled state and ϒ =
{ϒt : t ∈ T } is an informationally complete POVM. With this
choice, we can rewrite Eq. (A4) as

Tr
[(

Z̄
x,y

A0ABB0
⊗ ϒt

B1

)(
π̃ s

A0
⊗ ρAB ⊗ �+

B0B1

)]

= Tr
[(

Z
x,y

A0A′B ′B0
⊗ ϒt

B1

)(
π̃ s

A0
⊗ σA′B ′ ⊗ �+

B0B1

)]
, (A6)

for all s,t,x,y.
Because ϒ is informationally complete, we can simplify

that expression by identifying the reduced states for B1 on
each side. Choosing now a product POVM on the right side,
we obtain

TrA0ABB0

[(
Z̄

x,y

A0ABB0
⊗ 1B1

)(
π̃ s

A0
⊗ ρAB ⊗ �+

B0B1

)]

= TrA0A′B ′B0

[(
P x

A0A′ ⊗ Q
y

B ′B0
⊗ 1B1

)(
π̃ s

A0
⊗ σA′B ′ ⊗ �+

B0B1

)]
,

(A7)

for all s,x,y. Note that this result is analogous to Eq. (5)
of the Supplemental Material for Ref. [5], but (due to
the orthogonality of the states π̃ s

A0
), does not require the

introduction an auxiliary system A1, nor an informationally
complete set �s

A1
, nor a Bell state �+

A1A0
.

We now choose the POVM Q to be the generalized Bell
measurement on B ′B0, and denote the right-hand side of
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Eq. (A7) by σ̃
s,x,y

B1
. Using the protocol of quantum telepor-

tation, we can find unitary operators V y : HB1 → HB ′ such
that

∑

y

(
V

y

B1

)
σ̃

s,x,y

B1

(
V

y

B1

)† = σ̃
x|s
B ′ , (A8)

where σ̃
x|s
B ′ := TrA0A′[P x

A0A′(π̃ s
A0

⊗ σA′B ′)] is the (unnormal-
ized) reduced state at Bob following an outcome x for question
s at Alice’s.

On the other hand, since ρAB �st σA′B ′ , we know that there
exists a POVM Z̄ such that, according to Eq. (A7),

σ̃
x|s
B ′ =

∑

y

V
y

B1
TrA0ABB0

[(
Z̄

x,y

A0ABB0
⊗ 1B1

)

×(
π̃ s

A0
⊗ ρAB ⊗ �+

B0B1

)](
V

y

B1

)†
.

Expanding Z̄
x,y

A0ABB0
= ∑

i ν(i)P̄ x
A0A

(i) ⊗ Q̄
y

BB0
(i), defining

the POVM {P̄ x|s
A (i)} via

P̄
x|s
A (i) := TrA0

[
P̄

x|s
A0A

(i)
(
πs

A0
⊗ 1A

)]
,

and defining the completely-positive trace-preserving map

F i(wB)

:=
∑

y

V
y

B1
TrBB0

[(
Q̄

y

BB0
⊗ 1B1

)(
wB ⊗ �+

B0B1

)](
V

y

B1

)†
,

we conclude that

σ̃
x|s
B ′ =

∑

i

ν(i)TrA
[(

P̄
x|s
A (i) ⊗ 1B

) (
IA ⊗ F i

B

)
(ρAB)

]
. (A9)

Comparing with Eqs. (7) and (8), it follows that any ensemble
obtained from σA′B ′ can also be obtained via an LOSSR map
from ρAB , and hence that ρAB −→st σA′B ′ as required.
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