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In polyatomic molecules with a � electronic ground state, the rovibrational spectrum can be strongly modified
by the Renner-Teller effect (the coupling between bending vibrational mode and electrons in the degenerate �

state). The linear form of the C3H molecule has particularly strong Renner-Teller interactions and a very-low-lying
vibronic �+

1/2 level, which corresponds to the excited bending vibrational mode. This leads to the increased
sensitivities of the microwave and submillimeter transition frequencies to the possible variation of the fine
structure constant α and electron-to-proton mass ratio μ.
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I. INTRODUCTION

At present it is generally recognized that microwave and
submillimeter molecular spectra from the interstellar medium
provide us with a very sensitive tool to study possible variation
of the fundamental constants α = e2/h̄c and μ = me/mp on
a large spacetime scale. It was shown that certain types of
transitions are particularly sensitive to such variations. The
mixed tunneling-rotational transitions in molecules such as
H3O+, H2O2, CH3OH, and CH3NH2 can be very sensitive
to μ variation [1–6]. Recently, the submillimeter spectra of
methanol have been used to place very stringent limits on μ

variation on the cosmological timescale [5,7]. On the other
hand, the �-doublet transitions in diatomic radicals such as
OH and CH are very sensitive to variations in both constants
[8–10]. The 18 cm OH line was observed at high redshifts,
which constrained the time variation of both constants [11].
In that work the 21 cm hyperfine hydrogen line was used as
a reference. This constraint can be further improved if more
than one �-doublet transition in OH or CH is detected.

A rather general way to look for the enhanced sensitivity
to variation in the fundamental constants is to search for
the accidental degeneracy of levels of different nature. This
approach works for very different systems from nuclei, to
atoms, and molecules (see, for example, the reviews [12]
and [13]).

In this paper we want to draw attention to the microwave and
submillimeter spectra of the linear polyatomic radicals with
nonzero electronic angular momentum. First, these molecules
have K doublets, which are analogous to the � doublets in
diatomics. Second, the Renner-Teller interaction can lead to
the anomalously-low-lying vibronic levels and cause enhanced
sensitivities of the mixed rovibronic transitions. Finally, there
are many linear polyatomic molecules which are detected
in the interstellar medium. In this context one of the most
interesting species is the linear C3H molecule, where the
excited vibronic �+

1/2 level lies less than 30 cm−1 above
the ground level �1/2 and where several mixed transitions
were recently measured in a molecular beam experiment [14].
Because of that we focus on this molecule here, leaving other
similar molecules for a separate discussion.

The interstellar carbon-chain radicals of hydrocarbon series
CnH (n = 2–6) exist in linear and cyclic isomeric forms. Both

forms are observed in the millimeter-wave range toward dark
and translucent molecular clouds and circumstellar envelopes
of carbon-rich stars [15–27]. A typical abundance of the
linear radical l-C3H—the simplest odd-carbon chain radical
under consideration in the present study—is ∼10−9 relative
to hydrogen. The cyclic-to-linear abundance ratio [c-C3H]/
[l-C3H] ∼5−10 in dark clouds [23,25] but decreases to ∼3
in translucent clouds [23] and becomes less than unity around
carbon stars [27]. The cyclic and linear isomers of C3H have
also been detected in a star-forming region [28] and in two
extragalactic sources: the star-burst galaxy NGC 253 [29]
and the spiral galaxy located in front of the quasar PKS
1830–211 at the redshift z = 0.89 [30]. Thus, l-C3H lines
have been detected in regions with kinetic temperature ranging
from Tkin ∼ 10 K (dark clouds) to several hundred Kelvin
(circumstellar envelopes, star-forming regions). The observed
line intensities are less than or about 0.1 K.

The lines observed from the interstellar medium (ISM) are
Doppler broadened, so the linewidth � ≈ �D = ω�V

c
, where

�V is the velocity distribution for the ISM and c is speed
of light. This means that �

ω
≈ �V

c
characterizes ISM and to a

first approximation is independent of the frequency ω of the
transition. Because of that, for the astrophysical search of the
possible variation of the fundamental constants, it is crucial to
find transitions with high dimensionless sensitivity coefficients
defined as

δω

ω
= Qα

δα

α
+ Qμ

δμ

μ
. (1)

In the optical waveband these sensitivity coefficients are
typically of the order of 10−2. In the microwave waveband
they are typically of the order of unity but can be much bigger.
Below we will calculate Q factors for some microwave and
submillimeter transitions of the l-C3H molecule and show
that they can reach the order 103. As usual such enhanced
sensitivities take place for the low-frequency transitions
between quasidegenerate levels of different nature.

II. RENNER-TELLER EFFECT

In this section we briefly recall the theory of the Renner-
Teller effect in polyatomic linear molecules [31,32]. The
total molecular angular momentum J consists of several
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contributions. We have the overall rotation R of the nuclei.
Then we have the vibrational angular momentum G associated
with the twofold degenerate bending vibration mode(s) and the
electronic angular momentum L. Momentum R is perpendic-
ular to the molecular axis ζ ; two others have ζ projections
l and �. We define momentum N = R + G + L and its
projection 〈Nζ 〉 = K = l + �. Finally, we add electronic spin:
J = N + S, 〈Jζ 〉 = �.

Suppose we have a � electronic state |� = ±1〉 and a v = 1
vibrational state of a bending mode |l = ±1〉. All together
there are four states |� = ±1〉|l = ±1〉. We can rewrite them
as one doublet � state |K = ±2〉 and states �+ and �−.
In the adiabatic approximation all four states are degenerate.
Renner [31] showed that the states with the same quantum
number K = l + � strongly interact, so �+ and �− states
repel each other, while the � doublet in the first approximation
remains unperturbed. We are particularly interested in the case
when one of the � levels is pushed close to the ground state
v = 0. This is what takes place in l-C3H molecule [14,19,33].

Consider a linear polyatomic molecule with an unpaired
electron in the πξ state in the molecular frame ξ, η, ζ .
Obviously, the bending energy is different for bendings in the
ξζ than in ηζ planes: V± = 1

2k±χ2 (here χ is the supplement to
the bond angle). That means that the electronic energy depends
on the angle φ between the electron and nuclear planes:

H ′ = V ′ cos 2φ, (2)

where 2V ′ = V+ − V− = k′χ2. There is no reason for V ′ to
be small, so k′ ∼ k± ∼ 1 a.u. and to a first approximation k′
does not depend on α and μ.

As long as interaction (2) depends on the relative angle
between electron and vibrational rotation it changes angular
quantum numbers as follows: �� = −�l = ±2 and �K = 0.
This is exactly what is necessary to produce splitting between
�+ and �− states with v = 1 as discussed above.

Interaction (2) also mixes different vibrational levels with
�v = ±2, ± 4, . . .. Thus, we have, for example, the nonzero
matrix element (ME) 〈0,0,1,1|H ′|2,2,−1,1〉 between states
|v,l,�,K〉. Such mixings reduce the effective value of the
quantum number � and, therefore, reduce the spin-orbit
splitting between the �1/2 and �3/2 states [34],

Hso ≡ Aeff��, Aeff = A�eff/�. (3)

Let us define the model more accurately. Following
Ref. [34] we write Hamiltonian as

H = He + Tv + ALζSζ . (4)

Here “electronic” part He includes all degrees of freedom
except for the bending vibrational mode and spin. For l-C3H
there are two bending modes, but for simplicity we include the
second bending mode in He, too. Electronic MEs in the |�〉
basis have the form

〈±1|He| ± 1〉 = V+ + V−
2

= k

2
χ2, (5a)

〈±1|He| ∓ 1〉 = k′

2
χ2 exp (∓2iφ). (5b)

Here χ and φ are vibrational coordinates for the bending mode.
Kinetic energy in these coordinates has the form

Tv = − 1

2MR2

(
∂2

∂χ2
+ 1

χ

∂

∂χ
+ 1

χ2

∂2

∂φ2

)
. (6)

We can use the basis set of two-dimensional (2D) harmonic
functions in polar coordinates ρ = χR and φ for the mass M

and force constant k:

ψv,l(ρ,φ) = Rv,l(ρ)
1√
2π

exp (ilφ). (7)

It is important that radial functions are orthogonal only for the
same l:

〈Rv′,l|Rv,l〉 = δv′,v. (8)

This allows for the nonzero MEs between states with different
quantum number l. Averaging operator (4) over vibrational
functions we get

〈v′,l′|He + Tv|v,l〉 = [ωv(v + 1) + A�Sζ ]δv′,vδl′,l

+ 1
2 〈Rv′l′ |k′χ2|Rvl〉 exp (∓2iφ)δl′,l±2.

(9)

The exponent here ensures the selection rule �′ = � ∓ 2 for
the quantum number � when we calculate MEs for the rotating
molecule.

We solved the eigenvalue problem for Hamiltonian (4)
using the basis set of the 2D harmonic oscillator. Matrix
elements were formed according to Eq. (9). As discussed
above we neglected one of the bending modes leaving only
the one that produces K = 0 level close to the ground-state
doublet K = 1,� = 1/2,3/2. Our model Hamiltonian has
only three parameters; namely ωv , A, and the dimensionless
Renner-Teller parameter E : k′ = Ek. In Ref. [34] the following
values were obtained:

ωv = 589 cm−1, A = 29 cm−1, E = 0.883. (10)

We fixed the values for ωv and A and varied the Renner-Teller
parameter E to fit five lowest levels for the given bending
mode: �1/2, �3/2, �1/2, �3/2, and �5/2. The optimal value
appeared to be E = 0.788. The difference with Eq. (10) is
probably due to the neglect of the anharmonic corrections and
second bending mode.

Our results are presented in Table I. The first two columns
give nominal vibrational quantum number v and its actual
average value. We see that Renner-Teller term in Eq. (9)
strongly mixes vibrational states. This mixing also affects 〈�〉
and decreases spin-orbital splittings as explained by Eq. (3).

TABLE I. Low-lying energy levels for the bending mode ωv =
589 cm−1 and their sensitivities qα and qμ to the variation of α and
μ, respectively. All values are in cm−1.

vnom 〈v〉 K � 〈�〉 E � [34] qμ qα

0 1.22 1 0.5 0.50 367.9 0.0 0.0 187.8 −14.6
0 1.35 1 1.5 0.46 381.9 13.9 14.0 187.8 13.3
1 2.32 0 0.5 −0.01 394.2 26.3 27.0 197.3 −0.4
1 3.57 2 1.5 0.21 597.7 229.7 226.0 300.3 −6.1
1 3.65 2 2.5 0.19 603.5 235.5 232.0 300.3 5.5
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TABLE II. Q factors for the transitions between states from
Table I and for parameters Aeff and �E�� defined by Eqs. (3) and
(11), respectively. Frequencies are in cm−1.

Fit to Ref. [34] Fit to Ref. [14]

K � K ′ �′ ω Qμ Qα ω Qμ Qα

1 0.5 1 1.5 13.9 0.00 2.00 14.4 0.00 2.00
1 1.5 0 0.5 12.4 0.78 −1.11 13.3 0.77 −1.07
0 0.5 2 1.5 203.5 0.51 −0.03 204.4 0.51 −0.03
2 1.5 2 2.5 5.8 0.00 2.00 6.0 0.00 2.00

Aeff 13.9 0.00 2.00 14.4 0.00 2.00
�E�� 19.4 0.50 0.00 20.5 0.50 0.00

The last two columns in Table I give the sensitivity
coefficients qα and qμ in cm−1:

δE = qα

δα

α
+ qμ

δμ

μ
.

To get them we assumed that parameters (10) scale in a
following way: ωv ∼ μ1/2, A ∼ α2, and E does not depend
on α and μ. The dimensionless sensitivity coefficients (1) for
the transitions ωi,k = Ek − Ei can be found as

Qi,k = (qk − qi)/ωi,k.

In Table II these coefficients are calculated for the same set of
parameters as in Table I and for the slightly different parame-
ters which better fit experimental frequencies from Ref. [14].
We see that Q factors are practically the same for both sets.

For the two fine-structure transitions �1/2 −→ �3/2 and
�3/2 −→ �5/2, we get sensitivities Qμ = 0 and Qα = 2. This
may seem strange because the fine structure is significantly
reduced by Renner-Teller mixing: the fine-structure parameter
is 29 cm−1 and the splitting between �1/2 and �3/2 is only
13.9 cm−1. According to Eq. (3) the mixing reduces the
splitting. However, this effect depends on the dimensionless
Renner-Teller parameter E and does not depend on μ and
α. Consequently, the effective parameter Aeff depends on the
fundamental constants in the same way as initial parameter A.

For the high-frequency transition �1/2 −→ �3/2, where
spin-orbital energy can be neglected, we get Qμ = 0.5 and
Qα = 0. These results are expected, because our model
has only two-dimensional parameters: vibrational frequency,
which is proportional to μ1/2 and the fine-structure parameter
A, which scales as α2. Even though our vibrational spectrum is
far from that of a simple harmonic oscillator, the nondiagonal
MEs (9) of the Hamiltonian (4) still scale as μ1/2. Therefore,
if we neglect spin-orbital splittings, we get Qμ = 1/2 for all
transitions. The only transition in Table II where spin-orbit
energy and vibrational energy are close to each other is the
�3/2 −→ �1/2 transition. The resultant frequency is roughly
half of the vibrational energy difference between � and �

states. This leads to Qμ ≈ 1 and Qα ≈ −1.
The following analysis in Sec. III will be based on the

effective Hamiltonian for the rotating molecule. The latter
includes only two parameters from this section: the effec-
tive fine-structure parameter Aeff and the energy difference
between � and � states,

�E�� = E(�+) − E(�1/2) + E(�3/2)

2
. (11)

Numerical values for these parameter will be obtained from the
fit to experimental transition frequencies. Here we only need to
determine the dependence of these parameters on fundamental
constants. Table II shows that Aeff ∼ α2 and �E�� ∼ μ1/2.
Once again, this is because the Renner-Teller mixing depends
on the dimensionless parameter E and does not depend on α

and μ.

III. EFFECTIVE HAMILTONIAN FOR ROTATING
MOLECULE

In this section we mostly follow Ref. [14]. However, we
prefer to use the basis set for Hund’s case “a” as we did
before [10,35]. We define the effective Hamiltonian for the
subspace of the three lowest vibronic states �1/2, �3/2, and
�+

1/2. We neglect some minor centrifugal corrections included
in Ref. [14].

The basis rovibronic states for Hund’s case “a” have the
form

|v,l,�,(K),S,�,J,�,M〉 = |v,l〉|�〉|S,�〉|J,�,M〉.
Here the quantum number K does not appear explicitly, being
defined as K = l + �. From these basic states we form parity
states as described in Ref. [36]:

|�1/2〉 =
∣∣∣∣0,0,1,(1),

1

2
,−1

2
,J,

1

2
,M,p

〉

= 1√
2
|0,0〉

(
|1〉

∣∣∣∣1

2
,−1

2

〉∣∣∣∣J,
1

2
,M

〉

+χp|−1〉
∣∣∣∣1

2
,
1

2

〉∣∣∣∣J,−1

2
,M

〉)
, (12)

|�3/2〉 =
∣∣∣∣0,0,1,(1),

1

2
,
1

2
,J,

3

2
,M,p

〉

= 1√
2
|0,0〉

(
|1〉

∣∣∣∣1

2
,
1

2

〉∣∣∣∣J,
3

2
,M

〉

+χp|−1〉
∣∣∣∣1

2
,−1

2

〉∣∣∣∣J,−3

2
,M

〉)
, (13)

|�+
1/2〉 =

∣∣∣∣1,1,1,(0),
1

2
,
1

2
,J,

1

2
,M,p

〉

= 1

2
(|1,1〉|−1〉 + |1,−1〉|1〉)

(∣∣∣∣1

2
,
1

2

〉∣∣∣∣J,
1

2
,M

〉

+χp

∣∣∣∣1

2
,−1

2

〉∣∣∣∣J,−1

2
,M

〉)
, (14)

where the parity-dependent phase is χp = (−1)J−Sp.
We can write rotational energy by adding vibrational

angular momentum G to the usual expression:

Hrot = B( J − G − L − S)2 = B[J (J + 1) − �2]

− 2B
∑
q=±1

[JqGq + JqLq + JqSq

+GqL−q + GqS−q + LqS−q]

−B
∑
q=±1

[GqG−q + LqL−q + SqS−q]. (15)
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Here we use the recipe from Ref. [36] that in the molecular
frame all scalar products involving total angular momentum J
are written as JqXq rather than (−1)qJqX−q . The last line of
Eq. (15) can be skipped because it gives a constant independent
of J , �, and p. The terms in the third line of Eq. (15) linear in
Lq turn to zero in the subspace � = ±1. We are left with the
following operator for the rotational energy:

Hrot = B[J (J + 1) − �2] − D[J (J + 1) − �2]2

− 2B
∑
q=±1

[JqGq + JqSq + GqS−q], (16)

where we added a standard centrifugal correction to the main
diagonal term.

It is straightforward to calculate MEs of this operator on
the states (12)–(14). The term JqSq does not change quantum
number l and cannot mix � and � states. The nonzero matrix
elements are

〈�3/2| − 2BJqSq |�1/2〉 = −B

√(
J − 1

2

)(
J + 3

2

)
, (17)

〈�+
1/2| − 2BJqSq |�+

1/2〉 = −Bχp

(
J + 1

2

)
. (18)

The operator JqGq changes quantum number l by one and
mixes � and � states:

〈�+
1/2| − 2BJqGq |�1/2〉 = −βχp

(
J + 1

2

)
, (19)

〈�+
1/2| − 2BJqGq |�3/2〉 = β

√(
J − 1

2

)(
J + 3

2

)
, (20)

where β is defined as

β = B〈l = 1|G1|l = 0〉. (21)

This ME cannot be calculated within this formalism and
is included as an independent parameter of the effective
Hamiltonian (see also Sec. IV). Finally, the term GqS−q mixes
� and � states, but cannot change the quantum number �:

〈�+
1/2| − 2BGqS−q |�1/2〉 = −β. (22)

In addition to the rotational energy the effective
Hamiltonian must include the spin-orbit interaction (3), the
energy splitting �E�� between � and � states, and the spin-
rotation interaction. Following Ref. [36] we write the latter
as

γ (N S) = γ ( J − S)S

= γ

⎛
⎝�� +

∑
q=±1

JqSq − S(S + 1)

⎞
⎠ . (23)

The nontrivial part of this interaction is now reduced to the
MEs (17) and (18).

Equations (19)–(22) show that the Coriolis terms involving
vibrational angular momentum G lead to the K doubling via
the interaction between � and � states. In contrast with the
terms involving electronic angular momentum L, here we do
not need mixing with excited electronic states. Still, because
of the relative smallness of the parameter β in Eq. (21), these
latter terms cannot be neglected. They have exactly the same
form as for diatomic molecules and are defined in Ref. [36].

Transition amplitudes between spin-rotational states of the
l-C3H molecule are expressed through MEs of the dipole
moment operator D on the basic states (12)–(14). Generally,
speaking there are both diagonal and nondiagonal MEs in
vibrational quantum numbers v, l. Let us estimate them using
atomic units (h̄ = me = |e| = 1).

In the molecular frame the diagonal ME is reduced to
the dipole moment of the molecule along the molecular
axis 〈v,l|Dζ |v,l〉 ≈ D. If we assume that the charge of the
hydrogen atom in the molecule is q, then D ∼ 2qR0 ∼
4q, where R0 is the bond length. Comparing this estimate
with the calculated value D = 1.40 [37] we get q = 0.35.
Now we can estimate the nondiagonal ME: 〈0,0|D1|1,−1〉 ∼
qξ̄ ∼ q/

√
Mωv ∼ qM−1/4 ∼ 0.1q ∼ 0.04, where ξ̄ is the

amplitude of the vibration and M ∼ 104 is the reduced mass
for this vibration mode. We conclude that nondiagonal MEs
are much smaller than diagonal, so we will neglect them.

In this approximation we get the following expressions for
the reduced MEs on the basis states (12)–(14):

〈X�,J ′,p′||D||Y�,J,p〉 = δX,Y (−1)J
′−�

√
(2J ′ + 1)(2J + 1)

×
(

J ′ 1 J

−� 0 �

)
1 − p′p

2
D,

(24)

where X and Y denote either a � state or a � state. Below
we use these expressions and the theoretical value D =
1.40 a.u. [37] to estimate reduced MEs for the microwave
transitions in l-C3H. The Einstein coefficients A for these
transitions can be found as [38]

Ai→j = 4ω3
ij

3h̄c

|〈i||D||j 〉|2a2
0

2Ji + 1
, (25)

where the reduced ME is in a.u. and a0 is the Bohr radius.

IV. SCALING OF PARAMETERS OF EFFECTIVE
HAMILTONIAN WITH α AND μ

The effective Hamiltonian described in Sec. III is essentially
equivalent to the one used in Ref. [14]. We included centrifugal
corrections to most of the terms using the same definitions as in
Ref. [14]. For the hyperfine structure we used usual parameters
a, b, c, and d. Note that in Ref. [14] the constant bF = b + c/3
was used instead of b.

In this section we discuss how the parameters of the
effective Hamiltonian depend on the constants α and μ

(see Table III). The scaling of the two largest parameters
�E�� ∼ μ1/2 and Aeff ∼ α2 has been already discussed in
Sec. II. The rotational constants B� and B� depend linearly
on μ. The spin-rotational interaction (23) appears from the
second-order cross term in Coriolis and spin-orbit interactions;
therefore γ ∼ α2μ. For � states there are two additional terms
of the spin-rotational interaction with parameters p and q. The
first has the same scaling, as γ , i.e., p ∼ α2μ. The second
term is quadratic in the Coriolis interaction, so q ∼ μ2. These
scalings are obvious from the expressions on pp. 362 and 531
of Ref. [36].
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TABLE III. Parameters of effective rotational Hamiltonian and
their scaling with α and μ.

Param. This work Ref. [14] Units Scaling

�E�� 609.9811 609.9742 GHz α0μ1/2

B� 11.2124327 11.2126703 GHz α0μ1

D� 4.548 4.867 kHz α0μ2

γ� −35.800 −35.525 MHz α2μ1

γ�,D 18.04 0.549 kHz α2μ2

b� −6.3 −6.29 MHz α2μ1

c� 31.8 27.17 MHz α2μ1

Aeff 432.7762 432.7898 GHz α2μ0

B� 11.1892055 11.1891033 GHz α0μ1

D� 5.356 5.2340 kHz α0μ2

γ� −48.652 −48.075 MHz α2μ1

γ�,D 21.670 0.000 kHz α2μ2

p −6.9021 −7.0681 MHz α2μ1

pD −1.595 0.504 kHz α2μ2

q −12.8556 −12.9922 MHz α0μ2

qD −0.443 −0.1432 kHz α2μ3

β 1.2586 1.2342 GHz α0μ5/4

βD −28.3 −19.2 kHz α0μ9/4

a� 12.43 12.32 MHz α2μ1

b� −22.57 −23.04 MHz α2μ1

c� 27.56 28.07 MHz α2μ1

d� 16.21 16.26 MHz α2μ1

Let us now discuss the parameter β defined by Eq. (21).
It is proportional to the nondiagonal ME 〈1|G1|0〉. According
to Eq. (13) in Ref. [32], the perpendicular component G1

simultaneously depends on the vibrational coordinates of the
bending (vb) and stretching (vs) modes. In the harmonic
approximation it has nonzero MEs only between different
stretching vibrational states, i.e.,

〈vb = 1,vs = 1|G1|vb = 0,vs = 0〉 �= 0.

The ME in Ref. (21) is diagonal in stretching quantum number
vs . It is nonzero due to the anharmonic corrections which mix
vibrational modes. Such corrections appear in the first order
of the adiabatic perturbation theory and are proportional to the
adiabatic expansion parameter μ1/4. Thus we can expect that
β ∼ 0.1B. This estimate agrees well with the numerical value
obtained in Sec. V. We conclude that β ∼ μ1/4B ∼ μ5/4.

Our effective Hamiltonian includes centrifugal corrections
(D, γD , βD , etc.) to the most important terms. We assume
that such corrections have the same α dependence as the
respective main term and an extra power in their μ dependence.
The magnetic hyperfine constants scale as the product of the
nuclear and electronic magnetic moments, i.e., as α2μ.

All scalings discussed above are approximate. There
are relativistic corrections to all parameters, which modify
their α dependence. These corrections are of the order of
(αZ)2 ∼ 0.2%. The μ dependence of parameters is changed
by nonadiabatic corrections. To illustrate this point let us
consider the rotational constants B. To a first approximation
the small difference between B� and B� can be related to the
vibrational corrections to the adiabatic value of the rotational
constant B0.

We can use the data from Table I and Table III to estimate
the vibrational correction to the rotational constant:

Bv = B0 − α(v + 1), (26)

B0 = (v� + 1)B� − (v� + 1)B�

v� − v�

= 11 137.1 MHz, (27)

α = B� − B�

v� − v�

= −22.8 MHz. (28)

If we assume that B0 scales as μ and α scales as μ3/2 [5],
we get the following scalings of the rotational constants from
Table III:

B� ∼ μ1.010, B� ∼ μ1.007. (29)

Note that we neglected other vibrational degrees of freedom,
so actual corrections can be somewhat bigger. We conclude
that we know the scalings of the main parameters from
Table III roughly to one percent accuracy. Further improve-
ment of this accuracy requires extensive ab initio calculations.

V. NUMERICAL RESULTS FOR ROTATING MOLECULE

Our effective Hamiltonian has 22 parameters listed in
Table III including 6 parameters for the hyperfine structure.
The 16 nonhyperfine parameters were fit using the simplex
method to the 44 experimentally observed transitions from
Ref. [14] and to 12 experimental frequencies listed in the NIST
database [39]. We added 8 theoretically predicted transitions
for lower rotational quantum numbers from the same database
to be sure we adequately reproduce this part of the spectrum.

In our fit the rms deviation for 64 fitted transitions is
0.23 MHz with maximum deviation 0.52 MHz. This accuracy
is lower than the typical accuracy of the similar fits in the
literature but is absolutely sufficient for our purposes. Our main
goal here is to calculate sensitivity coefficients for different
transitions to the variation of the fundamental constants. Al-
though the sufficiently complex effective Hamiltonians allow
for very accurate predictions of the transition frequencies, the
accuracy they can provide for the sensitivity coefficients is
limited by the uncertainty in the dependence of the parameters
used on the fundamental constants (see Sec. IV and Ref. [5]).

To fit the hyperfine structure parameters we used 30 lines
from the Ref. [19] and 12 K-doublet transitions from [40].
The hyperfine structure is mostly too small to change the
values of the sensitivity coefficients. This in not true only for
several K-doublet transitions with frequencies �100 MHz,
comparable to the hyperfine splittings. We used the scalings
from Table III to calculate the shifts of the spin-rotational
levels due to the change of the constants α and μ by ±0.1%.
After that we found dimensionless sensitivities Qα and Qμ for
the transitions described by the effective Hamiltonian.

There are three manifolds of levels, which belong to the
vibronic states �1/2, �3/2, and �+

1/2 (see Fig. 1). According
to Ref. [24] the strongest transitions take place between
levels of the same manifold. The higher-frequency transitions
correspond to the change of the rotational quantum number
J → J + 1 (see Table IV). Such transitions usually have
Qα ≈ 0, Qμ ≈ 1 [41]. We see that this is also true for l-C3H.

For the �1/2 and �3/2 manifolds there is weak monotonic
dependence of the sensitivities on J . This dependence is
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FIG. 1. Spin-rotational levels of the three lowest vibronic states
of the molecule l-C3H. K doubling is shown schematically. The levels
are labeled by the quantum numbers J and p. The hyperfine structure
for the two lowest K doublets is shown in the inset. Due to a strong
Renner-Teller effect the component 2�+ of the excited bending state
ν4(CCH bending) is shifted towards lower energies, ∼29 cm−1 above
the zero-level of the ground state 2�1/2.

caused by the Coriolis interaction between these manifolds.
For the upper part of the �3/2 spectrum we see some
irregularities in sensitivities. They are caused by the resonant
interactions with the nearby levels of the �1/2 manifold,
where similar irregularities are observed for N � 22. All these
irregularities are weak because interaction energy is much
smaller than respective transition frequencies.

For the � states there are also lower-frequency transitions
between the levels of different parity with the same J (K
doublets). For diatomic radicals such transitions are known
to be very sensitive to the variation of both constants [8–10].
Electron spin gradually decouples from the molecular axis with
growing rotational energy. As a result, the � doubling for low-
J values transforms to � doubling for higher J s. In our case the
electronic quantum number � is substituted by the vibronic
quantum number K; otherwise the effects are rather similar
(see Tables V and VI). Decoupling of the electron spin happens
around J = 13

2 and causes the anomaly in sensitivities for
the �1/2 doublets around J = 13

2 , where the frequency drops
below 50 MHz. For the l-C3H molecule we can expect addi-
tional anomalies in sensitivities due to the proximity and strong
interaction of � and � states [35]. One such anomaly is caused
by the resonance between the levels �3/2 and �+

1/2 with J ≈
49
2 . The transition frequency is higher here, about 1 GHz, but

this is much smaller than for the neighboring rotational states.
The hyperfine structure is much larger for the K doublets of

the �1/2 state. For this reason we do not neglect the hyperfine

TABLE IV. Frequencies (MHz), Q factors, and reduced MEs
(a.u.) of some rotational transitions for �1/2, �3/2, and �+

1/2 states.

J → J + 1 transitions for �1/2 state
J ′ p′ J p ω Qα Qμ ||D||2
3
2 + 1

2 − 32627.84 0.06 (0) 0.97 (1) 1.86
3
2 − 1

2 + 32662.10 0.06 (0) 0.97 (1) 1.86
5
2 − 3

2 + 54405.75 0.06 (0) 0.97 (1) 3.33
5
2 + 3

2 − 54428.34 0.06 (0) 0.97 (1) 3.33
7
2 + 5

2 − 76199.10a 0.06 (0) 0.97 (1) 4.72
7
2 − 5

2 + 76204.62a 0.06 (0) 0.97 (1) 4.72
35
2 − 33

2 + 383435.12b 0.02 (0) 0.99 (1) 18.51
35
2 + 33

2 − 383942.45b 0.02 (0) 0.99 (1) 18.72
47
2 − 45

2 + 516312.64b 0.01 (0) 0.99 (1) 22.39
49
2 − 47

2 + 539280.62b 0.01 (0) 0.99 (1) 23.43

J → J + 1 transitions for �3/2 state

J ′ p′ J p ω Qα Qμ ||D||2
5
2 − 3

2 + 57437.17 −0.05 (1) 1.03 (1) 2.22
5
2 + 3

2 − 57453.77 −0.06 (0) 1.03 (1) 2.22
7
2 + 5

2 − 80388.41 −0.05 (0) 1.03 (1) 3.93
7
2 − 5

2 + 80421.07 −0.05 (0) 1.03 (1) 3.93
47
2 − 45

2 + 532658.83b −0.06 (0) 0.98 (1) 17.54
49
2 − 47

2 + 556392.87 −0.01 (0) 1.00 (1) 23.16
49
2 + 47

2 − 552385.85b −0.12 (0) 0.94 (1) 13.61
51
2 − 49

2 + 599557.31 0.09 (1) 1.00 (1) 14.29
51
2 + 49

2 − 578834.56 −0.01 (0) 1.00 (1) 23.77
53
2 − 51

2 + 601263.86 −0.01 (0) 1.00 (1) 24.38

N → N + 1 transitions for �+
1/2 state

N ′ J ′ p′ N J p ω Qα Qμ ||D||2
1 1

2 − 0 1
2 + 22468.22 0.00 (0) 1.00 (1) 0.93

1 3
2 − 0 1

2 + 22420.66 0.00 (0) 1.00 (1) 1.87

2 3
2 + 1 1

2 − 44888.43 0.00 (0) 1.00 (1) 1.87

2 5
2 + 1 3

2 − 44857.31 0.00 (0) 1.00 (1) 3.36

23 47
2 − 22 45

2 + 517808.87b 0.05 (0) 1.02 (1) 26.02

24 47
2 + 23 45

2 − 538178.20 0.00 (0) 1.00 (1) 32.57

24 49
2 + 23 47

2 − 542975.34 0.11 (0) 1.07 (2) 19.58

25 49
2 − 24 47

2 + 560575.62 0.00 (0) 1.00 (1) 33.93

25 51
2 − 24 49

2 + 540680.86 −0.11 (1) 1.01 (2) 18.11

26 53
2 + 25 51

2 − 586696.44 −0.07 (0) 0.94 (1) 23.27

aTransitions detected at the redshift z = 0.89 in Ref. [30].
bTransitions observed in Ref. [14].

structure in Table V. For high-J values the transitions with
�F �= 0 are strongly suppressed, so we list only transitions
with �F = 0. In Table VI the hyperfine splitting is neglected
for all but the first few transitions. For transitions with J � 7

2
the sensitivity coefficients for the hyperfine components of the
transition are practically the same.

Because of the mixings (17)–(22) of the basic states there
are also weaker transitions between the �1/2, �3/2, and
�+

1/2 manifolds. Examples of such transitions are listed in
Tables VII and VIII. Sensitivities of these transitions depend
on the quantum numbers in a less regular manner, than
sensitivities within each manifold.
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TABLE V. Frequencies (MHz), Q factors and reduced MEs (a.u.)
for K-doubling transitions in �1/2 state.

JF ′p′, Fp ω Qα Qμ ‖D‖2

1
2 1 + , 0− 52.37 0.66 (2) 1.7 (2) 0.333
1
2 0 + , 1− 39.12 0.20 (2) 1.9 (2) 0.333
1
2 1 + , 1− 34.93 −0.02 (2) 2.0 (2) 0.667
3
2 1 − , 1+ 85.55 0.65 (2) 1.7 (1) 0.166
3
2 2 − , 1+ 78.60 0.55 (2) 1.7 (1) 0.033
3
2 1 − , 2+ 75.23 0.43 (2) 1.8 (1) 0.033
3
2 2 − , 2+ 68.29 0.30 (2) 1.8 (1) 0.299
5
2 2 + , 2− 107.19 0.95 (2) 1.5 (1) 0.132
5
2 3 + , 2− 98.97 0.89 (2) 1.5 (1) 0.009
5
2 2 + , 3− 98.83 0.82 (2) 1.6 (1) 0.009
5
2 3 + , 3− 90.61 0.75 (2) 1.6 (1) 0.188
7
2 3 − , 3+ 112.38 1.63 (2) 1.2 (1) 0.105
7
2 4 − , 4+ 96.07 1.56 (2) 1.2 (1) 0.136
9
2 4 + , 4− 95.75 3.22 (4) 0.36 (7) 0.086
9
2 5 + , 5− 79.63 3.45 (4) 0.23 (7) 0.105
11
2 5 − , 5+ 52.81 9.1 (6) −2.6 (3) 0.072
11
2 6 − , 6+ 36.85 12.1 (6) −4.1 (3) 0.085
13
2 6 − , 6+ 20.25 −34. (2) 19. (2) 0.062
13
2 7 − , 7+ 36.06 −18. (2) 11. (2) 0.071
15
2 7 + , 7− 126.59 −7.6 (2) 5.8 (4) 0.054
15
2 8 + , 8− 142.24 −6.5 (2) 5.3 (4) 0.061
17
2 8 − , 8+ 268.76 −4.7 (1) 4.4 (3) 0.047
17
2 9 − , 9+ 284.25 −4.3 (1) 4.2 (3) 0.053
19
2 9 + , 9− 448.75 −3.59 (7) 3.8 (3) 0.042
19
2 10 + , 10− 464.07 −3.39 (7) 3.7 (3) 0.046
21
2 10 − , 10+ 668.02 −2.97 (6) 3.5 (3) 0.038
21
2 11 − , 11+ 683.18 −2.85 (6) 3.4 (3) 0.041

All transitions in Table VII have frequencies higher than
100 GHz. Because of that the sensitivity coefficients are not
very high, but they are dispersed within intervals 0 � Qα � 4
and −1 � Qμ � 1. Note that in order to study possible
variations of fundamental constants we need to compare
several transitions with different sensitivities. Thus, such a
spread in sensitivities can be very useful [41].

In Table VIII there are several low-frequency transitions
with very high sensitivities. Among them there are few with
sufficiently high transition amplitudes. In particular, there are
three rather strong transitions at 27.6 GHz, 25.1 GHz, and
10.5 GHz with sensitivities Qα from −5 to + 19 and Qμ

from −3 to + 11. This is comparable to the sensitivities of the
K-doublet transitions from Tables V and VI, but for higher
transition frequencies.

Transitions observed in Ref. [14] are marked with asterisk
in Tables IV and VIII. All of them have frequencies above
300 GHz and sensitivities which are not very far from the
typical rotational sensitivities: Qα ≈ 0 and Qμ ≈ 1. The
maximum difference in sensitivities �Qα ≈ 0.7 and �Qμ ≈
0.4 corresponds to the transitions at 535.6 and 571.0 GHz from
Table VIII. The only two transitions which were detected at
high redshifts in Ref. [30] are marked with the dagger in

TABLE VI. Frequencies (MHz), Q factors, and reduced MEs
(a.u.) for K-doubling transitions in �3/2 state.

JF ′p′, Fp ω Qα Qμ ‖D‖2

3
2 1 − ,1+ 5.61 −2.63 (8) 3.2 (2) 1.493
3
2 2 − ,1+ 18.50 0.49 (8) 1.7 (2) 0.299
3
2 1 − ,2+ −7.30 5.28 (8) −0.6 (2) 0.299
3
2 2 − ,2+ 5.58 −2.63 (8) 3.2 (2) 2.688
5
2 2 + ,2− 22.24 −2.60 (8) 3.2 (2) 1.186
5
2 3 + ,2− 31.50 −1.35 (8) 2.6 (2) 0.085
5
2 2 + ,3− 12.88 −5.67 (8) 4.6 (2) 0.085
5
2 3 + ,3− 22.15 −2.60 (8) 3.2 (2) 1.694
7
2 3 − ,3+ 54.92 −2.57 (8) 3.2 (2) 0.943
7
2 4 − ,4+ 54.76 −2.57 (8) 3.2 (2) 1.223
9
2 +− 108.13 −2.50 (8) 3.1 (2) 1.230
11
2 −+ 185.99 −2.46 (8) 3.1 (2) 1.007
13
2 +− 291.71 −2.41 (9) 3.0 (2) 0.847
15
2 −+ 427.87 −2.35 (8) 3.0 (2) 0.727
17
2 +− 596.34 −2.30 (8) 2.9 (2) 0.633
19
2 −+ 798.28 −2.25 (8) 2.9 (2) 0.558
21
2 +− 1034.16 −2.21 (9) 2.9 (2) 0.497
23
2 −+ 1303.72 −2.17 (9) 2.8 (2) 0.446
25
2 +− 1605.97 −2.15 (9) 2.8 (1) 0.403
27
2 −+ 1939.08 −2.13 (9) 2.8 (1) 0.366
29
2 +− 2300.16 −2.13 (9) 2.7 (1) 0.334
31
2 −+ 2684.91 −2.2 (1) 2.7 (1) 0.306
33
2 +− 3086.93 −2.2 (1) 2.7 (1) 0.282
35
2 −+ 3496.51 −2.4 (1) 2.6 (1) 0.261
37
2 +− 3898.24 −2.5 (1) 2.60 (9) 0.242
39
2 −+ 4266.17 −2.9 (1) 2.53 (8) 0.224
41
2 +− 4553.04 −3.5 (1) 2.42 (5) 0.208
43
2 −+ 4663.43 −4.6 (2) 2.2 (1) 0.192
45
2 +− 4377.16 −7.5 (2) 1.4 (3) 0.174
47
2 −+ 3097.96 −19.0 (4) −2.3 (9) 0.149
49
2 −+ 909.06 132. (2) 53. (8) 0.103
51
2 −+ 19813.69 −3.11 (5) −1.6 (4) 0.116
53
2 +− 16952.67 −1.31 (2) 0.0 (4) 0.136
55
2 −+ 16218.56 −0.61 (2) 0.8 (4) 0.138

Table IV. These transitions have much lower frequencies,
but they are essentially rotational transitions with “normal”
sensitivities.

Let us discuss the accuracy of our calculations of the
sensitivity coefficients Qα and Qμ. As we mentioned above,
we know the scalings of the parameters of the effective
Hamiltonian with approximately 1% accuracy. So, we did
several calculations of the sensitivity coefficients. First, we
changed all scalings by 1%. Second, we used scaling of the
rotational constants from Eq. (29) keeping all other scalings
unchanged. The uncertainty in the scalings of the smaller
parameters of the effective Hamiltonian may be higher due
to the nonadiabatic corrections. So we did two additional
calculations with the scaling of the parameter β changed by
±1/4, i.e., β ∼ μ and β ∼ μ3/2. Finally, in order to check
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TABLE VII. Frequencies (MHz), Q factors, and reduced MEs
(a.u.) of some transitions �1/2 J p → �3/2 J ′ p′.

J ′p′ Jp ω Qα Qμ ‖D‖2

15
2 − 17

2 + 262072.96 3.00 (2) −0.50 (0) 0.41
17
2 − 17

2 + 456425.35 1.70 (2) 0.15 (0) 1.20
19
2 − 17

2 + 674795.09 1.14 (1) 0.43 (1) 0.87
15
2 + 17

2 − 261366.66 3.02 (2) −0.51 (0) 0.40
17
2 + 17

2 − 456743.26 1.70 (2) 0.15 (0) 1.20
19
2 + 17

2 − 673718.38 1.14 (1) 0.43 (0) 0.84
31
2 − 33

2 + 185259.51 3.45 (2) −0.71 (1) 2.31
33
2 − 33

2 + 558878.68 1.14 (1) 0.43 (1) 5.46
35
2 − 33

2 + 961254.71 0.64 (1) 0.68 (1) 3.30
31
2 + 33

2 − 179719.83 3.61 (3) −0.81 (1) 2.24
33
2 + 33

2 − 559110.84 1.13 (1) 0.43 (1) 5.49
35
2 + 33

2 − 954903.42 0.66 (1) 0.67 (0) 3.20
51
2 − 53

2 + 148111.71 2.91 (2) −1.01 (6) 3.92
53
2 − 53

2 + 729561.89 0.67 (1) 0.67 (0) 12.80
55
2 − 53

2 + 1369461.89 0.34 (1) 0.82 (1) 6.63
51
2 + 53

2 − 118586.34 4.22 (4) −1.18 (2) 5.69
53
2 + 53

2 − 736802.86 0.64 (1) 0.63 (1) 10.93
55
2 + 53

2 − 1343531.64 0.36 (1) 0.81 (1) 7.01

how the fitting procedure may affect the results, we did several
calculations with slightly different sets of parameters. For
example, we made a 13-parameter fit with three centrifugal
corrections set to zero: γ�,D = pD = qD = 0. In terms of the
obtained frequencies, such a fit is only three times less accurate
than our final 16-parametric fit.

In Tables IV–VIII we give the average values of the Q

factors for all calculations described above. The errors given
in the brackets correspond to the maximum deviations from
these average values for individual calculations. In most cases
these errors are smaller than or of the order of 10%, even for the
large sensitivities. This accuracy is sufficient for the analysis
of the experimental and observational data.

VI. CONCLUSION

We have studied the sensitivity of coefficients to the
variation of the fundamental constants α and μ for the
microwave and submillimeter spectra of the linear polyatomic
molecule with strong Renner-Teller interaction. As an example
we chose the l-C3H molecule, which is often observed in
the interstellar molecular clouds and which recently has been
detected at the redshift z = 0.89.

The Renner-Teller interaction depends on the dimen-
sionless ratio E = k′/k of the force constants in the two
perpendicular planes which include the molecular axis. The
parameter E does not depend on the fundamental constants
and vibrational intervals scale in the same way as for har-
monic oscillator, i.e., Ev ∼ μ1/2. However, the Renner-Teller
interaction modifies the vibrational spectrum and can lead to
the close-lying vibrational states. Such states then strongly
interact with each other due to the Coriolis interaction. As a
result, the molecules with strong Renner-Teller interaction can

TABLE VIII. Frequencies (MHz), Q factors, and reduced MEs
(a.u.) of some transitions �3/2 J p → �+

1/2 N J ′ p′. Negative fre-
quency means that final state lies lower.

NJ ′p′ Jp ω Qα Qμ ‖D‖2

14 29
2 + 31

2 − −159987.95 2.00 (2) 1.90 (7) 0.10

16 31
2 + 31

2 − 535601.40a −0.60 (1) 0.73 (1) 0.14

16 33
2 + 31

2 − 535512.07 −0.60 (1) 0.73 (1) 0.11

16 33
2 + 33

2 − 161892.90 −1.96 (2) 0.12 (7) 0.21

15 31
2 − 33

2 + −200166.07 1.55 (2) 1.74 (6) 0.14

17 33
2 − 33

2 + 540214.36a −0.58 (1) 0.73 (2) 0.18

17 35
2 − 33

2 + 540229.47 −0.57 (1) 0.73 (2) 0.15

17 35
2 − 35

2 + 144436.89 −2.13 (2) −0.01 (8) 0.28

16 33
2 + 35

2 − −240483.13 1.25 (1) 1.63 (6) 0.19

18 35
2 + 35

2 − 544660.22a −0.55 (1) 0.72 (2) 0.25

18 37
2 + 35

2 − 544828.26 −0.55 (1) 0.72 (2) 0.22

. . .

23 47
2 − 49

2 + −514442.07 0.17 (0) 1.20 (2) 7.13

25 49
2 − 49

2 + 579974.37 −0.24 (1) 0.79 (2) 13.06

25 51
2 − 49

2 + 569214.13a −0.15 (0) 0.90 (1) 6.18

24 47
2 + 49

2 − 18489.70 −13.9 (2) −8. (1) 0.15

24 49
2 + 49

2 − 27624.21 −5.28 (7) −3.0 (5) 9.40

26 51
2 + 49

2 − 1162035.24 −0.22 (0) 0.85 (1) 0.14

25 49
2 − 51

2 + 230.75 −1099.(34) −742. (90) 0.17

25 51
2 − 51

2 + −10529.49 18.8 (2) 11. (1) 6.95

27 53
2 − 51

2 + 1188561.69 −0.21 (0) 0.85 (1) 0.15

24 49
2 + 51

2 − −571024.04a 0.14 (1) 1.11 (2) 7.26

26 51
2 + 51

2 − 563386.99 −0.34 (1) 0.79 (3) 10.93

26 53
2 + 51

2 − 556353.26 −0.32 (1) 0.84 (2) 5.39

26 51
2 + 53

2 − −18063.18 13.6 (2) 11. (1) 0.18

28 53
2 + 53

2 − −25096.91 9.2 (1) 6.7 (8) 3.01

28 55
2 + 53

2 − 1215046.58 −0.20 (0)a 0.86 (2) 0.17

aTransitions observed in Ref. [14].

have low-frequency mixed rovibronic transitions with strongly
enhanced sensitivity coefficients to the variation of α and μ.
Note that the term “low frequency” here has a relative meaning.
It means that the frequency of the mixed transition is much
smaller than the rotational and vibronic energies involved. For
the l-C3H molecule we found several types of transitions with
sensitivity coefficients varying over a wide range. This opens
new possibilities to study variation of fundamental constants
in astrophysics.
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