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Gravitationally coupled Dirac equation for antimatter
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The coupling of antimatter to gravity is of general interest because of conceivable cosmological consequences
(“surprises”) related to dark energy and the cosmological constant. Here, we revisit the derivation of the
gravitationally coupled Dirac equation and find that the prefactor of a result given previously by Brill and
Wheeler [Rev. Mod. Phys. 29, 465 (1957)] for the affine connection matrix is in need of a correction. We also
discuss the conversion of the curved-space Dirac equation from the so-called “East-Coast” to the “West-Coast”
convention, in order to bring the gravitationally coupled Dirac equation to a form where it can easily be unified
with the electromagnetic coupling as it is commonly used in modern particle physics calculations. The Dirac
equation describes antiparticles as negative-energy states. We find a symmetry of the gravitationally coupled Dirac
equation, which connects particle and antiparticle solutions for a general space-time metric of the Schwarzschild
type and implies that particles and antiparticles experience the same coupling to the gravitational field, including
all relativistic quantum corrections of motion. Our results demonstrate the consistency of quantum mechanics
with general relativity and imply that a conceivable difference of gravitational interaction of hydrogen and
antihydrogen should directly be attributed to a a “fifth force” (“quintessence”).
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I. INTRODUCTION

In view of the recent dramatic progress of antimatter
gravity experiments [1,2], it seems indicated to reexamine
the theoretical status of antimatter coupling to gravity. A
number of experimental collaborations are actively pursuing
related experiments [3–8]. A key factor in recent experimental
progress [2] of the ALPHA collaboration has been their
special Penning-Ioffé trap which simultaneously traps both
positrons as well as antiprotons. Superimposed on the Penning
trap fields (which trap the charged constituent particles), the
antihydrogen atom Ioffé trap employed by ALPHA relies
on a strong octupole magnetic-field configuration generated
by eight superconducting current bars, which wind back on
themselves in a sinuous pattern, glued to the inner chamber
of the ALPHA experiment by a three-dimensional winding
machine at Brookhaven National Laboratory (see Ref. [9]).
This leads to an effective trapping of positrons and antiprotons,
and antihydrogen atoms.

Antimatter gravity experiments aim to test the interaction
of antihydrogen atoms with gravitational fields. According
to general relativity [10], gravitational interactions can be
described by the induced space-time curvature around massive
objects. Furthermore, on the classical level, the motion of a
particle in curved space-time is described by the following
geodesic equation [10]:

d2xμ

d2s
+ �μ

ρσ

dxρ

ds

dxσ

ds
= 0, (1)

which implies that a particle of mass m experiences a “force”
Fμ = m d2xμ/ds2 and moves along a zero geodesic in the
gravitationally curved space-time (s is the proper time). Here,
the �μ

ρσ are the Christoffel symbols [10], derived from the
curved-space metric gμν as follows:

�αρσ = 1

2

(
∂gασ

∂xρ
+ ∂gαρ

∂xσ
− ∂gρσ

∂xα

)
, (2)

where the Einstein summation convention is used. The �μ
ρσ

are derived from the �αρσ by raising the first index with the
help of the metric, i.e., �μ

ρσ = gμα �αρσ . We should clarify
that in the current article, in a somewhat nonstandard notation,
the symbol g̃μν will be reserved for the flat-space metric in the
following, whereas gμα denotes the metric of curved space.
If, according to Einstein’s equivalence principle, we assume
that gravitational mass and inertial mass are proportional to
each other, then classical geometrodynamics [10], on the basis
of Eq. (2), makes the unique prediction that the force on a
particle and antiparticle in a gravitational field are the same,
provided the mass of particle and antiparticle are equal, i.e.,
both particle as well as antiparticle motion are described
by Eq. (1). However, on the quantum level, the situation is
less clear. It is often argued [7] that “general relativity is
incompatible with quantum mechanics” and that, assuming
rather peculiar couplings of antimatter to gravity [11], one
can imagine that antimatter actually is repulsed by gravity.
This observation provides part of the motivation for a number
of antimatter gravity experiments currently under preparation
[3–8].

Here, we reexamine the status of theoretical predictions
regarding the coupling of Dirac particles and antiparticles
to curved space-time. Indeed, closer inspection shows that
considerable insight into the gravitational coupling of an-
tiparticles can be gained based on rather straightforward
generalizations of previous treatments which rely on a
combination of relativistic quantum mechanics with general
relativity. We note the works of Brill and Wheeler [12],
Boulware [13], and Soffel, Müller, and Greiner [14]. The Dirac
equation [15,16] describes both particles and antiparticles
simultaneously, and symmetries of the solutions which connect
particles and antiparticles are therefore relevant for antigravity
experiments. We find that it is highly indicated to revisit a
number of aspects of the derivation. We employ units with
h̄ = c = ε0 = 1.
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II. FORMALISM

Antihydrogen consists of two spin-1/2 particles, the elec-
tron and the proton. Spin-1/2 particles are described by the
Dirac equation. In curved and flat space-time, respectively,
the anticommutators {·,·} of the Dirac γ matrices fulfill the
algebraic relations

{γ μ(x),γ ν(x)} = 2 gμν(x), {γ̃ μ,γ̃ ν} = 2 g̃μν, (3)

where the curved-space metric is gμν with μ,ν = 0,1,2,3,
while the local flat-space metric (“vierbein”) in our conven-
tions is g̃μν = diag(1,−1,−1,−1). The precise form of the
γ μ(x) matrices depends on the space-time geometry and in
particular, on the space-time coordinate x. We use the “West-
Coast” signature diag(1,−1,−1,−1) for the free-space metric
g̃ instead of the “East-Coast” conventions diag(1,1,1,−1) or
diag(−1,1,1,1), in order to ensure compatibility with the sign
convention usually adopted in the modern particle physics
literature [17–20].

This is different from the sign conventions adopted in
the traditional literature on general relativity [10], and also
different from the sign conventions used in previous works on
the gravitationally coupled Dirac equation [12–14]. E.g., the
conventions of Misner, Thorne, and Wheeler [10] are given
in Eq. (2.10) on page 53 of Ref. [10] and involve a metric
diag(−1,1,1,1) with μ,ν = 0,1,2,3. If we ever wish to study
the combined “gravito-magnetic” effect of gravitational and
electromagnetic fields on Dirac particles simultaneously, and
conceivably use established results for the electromagnetic
sector in a perturbative, then it is helpful to convert the
gravitational Dirac equation into West-Coast conventions,
because these are used in the particle physics and quantum
electrodynamics (QED) literature.

One might ask why we are using the tilde in order to denote
the flat-space metric, not just the plain symbol gμν . The answer
to that question is as follows. We would like to be as unique
in our notation as possible, and avoid possible confusion upon
comparison with the literature [12–14]. In Refs. [12–14], the
curved-space Dirac matrices are denoted as γ μ, but in the
particle physics literature [17–20], one denotes the flat-space
matrices as γ μ. There is no way to unify the notations without
introducing some ambiguity, and we have therefore decided
to differentiate the matrices either by overlining or using the
tilde, making their identification unique.

The flat-space action for the free Dirac particle in special
relativity reads as

S0 =
∫

d4x ψ(x) (i γ̃ μ∂μ − m)ψ(x)

=
∫

d4x ψ(x)

(
i

2
γ̃ μ←→

∂ μ − m

)
ψ(x), (4)

where ψ(x) = ψ(x)† ã is the Dirac adjoint, ∂μ = ∂/∂xμ is
the derivative with respect to xμ, and the symmetric derivative
operator acts as

A(x)
←→
∂ μ B(x) ≡ A(x) ∂μ B(x) − B(x) ∂μ A(x). (5)

Furthermore, ã is a Hermitizing matrix with the property

ã (γ̃ μ)† ã = γ̃ μ. (6)

Here, b† denotes the Hermitian conjugate of a matrix b.
An infinitesimal global Lorentz transformation � and the
corresponding spinor Lorentz transformation S(�) in flat
space then read as

�μ
ν = g̃μ

ν + ω̃μ
ν, (7a)

S(�) = 1 − i

4
σ̃ αβ ω̃αβ, (7b)

σ̃ αβ = i

2
[γ̃ α,γ̃ β]. (7c)

Here, ω̃μ
ν + ω̃ν

μ = 0. In formulating the generators σ̃ αβ of
spinor Lorentz transformations, we follow the conventions of
Chap. 2 of Ref. [19]. Furthermore, in view of the relation

[γ̃ μ,̃σ αβ] = 2 i g̃μα γ̃ β − 2 i g̃μβ γ̃ α, (8)

the γ̃ matrices are shape-invariant under Lorentz transforma-
tions,

γ̃ ′μ = �μ
ν S(�) γ̃ ν S(�)−1 = γ̃ μ, (9)

and ψ transforms with the inverse Lorentz transformation,
ψ

′
(x ′) = ψ(x) S(�)−1. This can be shown easily by observing

that

ã [S(�)]+ ã = S(�)−1. (10)

Standard representations of the flat-space Dirac matrices γ̃

include the Dirac and the Majorana representation [19,20].
The generalization of the Dirac action (4) to curved

space-time involves two steps: (i) an obvious generaliza-
tion of the anticommutator relations (3) to curved space,
{γ μ(x),γ μ(x)} = 2 gμν(x), and (ii) a coupling of the derivative
operator ∂μ in the Dirac equation to the gravitational field
on the basis of a covariant derivative, in the sense of the
replacement ∂μ → ∇μ = ∂μ − �μ, where ∇μ is the covariant
derivative and �μ ≡ �μ(x) is the affine connection matrix. The
action for the Dirac particle in curved space-time then reads as

S =
∫

d4x
√

− det g ψ(x) [i γ μ(x)∇μ − m] ψ(x), (11)

where det g = det gμν < 0 is the determinant of the space-
time metric, and ψ = ψ† a(x) is the curved-space Dirac
adjoint, where a(x) is a Hermitizing matrix with the local
properties

a(x) [γ μ(x)]† a(x) = γ μ(x), (12)

a(x) [S(L(x))]† a(x) = S(L(x))−1. (13)

Here, S(L(x)) is the spinor transformation corresponding to
an infinitesimal, local Lorentz transformation L(x) and reads
as

L(x)μν = gμ
ν + ωμ

ν(x), (14a)

S(L(x)) = 1 − i

4
σαβ(x) ωαβ(x), (14b)

σαβ(x) = i

2
[γ α(x),γ β(x)]. (14c)

These equations generalize Eq. (7) to curved space-time and
ensure that the γ matrices are shape invariant under Lorentz
transformations,

γ ′μ(x) = L(x)μν S(L(x)) γ ν(x) S(L(x))−1 = γ μ(x). (15)
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From now on, we shall suppress the space-time coordinate
argument x in the γ and σ matrices. The generalization of
Eq. (8) to general relativity is given by

[γ μ,σαβ] = 2 i gμα γ β − 2 i gμβ γ α. (16)

One can show this relation using Eq. (3) only. For tensors,
the covariant derivative ∇μ is well established [see Exercise
8.4 on page 211 of Ref. [10]], but for spinors, a nontrivial
generalization is required. Let us assume the structure

∇νψ = (∂ν − �ν)ψ, (17)

where the affine connection matrix �ν remains to be deter-
mined. We postulate that the covariant derivative operator
commutes with the current matrix γ μ(x), i.e., [γ μ(x),∇ν] = 0.
Then,

γ μ(x) ∇νψ(x) = ∇ν (γ μ(x)ψ(x)), (18)

and we can symmetrize Eq. (11) as follows:

S =
∫

d4x
√

− det g ψ(x)

(
i

2
γ μ(x)

←→∇ μ − m

)
ψ(x).

(19)

By variation, the gravitationally coupled Dirac equation is
obtained as

(i γ μ ∇μ − m)ψ(x) = 0. (20)

An additional electromagnetic field could be incorporated by
the replacement ∇μ → ∇μ + i q Aμ, where Aμ is the vector
potential and q is the charge. However, the gravitational Dirac
equation is primarily interesting when all electromagnetic
interactions are compensated and the residual gravitational
interaction dominates the kinematics.

The affine connection matrices �μ remain to be determined.
Using the ansatz (17), one can write the condition given in
Eq. (18) as follows [12–14,21,22]:

∇νγ μ = ∂νγ μ − �ρ
μνγ ρ − �ν γ μ + γ μ �ν = 0. (21)

The �ρ
μνγ ρ are the Christoffel symbols defined in Eq. (2).

For a Lorentz vector T μ, we recall that [10]

∇μTα = ∂μTα − �λ
αμ Tλ, (22a)

∇μT α = ∂μT α + �α
μλ T λ. (22b)

The third and fourth term on the right-hand side in Eq. (21)
represent the spinor structure contributions to the covariant
derivative of the γ μ matrix.

The condition (21) defines the �ν matrix up to a multiple of
the unit matrix. In the vierbein formalism, we can represent the
γ ν matrices in terms of the vierbein γ̃ μ matrices as follows:

γ ρ = bρ
α γ̃ α, γ̃ ρ = aα

ρ γ α, (23a)

γ α = aα
ρ γ̃ ρ, γ̃ α = bρ

α γ ρ. (23b)

The metric is recovered as

{γ ρ,γ σ } = bρ
α bσ

β {γ̃ α,γ̃ β} = 2 g̃αβ bρ
α bσ

β = 2 gρσ ,

(24a)

{γ ρ,γ σ } = aρ
α aσ

β {γ̃ α,γ̃ β} = 2 g̃αβ aρ
α aσ

β = 2 gρσ .

(24b)

We note that the matrix with components gρσ is the inverse of
the matrix with components gρσ , where the entries of g̃αβ and
g̃αβ are identical. It is possible to show, using rather lengthy
algebra, that the following affine connection matrix,

�ρ = − i

4
gμα

(
∂bν

β

∂xρ
aα

β − �α
νρ

)
σμν , (25)

with σμν = i
2 [γ μ,γ ν], fulfills Eq. (21) for a general metric

gμν . Our result (25) differs from the result given in Eq. (8) of
Ref. [12] in the correction of an obvious and in some sense
trivial typographical error. Namely, the expression �α

νl in
Eq. (8) of Ref. [12] should be replaced by the expression �α

νk

(we have used ρ for the corresponding subscript of �ρ , not �k

as in Ref. [12]). It is less trivial to see that a prefactor 1/4 is
missing from Eq. (8) of Ref. [12] and needs to be supplemented
as given in Eq. (25). In order to clarify the matter, we should
also point out that the additional imaginary unit in the prefactor
is entirely due to our different conventions for the γ matrices
and the flat-space metric which follow modern West-Coast
conventions [19,20].

It is rather lengthy but straightforward to show that Eq. (25)
solves Eq. (21). One needs to use Eqs. (23) and (16) repeatedly,
and one needs to observe that the b matrix is the inverse of
the a matrix, i.e., ak

α bρ
α = δk

ρ , where δ is the Kronecker
symbol. Furthermore, the relation �β

σρ + �σ
β

ρ = gβα ∂ρgασ

is useful in intermediate steps of the calculation. Here, �σ
β

ρ =
gβα �σαρ with �σαρ given in Eq. (2).

Using the identity σμν = i gμν − iγ ν γ μ, it is possible to
rewrite Eq. (25) in a simpler form,

�ρ = −γ ν

4
(∂ργ ν − �μ

νρ γ μ) + Aρ 14×4, (26a)

Aρ = 1

8
[2(∂ρbα

β) aα
β − (∂ρgαβ) gαβ]. (26b)

For a diagonal structure of the metric tensor (the only
nonvanishing elements are the gαβ with α = β), with bα

β =√|gαβ | and aα
β =

√
|gαβ | = 1/

√|gαβ |, the additional termAρ

vanishes. This is the case for the (generalized) Schwarzschild
metric to be discussed below. We have checked that, up to
the term Aρ and up to the conversion from East-Coast to
West-Coast conventions, the result (26a) is formally identical
to the result previously given in Eq. (9) of Ref. [14]. As a
byproduct of our calculation of the Aρ , we thus show that the
two different results for the affine connection matrix given in
Refs. [12,14] are equivalent up to the term Aρ 14×4, which
is proportional to the unit matrix and not determined by the
defining Eq. (21). For a diagonal metric, Aρ vanishes. To the
best of our knowledge, the precise form of the term Aρ has
not yet been indicated in the literature.

Our construction of the spinor Lorentz transformation in
curved space [see Eq. (13)] follows ideas outlined in Ref.
[13]. However, our result for the covariant derivative of a
spinor manifestly contains additional terms as compared to
the result given in Eq. (2.8) of Ref. [13]. In particular, in
view of the condition (21), it is clear that the derivative terms
[the first terms in round brackets on the right-hand sides of
Eqs. (25) and (26a)] are an essential contribution to the affine
connection matrix; these terms seem to be missing in the

032101-3



U. D. JENTSCHURA PHYSICAL REVIEW A 87, 032101 (2013)

vierbein formalism formulated in later steps of the derivation
leading to Eq. (2.8) of Ref. [13].

III. SCHWARZSCHILD-TYPE METRIC

A. Radially dependent metrics

In the following, we shall describe an important appli-
cation of the above formalism. Namely, we shall discuss a
generalization of the Schwarzschild metric, which describes,
to good approximation, the gravitational field of a planet,
e.g., the Earth. In West-Coast conventions (where the sign of
the timelike component is positive), the Schwarzschild metric
reads as follows [12–14,23]:

gμν = diag
(
eν, − eλ, − r2, − r2 sin2 θ

)
= diag

(
u2, − 1

u2
, − r2, − r2 sin2 θ

)
, (27)

u2 = eν = e−λ = 1 − 2MG

r
, (28)

rs = 2MG = 2 GMP . (29)

Here, the Schwarzschild radius is rs = 2MG = 2GMP /c2 ≈
0.0089 m, and G is Newton’s gravitational constant (here, we
supplement the factor c−2 although we use units with c = 1
in this article otherwise). Furthermore, MP is the mass of the
Earth (or, of the planet under consideration). The invariant line
element ds2 in the Schwarzschild geometry is given by

ds2 =
(

1 − rs

r

)
dt2 −

(
1 − rs

r

)−1
dr2

− r2 (dθ2 + sinθ dϕ2). (30)

The Schwarzschild metric is valid for a spherically symmetric
geometry of space. However, it has a problem. Namely, as
pointed out by Eddington [24], for the original Schwarzschild
metric, the speed of light in the radial direction is not equal
to the speed of light in the transverse directions; the prefactor
in front of the “angular” term r2

(
dθ2 + sin2 θ dϕ2

)
is not the

same as the one in front of the “radial term” proportional
to dr2. This structure implies that one has to resort to a
highly nonstandard representation of the Dirac algebra [14]
if one would like to separate the gravitationally coupled Dirac
equation in the original form of the Schwarzschild metric (27).

For example, without explicit mention, a representation of
the following form has apparently been used in Ref. [14]:

γ̃ 0 =
(
12×2 0

0 −12×2

)
, γ̃ 1 =

(
0 −i 12×2

−i 12×2 0

)
,

(31a)

γ̃ 2 =
(

0 −σ 3

σ 3 0

)
, γ̃ 3 =

(
0 σ 2

−σ 2 0

)
, (31b)

γ̃ 5 = i γ̃ 0 γ̃ 1 γ̃ 2 γ̃ 3 =
(

0 −iσ 1

iσ 1 0

)
. (31c)

The authors of Ref. [14] use the matrix γ̃ 1 for the “radial”
part of the Dirac equation. Specifically, near Eq. (21) of
Ref. [14], it is stated without further explanation that a
representation of the Dirac algebra is used where γ̃ 1 assumes a
particularly simple form, proportional to the expression given
in Eq. (31a). Indeed, such representations exist, as we show

in Eq. (31), thus leading to a ramification of the somewhat
ad hoc statement made in Ref. [14]. It is easy to verify that
the relations {γ̃ μ,γ̃ ν} = 2 g̃μν = 2 diag(1, − 1, − 1, − 1) are
fulfilled. Here, the �σ = (σ 1,σ 2,σ 3) are the (2 ⊗ 2) Pauli spin
matrices, and 12×2 denotes the (2 ⊗ 2) unit matrix.

B. Eddington’s reparametrization

In Sec. 43 of Chap. 3 of Ref. [24], Eddington has pointed
out that a coordinate transformation exists which converts the
Schwarzschild metric into spatially isotropic form. It reads as
follows:

r = r1

(
1 + rs

4r1

)2

, r1 = r

2
− rs

4
+

√
r

4
(r − rs). (32)

After this transformation, the invariant line element (30)
becomes

ds2 = (4r1 − rs)2

(4r1 + rs)2 dt2

−
(

1 + rs

4r1

)4 (
dr2

1 + r2
1 dθ2 + r2

1 sin2 θ dϕ2
)
. (33)

Using this isotropic form of the metric, we can now transform
the spatial part to Cartesian coordinates,

ds2 = (4r1 − rs)2

(4r1 + rs)2 dt2 −
(

1 + rs

4r1

)4 (
dx2

1 + dy2
1 + dz2

1

)
,

(34)

where x1 = r1 sin θ cos ϕ, y1 = r1 sin θ sin ϕ, and z1 =
r1 cos θ . We now redefine

r1 → r, x1 → x, y1 → y, z1 → z, (35a)

r =
√

x2 + y2 + z2. (35b)

Furthermore, we define w(r) and v(r) as follows:

w(r) = 4r − rs

4r + rs

, v(r) =
(

1 + rs

4r

)2
. (36)

The transformed (according to Ref. [24]) Schwarzschild metric
can now be written in the following form:

gμν = diag(w2(r), − v2(r), − v2(r), − v2(r)). (37)

The considerations below are valid for a general form (37) of
the metric and not tied to the specific form given in Eq. (36).
The vierbein coefficients are given as

b0
β = bβ

0 = δ0
β w(r), bi

j = δi
j v(r), (38)

aα
0 = a0

α = δ0
α

w(r)
, ai

j = δi
j

v(r)
, (39)

where i,j = 1,2,3 and δα
β and δα

β are Kronecker symbols
(i.e., equal to 1 if the indices are equal, otherwise 0).

With these coefficients, using computer algebra [25], it is
easy to evaluate all Christoffel symbols and to establish that

γ μ �μ = − �γ · �r
r

w(r) G(r), (40a)

G(r) = 2 v′(r) + w′(r)

2 v(r) w(r)
. (40b)
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This result has been verified by us both using the representation
(25) as well as the representation given in (26a), for the metric
(37).

C. Reduction to radial equation

In our further analysis, we use the Hamiltonian form of the
gravitationally coupled Dirac equation,

i(γ 0)2 ∂tψ = (�α · �p + i γ 0 γ μ �μ + γ 0 m) ψ, (41)

where �p = −i∂/∂�r with �r = (x,y,z), and αj = γ 0 γ j for
j = 1,2,3. The expression “Hamiltonian form” is used in
analogy with flat-space. Namely, in flat space, the expression
on the left-hand side simply represents the “noncovariant
time-evolution operator” because (γ 0)2 → (γ̃ 0)2 = 14×4 and
H → i ∂t (see Refs. [26–29]). In curved space, with the metric
given in Eq. (38), we have (γ 0)2 = 1

w2(r) 14×4.
In the following, we use the Dirac matrices in the Dirac

representation,

γ̃ 0 =
(
12×2 0

0 −12×2

)
, γ̃ 1 =

(
0 σ 1

−σ 1 0

)
, (42a)

γ̃ 2 =
(

0 σ 2

−σ 2 0

)
, γ̃ 3 =

(
0 σ 3

−σ 3 0

)
, (42b)

γ̃ 5 = i γ̃ 0 γ̃ 1 γ̃ 2 γ̃ 3 =
(

0 12×2

12×2 0

)
. (42c)

In the form (41), the gravitationally coupled Dirac equation
allows a solution of the standard form [26–29],

ψ =
(

f (r) χκμ(θ,ϕ)

ig(r) χ−κμ(θ,ϕ)

)
exp(−i E t), (43)

where the χκμ(θ,ϕ) [sometimes denoted as χμ
κ

(θ,ϕ)] are
the standard spin-angular functions [26–29]. They have the
property

(�σ · �L + 1) χκμ(θ,ϕ) = −κ χκμ(θ,ϕ). (44)

We recall that the eigenvalues of the operator K = �σ · �L + 1
are −κ [see the text following Eq. (2.9) of Ref. [27]]. In the
text following Eq. (18) of Ref. [14], the eigenvalues is assumed
to be +κ, an apparent typographical error. It is extremely
instructive to write the Hamiltonian form (41), using the ansatz
(43), in terms of (2 ⊗ 2) spin matrices,

1

w2(r)
i∂tψ(�r) =

⎛⎜⎜⎜⎜⎝
m

w(r)

�σ · r̂

v(r)

(
−i

∂

∂r
+ i

�σ · �L
r

− i G(r)

)
�σ · r̂

v(r)

(
−i

∂

∂r
+ i

�σ · �L
r

− i G(r)

)
− m

w(r)

⎞⎟⎟⎟⎟⎠
(

f (r) χκ μ(r̂)

i g(r) χ−κ μ(r̂)

)

=

⎛⎜⎜⎜⎝
[
− 1

v(r)

(
∂

∂r
g(r) − 1

r
g(r) (κ − 1) + G(r) g(r)

)
+ m

w(r)
f (r)

]
χκ μ(r̂)[

−(−i)
1

v(r)

(
∂

∂r
f (r) − 1

r
f (r) (−κ − 1) + G(r) f (r)

)
− im

w(r)
g(r)

]
χ−κ μ(r̂)

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
[
− 1

v(r)

(
∂

∂r
+ 1 − κ

r
+ G(r)

)
g(r) + m

w(r)
f (r)

]
χκ μ(r̂)

i

[
1

v(r)

(
∂

∂r
+ κ + 1

r
+ G(r)

)
f (r) − m

w(r)
g(r)

]
χ−κ μ(r̂)

⎞⎟⎟⎟⎠ = E

w2(r)

⎛⎝ f (r) χκ μ(r̂)

i g(r) χ−κ μ(r̂)

⎞⎠ . (45)

Here, we have used the relation �σ · r̂ χκμ(r̂) = −χ−κμ(r̂),
which can be found in Eq. (7.2.5.23) of Ref. [30], where r̂ =
�r/|�r| is the position unit vector. The radial equations are thus
given as(

∂

∂r
+ 1 − κ

r
+ G(r)

)
g(r) = v(r)

w(r)

(
m − E

w(r)

)
f (r),

(46a)(
∂

∂r
+ 1 + κ

r
+ G(r)

)
f (r) = v(r)

w(r)

(
m + E

w(r)

)
g(r).

(46b)

An important symmetry property of Eq. (46) is given by its
invariance under the simultaneous replacements

E ↔ −E, f (r) ↔ g(r), κ ↔ −κ. (47)

So, if E is an eigenvalue of the gravitationally coupled Dirac
equation, so is −E. Invoking the reinterpretation principle
[31–33] and interpreting the negative energy −E < 0 as
+E > 0 for antiparticles (which propagate “into the past”),
we find that the spectrum of the gravitationally coupled Dirac
Hamiltonian is exactly the same for particles and antiparticles.
This important finding is true for any space-time metric of
the form given in Eq. (37) and not necessarily tied to the
Schwarzschild geometry.

Let us now establish the connection to the flat-space result
given in Ref. [27]. Specifically, Eqs. (2.12a) and Eq. (2.12b) of
Ref. [27], using the identity r−1∂r [rh(r)] = ∂rh(r) + r−1 h(r),
for h̄ = c = 1 and Zα → 0, can be written as(

∂

∂r
+ 1 − κ

r

)
g(r) = (m − E) f (r), (48a)
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(
∂

∂r
+ 1 + κ

r

)
f (r)) = (m + E) g(r), (48b)

where we have used the form (43) for the wave function. These
equations therefore become identical to our Eq. (46) in the limit
v(r) → 1, w(r) → 1.

The symmetry property (47) is physically tied to the
reinterpretation principle which is very well known in the
particle physics community [17–20] but less well known in
the general relativity community. Some remarks are therefore
in order. We consider a space-time interval �x = (�t,��r),
and a scalar product k · �x = |E| �t − �k · ��r (with �t > 0).
The antiparticle amplitude exp(i k · �x) then is proportional
to

ei|E| �t−i�k·��r → e−i|E| (−�t)+i�k·(−��r), (49)

where −�t > 0 and one can thus reinterpret the antiparticle
trajectory, initially propagating “into the past” (advanced con-
tribution to the Feynman propagator) and along the distance
interval ��r (“from point a to point b”), as a positive-energy
trajectory with energy +E, covering the inverse space-time
interval (−�t > 0, − ��r) i.e., propagating into the future
with four-momentum (|E|,�k), i.e., “from point b to point a.”
Applied to gravitational interactions, the currently available
accepted interpretation based on particle physics principles
[17–20] therefore dictates that “an antiparticle falls upward in
the gravitational field, but backward in time, and with the same
modulus of the kinetic energy as the corresponding particle.”
Therefore, after reinterpretation, the formalism of the gravita-
tionally coupled Dirac equation predicts that antiparticles and
particles receive exactly the same energy perturbations in a
gravitational field, at least within space-time geometries that
have the general form (37). This important result generalizes
Eq. (1) to the relativistic quantum domain.

IV. CONCLUSIONS

In this article, we reexamine the gravitationally coupled
Dirac equation in Sec. II, explaining a number of aspects
of the derivation in greater detail. In particular, we show
that the condition (21) follows naturally as a consequence of
the fundamental anticommutator property of the curved-space
Dirac matrices (3), together with the known fact that the
covariant derivative of the metric tensor has to vanish [10].
Under these assumptions, the covariant derivative of the
curved-space Dirac matrix γ μ(x) also has to vanish, and the
condition (21) follows as a consequence of the ansatz (17)
for the covariant derivative of a spinor, together with the
fundamental commutator property (18). The symmetrization
of the covariant action of the Dirac field given in Eq. (19)
then becomes possible, in analogy to the flat-space action
Eq. (4). Furthermore, under a proper definition of the local
spinor Lorentz transformation (13), expressed in space-time
coordinates, the local Dirac matrices γ μ = γ μ(x) are shape
invariant, as shown in Eq. (15). For a general metric gμν =
gμν(x), we find the vierbein representation (25) of the affine
connection matrices �ρ = �ρ(x) which differs from the result
given previously in Eq. (8) of Ref. [12] by a factor 1/4. With
the additional prefactor, the result given in Eq. (25) then is in
agreement with the result for the affine connection matrices

given in Eq. (9) of Ref. [14]. In West-Coast conventions
for the metric, the gravitationally Dirac equation reads as
(i γ μ ∇μ − m)ψ(x) = 0 [see Eq. (20)], as opposed to the
East-Coast form (γ μ ∇μ + m)ψ(x) = 0 [see Refs. [12,14]].

The gravitationally coupled radial Dirac equation given
in (46) for a Schwarzschild-type metric (37) describes the
coupling of a particle (and corresponding antiparticle) to the
gravitational field of a planet. Our Eq. (46), in appropriate
limits, is in agreement with the fundamental properties of upper
and lower components describing particles and antiparticles at
rest (E → m and E → −m), if we additionally consider the
limit of flat space-time [v(r) → 1, w(r) → 1]. This limit is
explored easily, starting from Eq. (2.12) of Ref. [27].

The symmetry E ↔ −E, f ↔ g, κ ↔ −κ given in
Eq. (47) implies that the quantum states of spin-1/2 antipar-
ticles, in the gravitational field of the Earth, have exactly
the same spectrum as those of the corresponding particles,
including all relativistic corrections of motion. Therefore, this
statement also holds for superpositions of quantum states,
including those which describe a wave packet evolving along
a classical trajectory (these states would other be known as
“coherent” or “Glauber” states). Our quantum-theory based
findings go beyond the simple statement that particle and
antiparticle trajectories in curved space-time are the same on
the classical level [see Eq. (1)].

Finally, let us include a remark regarding the validity of
the gravitationally coupled Dirac equation for antiparticles.
One might contemplate if antiparticles should be described by
a different equation in the context of gravity than particles,
but by the same equation in the context of electromagnetism
(electromagnetically coupled Dirac equation). In this case,
the gravitationally coupled Dirac equation (20) would only
describe particles, not antiparticles, even if it admits negative-
energy solutions. However, in this case one gets into trouble
in the limit of a vanishing gravitational interaction, in which
case space becomes flat. This is because the Dirac equation
is known to describe antiparticles very well in this limit
[17–20]. At least, this concept is used in all perturbative QED
calculations, including the notoriously difficult bound-state
problems [34]. If we conjecture that the flat-space limit is
smooth, then the gravitationally coupled Dirac equation (20)
must remain valid for both particles and antiparticles. Brill and
Wheeler [12], Boulware [13], and Soffel, Müller, and Greiner
[14] all used the same methods for deriving the coupled Dirac
equation (we here attempt to resolve some discrepancies found
in the literature regarding the final steps in the derivation). The
gravitationally coupled Dirac equation (20) involves (4 ⊗ 4)
matrices and allows for two positive-energy solutions, which
are naturally interpreted as particles, and two negative-energy
solutions, which are naturally interpreted as antiparticles,
according to usual practice in particle physics [17–20]. We may
thus assume that the gravitationally coupled Dirac equation
given in Eq. (20) should be valid for particles and antiparticles,
simultaneously. We know for sure that the corresponding
variant of the equation in flat space describes particles and
antiparticles simultaneously, as described in detail, e.g., in
Chap. 2 of Ref. [19].

Despite our theoretical considerations, it is still of utmost
value to the scientific community to carry out the planned
antimatter gravity experiments [3–8]. We conclude with two
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remarks: (i) The “inertial mass term” in the sense of the
equivalence principle enters the Schrödinger equation for
free and bound electrons, e.g., for a bound electron in a
hydrogen atom. According to experimental evidence, inertial
and gravitational mass are the the same for atoms (such as
atomic hydrogen), which is composed of spin-1/2 particles
(electrons and protons), therefore, the action principle δS = 0
[see Eq. (11)] provides for a solid basis of the discussion
of relativistic quantum effects in gravitational coupling, with
the m term entering the equation being equal to the inertial
(gravitational) mass. (ii) Our investigations suggest that any
conceivable differences of the gravitational coupling of parti-

cles and antiparticles should be assigned to a “fifth force,” not
to any conceivable “modifications of the gravitational mass”
of antiparticles versus particles.
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