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Testing quantum electrodynamics in the lowest singlet states of the beryllium atom
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High-precision results are reported for the energy levels of the 2 1S and 2 1P states of the beryllium
atom. Calculations are performed using fully correlated Gaussian basis sets and taking into account the
relativistic, quantum electrodynamics (QED), and finite nuclear mass effects. Theoretical predictions for the
ionization potential of the beryllium ground state 75 192.699(7) cm−1 and the 2 1P → 2 1S transition energy
42 565.441(11) cm−1 are compared to known but less accurate experimental values. The accuracy of the
four-electron computations approaches that achieved for the three-electron atoms, which enables determination
of the nuclear charge radii and precision tests of QED.
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Spectroscopic standards for the energy transitions of
the beryllium atom were established many years ago in
experiments by Johansson. In most cases the accuracy of
the wavelength measurements of 0.01–0.02 Å [1] has been
reached. The only more precise beryllium energy level
determination comes from the experiment by Bozman et al. [2]
in which the transition energy of 21 978.925 cm−1 between the
ground and the 2 3P1 state that is accurate to about 0.01 cm−1

(0.002 Å) has been measured [3]. Seaton, through a fit to
a collection of excited-state data, determined the ionization
potential (IP) of the ground state to be 75 192.56(10) cm−1 [4].
Later, this quantity was improved by Beigang et al., who
obtained 75 192.64(6) cm−1 [5]. Contemporary high-precision
calculations [6,7] are in good agreement with the rather old
experimental IP values. Nevertheless, the precision of the data
available for beryllium is far from being satisfactory compared
to the superior accuracy of modern atomic spectroscopy. The
level of absolute precision achieved in modern measurements
for three-electron systems [8,9] is as many as four orders of
magnitude higher than that obtained for the case of beryllium.
As it has been shown for two- and three-electron atoms,
the availability of such accurate data, in connection with a
good understanding of the underlying atomic theory, opens up
access to interesting applications such as the determination of
the nuclear charge radius or precision tests of the quantum
electrodynamics (QED).

Remarkable advances in theoretical methods make it possi-
ble to approach the spectroscopic accuracy for the energies and
transition frequencies of few-electron atoms. This challenge
requires precise treatment of the electron correlations as well
as inclusion of relativistic and quantum electrodynamic effects.
The concise approach, which accounts for all the effects
beyond the nonrelativistic approximation, is based on the
expansion of the energy levels in the fine-structure constant α

[see Eq. (1) below]. This method has been successfully applied
in recent years to light atomic and molecular systems [10–13].
The frontiers in this field of research have been established
by the calculation of higher-order (mα6) corrections to helium
energy levels [14] and of mα7 corrections to the helium fine
structure [15].

Up to now, the precision of theoretical predictions for the
beryllium states with a nonvanishing angular momentum has
been severely limited by the accuracy of the lowest-order
relativistic (mα4) and QED (mα5) corrections. The most
accurate calculations including the relativistic corrections
were performed 20 years ago by Chung and Zhu [16] at
the full-core plus correlation level of theory, whereas the
QED effects have been merely approximated from hydrogenic
formulas [17,18]. This approach has turned out to be unsat-
isfactory for it has led to a significant discrepancy between
theoretical predictions and experimental excitation energies.
For instance, the theoretical result [16] is 3.45 cm−1 higher
than the experimental wavelength value 2 349.329(10) Å of
the 2 1P → 2 1S transition energy measured with 0.18 cm−1

uncertainty [1]. The fact that the theoretical excitation energy
is higher than the experimental value may indicate that
correlation effects have not been incorporated satisfactorily.
Such a disagreement can only be resolved in an unequivocally
more accurate computation of nonrelativistic energies as
well as the relativistic and QED effects using the explicitly
correlated wave functions. Recent nonrelativistic calculations
of low-lying P and D states with a relative precision of an
order of 10−10–10−11 [19,20] represent a step in this direction.

In this Rapid Communication, we present a complete and
highly accurate treatment of the leading relativistic (mα4)
and QED (mα5) effects for a four-electron atomic P state.
Moreover, we significantly improve the numerical results for
relativistic and QED effects for the 2 1S state, which permit
us to push the accuracy of the theoretical predictions of
the 2 1P → 2 1S transition energy beyond the experimental
uncertainty. Additionally, in combination with the previously
reported data on beryllium cation [11], we obtain an improved
ionization potential with an accuracy that is an order of mag-
nitude higher than that of the available experimental values.

In our approach, we expand the total energy not only
in the fine-structure constant α ≈ 1/137 but also in the
ratio of the reduced electron mass to the nuclear mass, η =
−μ/mN = −m/(m + mN ) ≈ 1/16 424. This way we reduce
the isotope dependence to the prefactors only. In terms of
these two parameters, the energy levels can be represented as
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the following expansion:

E = mα2[E (2,0) + ηE (2,1)] + mα4E (4,0)

+ mα5E (5,0) + mα6E (6,0) + · · · . (1)

Each dimensionless coefficient E (m,n) is calculated separately
as an expectation value of the corresponding operator with
the nonrelativistic wave function. The leading contribution
E (2,0) ≡ E0 is an eigenvalue of the Schrödinger equation with
a clamped nucleus Hamiltonian,

H0� = E0�, H0 =
∑

a

p2
a

2
−

∑
a

Z

ra

+
∑
a>b

1

rab

. (2)

The key to obtaining high-precision results is the use of a
very accurate trial wave function �, which contains all the
interparticle distances explicitly incorporated. We express �

as a linear combination of N four-electron basis functions ψi ,

� =
N∑
i

ciψi, ψi = A[φi(�r1,�r2,�r3,�r4)χ ], (3)

where A is the antisymmetry projector, and χ =
1
2 (↑1↓2 − ↓1↑2) (↑3↓4 − ↓3↑4) is the singlet spin function
constructed using electron spinors. The spatial function φ is
the explicitly correlated Gaussian (ECG) function for the S

and P states, respectively,

φS = exp

[
−
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2
a −
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2
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]
, (4)

�φP = �r1 exp

[
−
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2
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]
. (5)

The main advantage of these Gaussian functions is the
availability of the analytical forms of the integrals required
for matrix elements of the Hamiltonian H0,

f (n1, . . . ,n10) =
∫

. . .

∫
d3r1

π
. . .

d3r4

π
r

n1
1 . . . r
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34

× exp

[
−
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αar
2
a −
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βabr
2
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]
. (6)

Among all the integrals represented by the above formula
we can distinguish two subsets used in our calculations.
The first subset contains the “regular” integrals with the
non-negative even integers ni such that

∑
i ni � 
1, where the

shell parameter 
1 = 0, 2, 4, . . .. The second subset permits
a single odd index ni � −1 for which

∑
i ni � 
1/r (
1/r =

−1,1,3, . . .) and is related to the components of the Coulomb
potential. To systematize the use of the ECG basis sets we
rederive the recurrence scheme for the generation of both
classes of integrals from the master expression [21,22]. An
advantage of such an approach is the possibility of a gradual
extension of the calculation to states with higher angular
momenta. The sets of integrals employed in a specific case can
be characterized by using the 
 shell parameters. For instance,
the matrix elements of the nonrelativistic Hamiltonian require
integrals with 
1 = 2, 
1/r = −1 for the S states [Eq. (4)] and

1 = 4, 
1/r = 1 for the P states [Eq. (5)]. If, additionally,
gradients with respect to the nonlinear parameters are to be
used, both shell parameters have to be increased by 2.

TABLE I. Expectation values of various operators with a nonrel-
ativistic wave function for the 2 1S and 2 1P states of the beryllium
atom.

Operator 2 1S 2 1P

H0 −14.667 356 498(3) −14.473 451 37(4)
�pa · �pb 0.460 224 112(8) 0.434 811 25(13)
p4

a 2 165.630 1(9) 2 133.321 1(12)
δ(ra) 35.369 002 6(6) 34.897 914 6(8)
δ(rab) 1.605 305 33(9) 1.567 943 6(2)

pi
a

(
δij

rab
+ ri

ab
r
j
ab

r3
ab

)
p

j

b 1.783 648 19(15) 1.624 185 8(5)

P (r−3
ab ) −7.326 766(3) −7.097 15(8)

ln k0 5.750 46(2) 5.752 32(8)

To control the uncertainty of our results we perform the
calculations with several basis sets, successively increasing
their size by a factor of 2. From the analysis of convergence
we obtain the extrapolated nonrelativistic energies and mean
values of the operators presented in Table I. The largest wave
functions optimized variationally were composed of 4096 and
6144 terms for the S and P states, respectively, leading to the
nonrelativistic energies E (2,0)(21S) = −14.667 356 494 9 and
E (2,0)(21P ) = −14.473 451 33 4. These upper bounds improve
slightly those obtained by Adamowicz et al. [7,19].

The other coefficients of expansion (1) are calculated as
mean values with the nonrelativistic wave function �. The
nonrelativistic finite mass correction is given by E (2,1) =
E (2,0) − ∑

a<b〈 �pa · �pb〉. In order to calculate the leading
relativistic corrections E (4,0) = 〈H(4,0)〉, we consider the Breit-
Pauli Hamiltonian [23], which for states with a vanishing spin
can be effectively replaced by the form

H(4,0) =
∑

a

[
− �p 4

a

8
+ πZα

2
δ3(ra)

]

+
∑
a<b

[
πδ3(rab) − 1

2
pi

a

(
δij

rab

+ ri
abr

j

ab

r3
ab

)
p

j

b

]
. (7)

Since the ECG basis does not reproduce the cusps of the wave
function, a slow convergence becomes evident for relativistic
matrix elements of the Dirac δ and the kinetic energy operator
p4

a . To speed up the convergence, the singular operators can
be transformed into their equivalent forms, whose behavior
is less sensitive to the local properties of the wave function.
For the Dirac δ expectation value, such a prescription has
been proposed by Drachman [24]. For example, from direct
calculation with a basis size of 4096 for the S state, we
get 〈δ(ra)〉 = 35.366 89 . . ., and while using the Drachman
regularization approach we improve the convergence by four
orders of magnitude (see Table I). Regularization methods have
also been applied for the beryllium ground state in the former
paper [6], nonetheless the present results are more accurate
by two orders of magnitude due to the better optimized wave
function. For P states, the expectation values of the relativistic
and QED operators as well as of the Bethe logarithm have been
unavailable in literature. Analogous calculations of relativistic
terms in the ECG basis have been performed only for the P

states of the four-body positronium molecule [25]. Methods
for the evaluation of additional integrals 1/r2 and 1/(rarb)
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of the form (6) required for the regularized operators of the
Breit-Pauli Hamiltonian have been developed, resulting in
computationally tractable recursive expressions derived from
the corresponding master integrals. These have been presented
in the original paper only for three-body systems [22].

The calculation of the leading QED corrections is the main
challenge of this Rapid Communication. It is particularly
laborious because we deal with the states of the nonvanishing
angular momentum. The explicit form of the mα5 terms is
given by [26,27]

E (5,0) = 4Z

3

[
19

30
+ ln(α−2) − ln k0

]∑
a

〈δ3(ra)〉

+
[
164

15
+ 14

3
ln α

] ∑
a<b

〈δ3(rab)〉− 7

6π

∑
a<b

〈
P

(
1

r3
ab

)〉
.

(8)

This expression contains two highly nontrivial terms: the Bethe
logarithm ln k0 and the so-called Araki-Sucher distribution
P (r−3

ab ). In the ECG basis, the latter exhibits exceptionally
slow convergence when evaluated directly from its definition.
The regularization is in this case mandatory if one aims for a
high accuracy of the final results. For this purpose we extend
Drachman’s original idea and obtain the following regularized
form for the distribution [28]:〈

P

(
1

r3
ab

)〉
=

∑
c

〈
�pc

ln rab

rab

�pc

〉

+
〈
4π (1 + γ )δ(rab) + 2(E0 − V )

ln rab

rab

〉
. (9)

As we can see, different classes of the integrals containing
factors of the form ln r/r , ln r/r2, and ln ra/(rarb) arise. With
the master integral, such integrals can be expressed analytically
in terms of elementary and Clausen functions.

The evaluation of the Bethe logarithm is the most time-
consuming part of the calculations. Formulas for such calcu-
lations with ECG functions have been presented in the former
work devoted to the lithium atom [29] and later on applied to
the beryllium ground state [6],

ln k0 = 1

D

∫ ∞

0
dt

f (t) − f0 − f2t
2

t3

f (t) = −
〈

�P ω

E0 − H0 − ω
�P
〉
, t = 1√

1 + 2ω
,

(10)
f0 = 〈 �P 2〉, �P =

∑
a

�pa,

f2 = −2D, D = 2πZ
∑

a

〈δ3(ra)〉.

However, for the 2 1P state such calculations become more
sophisticated. Compared to the ground state, which, through
the momentum operator, is coupled only with the virtual 1P

states, the 2 1P state requires a complete set of 1S, 1P e, and
1D intermediate states. These three types of states can be
well represented in the bases φS , εijk r

j
a rk

bφS , and [(ri
a r

j

b +
r

j
a ri

b)/2 − 1/3 δij rk
a rk

b ] φS , respectively. Evaluation of f (t)/ω
in the limit of ω = 0 is clearly established numerically from the
Thomas-Reiche-Kuhn sum rule for dipole oscillator strengths
〈 �P (H0 − E0)−1 �P 〉 = 3Z/2. This value is useful in judging

TABLE II. Components of the 2 1P -2 1S transition energy and the
ionization potential (IP) for a 9Be atom in cm−1. The inverse fine-
structure constant α−1 = 137.035 999 074(44) [32] and the nuclear
mass mN (9Be) = 9.012 182 20(43) u [31].

Operator 2 1P -2 1S IP(2 1S)

m α2 42 557.255(6) 75 190.543(4)
m α2 η −2.930 72 −4.675 65
m α4 12.167(1) 7.414 0(8)
m α5 −1.003 3(14) −0.557 7(3)
m α6 −0.045(9) −0.025(5)
Total 42 565.441(11) 75 192.699(7)
Theory [16] 42 568.80
Theory [7] 75 192.667(19)
Theory [6] 75 192.510(80)
Experiment [1] 42 565.35(18)
Experiment [4] 75 192.50(10)
Experiment [5] 75 192.64(6)

the completeness of the virtual states and the estimation of
uncertainties.

Because of principal difficulties, the mα6 corrections in
their full form were evaluated only for two-electron atoms [14].
Therefore, for the four-electron beryllium atom we use the
following approximate formula based on the hydrogen atom
theory [30]:

E (6,0) ≈ π Z2

[
427

96
− 2 ln(2)

]∑
a

〈δ3(ra)〉. (11)

This approximation includes the dominating electron-nucleus
one-loop radiative correction and neglects the two-loop
radiative, electron-electron radiative, and the higher-order
relativistic corrections. On the basis of the experience gained
in helium calculations [14], we estimate, considering a higher
charge of the beryllium nucleus, that the neglected terms
contribute less than 20% to the overall mα6 correction.

Except for E (6,0), all the coefficients of the expansion
(1) were evaluated in their full form, i.e., no approximation
was introduced nor any physical effect of given order were
omitted. Therefore, the uncertainties given in Table II refer
to the incompleteness of the basis set. On the basis of our
former work [11] on Be+, the higher order in the α and
η contributions, namely, mα2η2 and mα4η, are estimated
to be less than 0.001 cm−1 to both the transition energy
and ionization potential, and thus they are negligible when
compared to the present uncertainty of 0.01 cm−1. We note in
passing that in Table II for the values without the uncertainty
all the quoted digits are certain. In evaluation of the IP value
we used the ground-state energy level of the beryllium cation
E(Be+) = −14.325 836 7 a.u. calculated with Hylleraas wave
functions [11].

The accuracy of 0.011 cm−1 for the transition 2 1P -2 1S

and 0.007 cm−1 for the ionization energy has been achieved
due to the recent progress made in two directions. The first
one, essential to reach this accuracy, is the improvement in
the optimization process of the nonrelativistic wave functions
leading to the overall increase in numerical precision. The
second direction is the complete treatment of the leading
relativistic and QED effects. More specifically, the approach
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to effectively calculate the many-electron Bethe logarithm and
the mean values of singular operators, such as the Araki-Sucher
term, has been developed [6]. Particularly, an extension of the
numerical methods for relativistic and QED corrections on the
P states of a four-electron system is presented here.

The mα5 and mα6 terms involve the interaction of the
electrons with the vacuum fluctuations of the electromagnetic
field, electron-positron virtual pair creation, and the retardation
of the electron-electron interaction. The results of Table II
show clearly that taking into account such energetically subtle
QED effects is unavoidable in order to reach the agreement
between the experiment and the theory, and that it enables
testing of QED. For example, the overall contribution of
the QED effects to the 2 1P -2 1S transition energy amounts
to 1.048(9) cm−1 and is an order of magnitude higher
than the experimental uncertainty. Currently, the accuracy
reached by theory for the transition frequencies exceeds by
an order of magnitude that of the known measurements for
a beryllium atom. At this level of accuracy we are able to
resolve the 2 1P -2 1S line discrepancy of 3.45 cm−1 between
the experiment [16] and theory, in favor of the latter. Although
the available semiempirical results of the ionization energy [5]
agree well with the more accurate theoretical results obtained
here, we hope that the increased level of accuracy of the
theoretical predictions will be a stimulus for more accurate
measurements.

The uncertainty of our results comes mainly from the
neglect of the higher-order relativistic and QED corrections
of the order α6,7. The evaluation of these terms sets the

direction of our future efforts. Also the numerical accuracy
of the nonrelativistic energy has to be improved to achieve
further progress in theoretical predictions.

The recursive method of evaluation of the integrals (6)
employed in this Rapid Communication allows an application
of the ECG functions to the states with a nonvanishing angular
momentum. It establishes a framework for highly accurate
studies of the fine structure and hyperfine splitting in the
beryllium atom. The isotope mass shifts can also be precisely
calculated. However, accurate experimental data are necessary
to enable an extraction of a nuclear-model-independent charge
radii from isotope shifts by combining high-accuracy measure-
ments with atomic theory. This is of special interest for the
halo nuclei (e.g., 11Be) for which analogous results obtained
recently from the 2 2P -2 2S transition in beryllium cation
[10,11] require a confirmation. A systematic extension to
transition energies involving D states is mandatory to resolve
other severe discrepancies between theory and measurements
as pointed out by Chung and Zhu [16], such as, e.g., the largest
one of 7.38 cm−1 for the 3 1D-2 1S transition. The methodology
presented in this Rapid Communication opens up a route
towards removing such obstacles and, what is more, is very
promising in applications to five- and six-electron systems.
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Poznań Supercomputing and Networking Center, and by
PL-Grid Infrastructure.
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