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g-factor measurement of hydrogenlike 28Si13+ as a challenge to QED calculations
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Using a phase-detection method to determine the cyclotron frequency of a single trapped ion in a Penning
trap allowed us to perform a measurement of the g factor of the bound electron in hydrogenlike 28Si13+ with
a statistical uncertainty of 4 × 10−11. Furthermore, we reevaluated the image-charge shift as the main source
of uncertainty. Our result challenges bound-state quantum-electrodynamical calculations by probing two-loop
contributions of order (Zα)6 and paves the way towards a more precise determination of fundamental constants
as the electron mass.
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Measurements of the g factor of the electron bound in
hydrogenlike ions represent the most stringent test of bound-
state quantum-electrodynamic (BS-QED) calculations. In the
past, experiments have been performed on 12C5+ [1], 16O7+

[2], and 28Si13+ [3] where the spin precession frequency of a
single ion confined in a Penning trap with a superimposed
strong homogeneous magnetic field has been determined
with fractional uncertainties of 5 × 10−10, 7 × 10−10, and
5 × 10−10, respectively. A remarkable agreement to theory
at the level of 4 × 10−10 has been found, which made it
possible to probe QED contributions up to the two-loop level
of the order of (Zα)4 [3]. The precision of these experiments
was limited mainly by statistics and in [1,2] by the ion’s
temperature of several 10 K, causing line broadening and
shifts. In order to become sensitive to even higher order BS-
QED contributions, whose estimated relative size for 28Si13+

is 17 × 10−10, we are attempting to reduce the experimental
uncertainty. To this end we have developed a technique to
determine the phase of the cyclotron oscillation of the single
ion [4]. The method allows measuring the ion’s oscillation
frequencies, as required for calibration of the magnetic field
strength, two orders of magnitude faster and more precise
than direct frequency determinations. This enables higher data
rates and reduced uncertainties from trap parameter fluctu-
ations. Moreover, the ion is kept at low temperature during
the measurement, which reduces limitations from residual
magnetic field inhomogeneities. As a result we reduced the
statistical uncertainty of our previous experiment on 28Si13+

by one order of magnitude. This will lead to a breakthrough in
measurements of fundamental properties. We also reexamined
the largest systematical shift of the ion oscillation frequencies
caused by induced image charges and reduced its contribution
to the error budget.

In this Rapid Communication we report on a measurement
of the g factor of the bound electron in 28Si13+ with a measure-
ment uncertainty of 4 × 10−11, which will make it possible to
probe BS-QED calculations to the order (Zα)6, whose calcu-
lation represents a challenge for theory (see Fig. 1). For our
experiment we use the same 28Si13+ ion as in the experiment
described in Refs. [3,4]. It was stored for 7 months in a cylindri-
cal Penning trap in thermal contact to a liquid helium bath, with
a superimposed magnetic field of B � 3.76 T, at an estimated

rest-gas pressure of less than 10−16 mbar. The trap has three
different potential minima for ion storage. After creation in
the first minimum (“creation trap”), cleaning from unwanted
simultaneously trapped ions, and reduction of the ion number
to a single one, we measured the three motional frequencies
of a particle in a second minimum (“precision trap”). For the
operating conditions in the precision trap the magnetron oscil-
lation frequency amounts to ν− � 9 kHz, the axial oscillation to
νz � 710 kHz, and the modified cyclotron oscillation to ν+ �
27 MHz. The experimental setup is described in detail in Refs.
[3,6]. From the measurement of the three eigenfrequencies the
cyclotron frequency νc of the ion can be determined using the
Brown-Gabrielse invariance theorem [7]:

ν2
c = ν2

+ + ν2
z + ν2

−. (1)

The axial motion is the only one which can be detected
directly in our experiment by induced image currents in
the trap’s end-cap electrodes. These are picked up by
a superconducting tank circuit with a quality factor of
Q = 3100. The modified cyclotron oscillation and the
magnetron oscillation are coupled to the axial motion by a
radio-frequency field at the respective motional sidebands.
Crucial for achieving high precision is that the measurements
are performed as fast as possible in order to reduce the
influence of temporal variations of the magnetic field on the
precision of the frequency determination. At the same time
the oscillation amplitudes, especially the critical cyclotron
radius, should be kept as small as possible to reduce limitations
by residual magnetic-field inhomogeneities and relativistic
mass increase.

To this end we employed a phase measurement for the
modified cyclotron oscillation of the coherently excited ion [3].
Initially, the ion is resistively cooled to the temperature of the
environment. Excitation of its modified cyclotron oscillation
is performed by a dipole field with well-defined phase. Then
the phase of the cyclotron oscillation evolves freely for a
given time. During this period, the high-quality tank circuit
used to detect the axial motion is decoupled from the ion, so
that none of the eigenmotions is disturbed by image-current
interaction. Finally, the axial and cyclotron modes are coupled
by a radio-frequency field at their sum frequency, which causes
a parametric amplification of the cyclotron motion. During this
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FIG. 1. (Color online) Contributions a to the magnetic moment
anomaly (g − 2)/2 of the bound electron, arising from bound-state
QED and corrections due to the finite size and mass of the nucleus,
for a range of nuclear charges [5].

process, the cyclotron phase is imprinted onto the axial motion,
which is being detected. The modified cyclotron frequency ν+
can be reconstructed by measuring the phase as a function of
the measurement time.

Simultaneously with the determination of the motional
frequencies, microwaves of (nominally) 105 GHz are intro-
duced into the apparatus to probe the spin transition of the
bound electron. A successful spin flip is detected in a third
potential minimum (“analysis trap”) to which the ion is shifted
after the microwave irradiation. Here, the magnetic field of the
Penning trap is made on purpose inhomogeneous by a nickel
ring electrode. The inhomogeneous field imposes a force on
the electron’s magnetic moment, which shifts the ion’s axial
oscillation frequency. When we make a series expansion of
our magnetic field, B = B0 + B2z

2 + · · ·, the second-order
term B2 amounts for our geometry to 10 mT

mm2 . This leads to
a frequency shift of ±120 mHz for the two spin orientations
at an oscillation frequency of 412 kHz. A spin flip is then
monitored by a jump in the axial oscillation frequency of
240 mHz. This has to be compared with a measured mean
noise amplitude of the axial frequency of 21 mHz after
averaging for 8 s, indicating that a spin flip can be detected
with nearly 100% fidelity (see Fig. 2). Figure 3 shows the
number of successful spin flips as a function of the microwave
frequency νL. We plot the ratio � ≡ νMW

νc
, which makes the

individual events independent of magnetic-field fluctuations
to first order. The frequency ratio νL

νc
can be extracted from

the data with a Gaussian fit using the maximum-likelihood
method. Altogether, eight resonances similar to Fig. 3 were
recorded for different cyclotron excitation energies. Although
the excitation energy is typically small, at our level of
precision, relativistic shifts become significant. With γ =
1/

√
1 − v2/c2 the cyclotron and Larmor precession frequency

νc and νL write as νc = 1
2π

qB

γ m
and νL = g

4π

qB

m
+ (1 − γ ) νc,

respectively. The term (1 − γ )νc is the Thomas precession
frequency, which is suppressed by a factor of νc/νL compared

FIG. 2. (Color online) Recorded induced spin flips of the bound
electron, manifested as a jump in the axial oscillation frequency of
412 kHz.

to the free electron case. We obtain

δ�(E+) � �
E+
m c2

. (2)

When we excite the cyclotron motion to a higher cyclotron
energy E+, calibrated through the resulting axial frequency
shift in the magnetic bottle, we observe a linear increase of
the �′

0 value, as expected (Fig. 4). The frequency ratio for zero
cyclotron energy is obtained by extrapolating the individual
resonance centroids, yielding

�′
0 ≡ νL

νc

= 3912.866 067 49(13),

with a purely statistical fractional uncertainty of 4 × 10−11.
This is almost an order of magnitude more precise than
reported in our previous g–factor determination of 28Si13+ [3].

FIG. 3. (Color online) One of the eight recorded resonances.
The light gray area represents the 1σ prediction band for the
measurements, while the dark gray region displays the confidence
band of the maximum-likelihood fit with respect to the centroid
parameter.
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FIG. 4. (Color online) Individual uncorrected � values, deter-
mined from the centroids of the eight recorded resonances. Centroids
with identical excitation energy have been contracted for clarity.

The value �′
0 still has to be corrected for a number of

systematic shifts from various sources. The dominant correc-
tion to the measured value arises from the charge distribution
induced by the oscillating ion on the inner surface of the
trap electrodes, a manifestation of so-called image charges.
The charge distribution changes the trapping potential and
thus shifts the value of the cyclotron frequency as determined
via the invariance theorem. This effect has been studied by
Van Dyck Jr. et al. [8] for a spherical trap geometry and by
Porto [9] for cylindrical geometries. In order to account for
the improved statistical precision of this measurement, we
have reanalyzed the problem and refined the calculations in
order to estimate the effect of specific construction details
of our trap such as slits separating the various electrodes
or the slit dividing one of the correction electrodes. In our
experiment the ions stay within a distance of less than 200 μm
from the trap center, monitored by the well-known magnetic
field shape in the analysis trap. Therefore, it is justified to
treat the additional potential energy term in the harmonic
approximation. Assuming perfect alignment of the trap and
the magnetic field and with an appropriate choice of the x and
y axes the harmonic part of the image potential is given as a
diagonal quadratic form,

Uim(x,y,z) = −m

2
(	xx

2 + 	yy
2 + 	zz

2), (3)

where the parameters 	i have to be determined from the
distribution of image charges on the electrodes. In this
approximation the image force acting on the ion is

�Fim = −�∇Uim = m(	xx + 	yy + 	zz). (4)

By Newton’s third law the force on the ion must be oppositely
equal to the sum of forces acting on the induced charges on
the inner trap surfaces. This charge distribution and the forces
acting on it can be calculated by well-known methods using
Green’s functions with Dirichlet boundary conditions on the
inner trap surface [10,11]. Denoting the eigenfrequencies of
the perturbed Hamiltonian H = H0 + Uim(x,y,z) by ν̄+, ν̄−,
and ν̄z one can show that the cyclotron frequency shift caused

FIG. 5. Calculated image charge density κ(z). The gray areas
indicate the position of the radial insulating slits between the
individual electrodes, where no image charge can be located. CE and
R denote the correction electrodes and the ring electrode, respectively.

by the image potential

δν̄c = νc − ν̄c = νc −
√

ν̄2+ + ν̄2− + ν̄2
z , (5)

is determined by the parameters 	i ,

δν̄c

νc

= ν2
c − ν̄c

2

νc(νc + ν̄c)
� 	x + 	y + 	z

8π2ν2
c

. (6)

With ci = 4πε0m a3 	i/q
2(i = x,y,z), where a = 3.5 mm is

the cylinder radius, this relation becomes

δν̄c

νc

= m

8πε0a3B2
0

(cx + cy + cz). (7)

For a spherical trap cx = cy = cz = 1 [8]. More generally we
write ci as an integral over the trap surface. For our trap geom-
etry using a stack of cylinders we obtain an axial distribution
of image charges κi(z), such that ci = ∫ L/2

−L/2 dzκi(z). L is the
length of the precision trap from end cap to end cap; in our
case L = 20.82 mm. We can identify the contributions of the
various electrodes including the insulating radial slits between
them. The function κi(z) is plotted in Fig. 5, with vertical areas
indicating the positions of the radial slits.

To obtain an estimate of the frequency shift δν̄c we integrate
κi(z) over the inner trap surface. For an upper limit the
integration is extended over the full length L of the cylinder,
including the areas corresponding to the slits. We obtain
cx = cy = 1.002 725 and cz ≈ 0. For a lower limit we repeat
the calculation, but omit the areas corresponding to the slits,
obtaining cx = 0.908 426, cy = 0.916 145, and cz ≈ 0. The
inequality of cx and cy is caused by slits in the axial direction,
separating two segments of one correction electrode that is
required for the application of a radio-frequency field in the
radial plane. A fraction of the charges which were originally
in the area of the slits will arrange along the edges of the slit,
such that the size of the frequency shift will amount to a value
between the two calculated extremes. We take the average of
the coefficients ci from the two approaches to calculate the
shift of the cyclotron frequency and arrive at

δν̄c

νc

= 1.92
m

8πε0a3B2
0

, (8)

quoting the difference of the two cases for ci as uncertainty.
For 28Si13+ the correction amounts to δν̄c/νc = 6.59 ± 0.33 ×
10−10.

Beyond that, a large variety of sources for systematic shifts
have been considered. However, most of these are negligible
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TABLE I. Dominant sources of systematic shifts, given in parts per trillion (ppt). For the energy-dependent effects, typical values for the
lowest excitation are quoted.

Contribution Relative shift of νc in ppt Relative shift of � in ppt Uncertainty of correction in ppt
Image charges −659 +659 33
Magnetic inhomogeneity <20 �10 �10
Dip lineshape <4 <4 <4
Electrostatic anharmonicity <0.1 <0.1 <0.1
Frequency pulling <10 <10 <10

due to recent improvements of the cryogenic electronics and
the detection method. By using negative electronic feedback
cooling, a temperature of the tank circuit and consequently
the axial motion of the ion below 1 K can be achieved [6,12].
This strongly relaxes the requirements on the harmonicity of
the electrostatic trapping potential and the homogeneity of the
magnetic field. During the phase sensitive cyclotron frequency
detection, the cyclotron mode is completely decoupled from
the detector, removing frequency pulling effects. Furthermore,
since now the cyclotron motion is detected directly rather than
as an offset to the axial frequency [3], the requirements on the
accuracy of the axial frequency measurement are also relaxed.
This removes the uncertainty due to the parameters of the
fit function, which was among the largest contributions in
previous measurements. In Table I the dominant systematic
contributions are compiled.

With all corrections applied, we arrive at a value of

�0 = 3912.866 064 99(13)(13). (9)

The g factor is finally determined from

g = 2
q

e

me

M

νL

νc

= 2
q

e

me

M
�0, (10)

where q is the ion’s charge state, M its mass, and me the elec-
tron mass. Using me = 5.485 799 094 6(22) × 10−4 u from the
2010 CODATA compilation of fundamental constants [13] and
M(28Si13+) = 27.969 800 594 9(7) u, from a measurement of
the 28Si mass by Redshaw et al. [14], corrected by the mass of
the missing electrons and their binding energies [15], we can
finally deduce the g factor as

g = 1.995 348 959 10(7)(7)(80). (11)

The first error represents the statistical uncertainty of the fit, the
second one the systematic uncertainty, mainly due to the image
charge shift. The third error is given by the current uncertainty
of the electron mass. This value is in agreement with both the
theoretical result gth = 1.995 348 958 0(17) and our previously
published value gex = 1.995 348 958 7(5)(3)(8) [3]. It reduces
both the statistical and systematical uncertainty by about

one order of magnitude. For a g-factor determination from
our measured frequency ratio the uncertainty of 4 × 10−10

in the electron mass dominates. Moreover, the uncertainty
of the theory has not changed from our previous g-factor
determination [3]. Therefore, our measurement cannot be
considered as a more stringent test of the BS-QED calculation
yet. However, the result presented here will allow for a better
test when more precise calculations, as well as a more precise
value for the electron mass, are available. This holds, in
particular, for the (Zα)6 term of the two-loop QED correction,
for which an upper limit of 1.7 × 10−9 is presently quoted [16].
Alternatively, our method can be used for a mass determination
of isotopes. In our case of 28Si the uncertainty of the ion mass
of 2.5 × 10−11 is just below the statistical uncertainty. This is
not the case when we apply our method, e.g., to 30Si. Here, the
mass uncertainty is 7.7 × 10−10 [17]. In addition, the nuclear
recoil and structure contributions are small and sufficiently
well calculated, which makes it possible to improve the
accuracy of the mass of 30Si significantly by comparing the
electron g factors of 30Si13+ and 28Si13+. This holds in a
similar way for other elements when the mass of one isotope is
better known than that of a different one. Hydrogenlike 12C5+
represents a particular case since there is no uncertainty in the
atomic mass and the binding energies of the electrons have
been measured very accurately [15]. The BS-QED corrections
are calculated to the 10−11 level [16]. Assuming a similar
experimental precision as in the present case of 28Si13+, the
remaining largest uncertainty in the g-factor evaluation arises
from the electron mass. Thus, an adjustment of the electron
mass to match experimental and theoretical results would lead
to a mass value which is about an order of magnitude more
accurate than the presently best-known value [13].
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