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Approximation of realistic errors by Clifford channels and Pauli measurements
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The Gottesman-Knill theorem allows for the efficient simulation of stabilizer-based quantum error-correction
circuits. Errors in these circuits are commonly modeled as depolarizing channels by using Monte Carlo methods to
insert Pauli gates randomly throughout the circuit. Although convenient, these channels are poor approximations
of common, realistic channels such as amplitude damping. Here we analyze a larger set of efficiently simulable
error channels by allowing the random insertion of any one-qubit gate or measurement that can be efficiently
simulated within the stabilizer formalism. Our error channels are shown to be a viable method for accurately
approximating realistic error channels.
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A system interacting with its environment will eventually
reach thermal equilibrium. For finite temperatures, the equilib-
rium state will be a distribution of energy eigenstates weighted
by Boltzmann factors. As a result the process of thermalization
is generally nonunital. A unital process maps a completely
mixed state to a completely mixed state and is compatible
with thermalization only in the limit of infinite temperature or
complete degeneracy of the energy eigenstates.

A quantum computer is a system that is often out of
thermal equilibrium with its environment. Interactions with
the environment can lead to errors in the computation. Fault-
tolerant quantum error correction is one method for mitigating
these errors with the advantage that provable arbitrary quantum
computation is possible given constraints on the error rates and
the error locality [1]. There are many possible error-correcting
codes ranging from concatenated [2–5] to subsystem [6] to
topological codes [7–10]. It is typical to use simulation to
determine the error-correcting properties [11–13]. Although
simulation of quantum systems is difficult, simulation of error
correction can be done efficiently for stabilizer codes where the
process of error correction only includes gates in the Clifford
group [14,15].

A standard error model is a depolarizing channel where
a Pauli operator, chosen from a probability distribution, is
applied at every possible error position [16]. The depolarizing
channel efficiently simulates common laboratory processes
such as dephasing. It also serves as a good approximation for
unital channels and is appropriate for qubits with degenerate
energy eigenstates. In nature, it is also common to encounter
interactions with the environment where the process of
thermalization leads to nonunital error channels. One example
is spontaneous emission or amplitude damping where, given
enough time, all density matrices map to a single pure state.
If an error channel is far from unital, then simulating it with
Pauli errors gives large approximation errors, thus making it
hard to extract useful results.

In this Rapid Communication, we go beyond simulating
errors with the conventional Pauli depolarizing channel (PC).
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Rather than restricting to Pauli errors, we allow any subset of
efficiently simulable gate errors to occur. In particular, we look
at subsets generated by including all Clifford group operators
and/or Pauli measurements to the PC. We show that adding
Clifford errors and/or measurement errors always results in
more accurate approximations and significant improvements
for most error channels.

The stabilizer formalism allows for efficient classical
simulation of quantum circuits when the initial state can be
described by the measurement of a set of commuting Pauli
operators and the gates in the circuit are Clifford operators,
which map Pauli operators to Pauli operators by conjugation
[15]. Single-qubit Clifford operators preserve the symmetry
of the chiral octahedron [17]. This includes the identity I ,
rotations about the vertices by π (Pauli operators), σj , rotations
about the vertices by π/2 (S-like operators), Sv , rotations about
the midpoint of each edge by π (Hadamard-like operators), He,
and rotations about each face center by 2π/3, Rf .

One can create an error process which is the weighted
random application of these 24 unitary operators. We call
this class of error models the Clifford channel (CC) [18].
Most simulations of error-correction circuits have used a Pauli
depolarizing channel (PC), which is a subset of CC consisting
of only the random application of I or Pauli operators.

The stabilizer formalism also allows for efficient simulation
of nonunital operations involving Pauli measurements and,
optionally, conditional application of Clifford gates based on
those measurements. In this Rapid Communication, we limit
ourselves to the set of operators that corresponds to measuring
a Pauli operator and then conditionally applying a Pauli matrix
such that all states map to the same state. We call these channels
measurement-induced translations. For each eigenstate |λ〉 of
a Pauli operator, we define the channel Eλ by two Kraus
operators: Eλ0 = |λ〉〈λ| and Eλ1 = |λ〉〈λ⊥|. Notice that the
effect of these two operators is to discard the state and replace
it by |λ〉. We add these channels to our model with probability
pλ. The effect on a state, when represented on the Bloch
sphere, is to translate it toward |λ〉. This allows us to generate
nonunital error channels that can be efficiently simulated. The
extended models including measurement are labeled PMC and
CMC. Table I describes the content of each channel class in
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TABLE I. Four error models compatible with the stabilizer
formalism.

Channel class Channel set Parameters

PC {I,σi} 3
PMC {I,σi,Eλ} 9
CC {I,σi,Sv,He,Rf } 23
CMC {I,σi,Sv,He,Rf ,Eλ} 29

terms of the underlying channel set and the number of free
parameters.

In nature, there are many error channels that cannot be
exactly represented in the stabilizer formalism. We examine
two channels: the amplitude damping channel (ADC), and
dephasing about an arbitrary axis in the x-y plane (PolφC).
The ADC, represented in Eq. (1), is the prototypical nonunital
error channel [19]. It describes the energy dissipation of a
two-level quantum system. However small, it is present in any
nondegenerate physical system:

ADC = EA =
{

EA0 = |0〉〈0| + √
1 − γ |1〉〈1|,

EA1 = √
γ |0〉〈1|. (1)

The dimensionless parameter γ , which can take any real
value between 0 and 1, can be related to the total energy lost to
the environment. Numerous codes have have been developed
specifically to combat ADC, but studying the effects of this
error channel on a circuit has yielded only a handful of results
[20–23]. All of the results assume γ to be small in order to
expand the Kraus operators in a Taylor series expansion using
the Pauli operator basis.

Unlike the ADC, the PolφC, which is represented in Eq. (2),
is unital. Yet unless the angle φ is a half-integer multiple of
π , the depolarization occurs along a non-Pauli axis, and the
quality of the PC approximation will vary with φ:

PolφC = Exy

{
Exy0 = √

1 − pφ I,

Exy1 = √
pφ[cos(φ)X + sin(φ)Y ].

(2)

Here the parameter φ represents the angle of the polarization
axis with respect to the X axis and pφ the probability of error.

To study how closely our error models approximate
target error channels, we compute the distance between the
process matrix of our error model and the process matrix
of the target error. As a distance measure on a single
qubit, we employ the normalized Hilbert-Schmidt distance
between the process matrices associated with each channel
[24], DHS(χ1,χ2) = 1

8‖χ1 − χ2‖2
HS and ‖A‖HS =

√
tr(A†A).

For a multiqubit study of nonunital errors, a more natural
distance measure is the diamond norm [25]. Here we minimize
the Hilbert-Schmidt distance over the parameter space of
the model. We want our model to be an upper bound
to the error induced on the system. Therefore, we perform
the distance minimization with the constraint that for every
initial pure state its trace distance to the resulting state
after the target transformation is not greater than its trace
distance to the resulting state after the model approximation,
Dtr[ρ,Target(ρ)] � Dtr[ρ,Model(ρ)]. The trace distance is
calculated using the expression Dtr(ρ,σ ) = 1

2 tr|ρ − σ |. We

FIG. 1. (Color online) Minimum Hilbert-Schmidt distance be-
tween two approximate error models and the ADC as a function of γ .
For γ > 0.5, in order to satisfy the trace distance constraint, the PC
results in highly inaccurate approximations. The inset figure shows
the contraction of the Bloch sphere for the ADC, PC, and PMC for
γ = 0.25 (see text).

use the Hilbert-Schmidt distance for the analysis here due to
ease of computation, but the method works for any distance
measure or constraint [26].

Figure 1 shows the results of the approximation of the ADC
with the PC and PMC error models. Numerical minimization
revealed that the channels with additional Clifford operators,
the CC and the CMC, did not improve the approximations
achieved by the PC and the PMC, respectively. As the
nonunital character of the ADC becomes more pronounced,
the unital error models result in a less accurate approximation.
When γ > 0.5, the trace distance constraint forces the unital
error models to generate an approximation that results in a
reorientation of the mapped density matrices with respect to the
initial Bloch sphere. At this point, the unital approximations
become very inaccurate.

The addition of the measurement-induced translations
considerably improves the approximation. In this case, the
PMC and CMC yield valid approximations for the whole
range of γ . The PMC and CMC can match the ADC
perfectly only for γ = 0, which corresponds to I , and γ = 1,
which corresponds to the measurement-induced translation E0.
Interestingly, despite the large amount of operators in the CMC
error model, the best approximation only employs I and E0.
This allowed us to perform the minimization symbolically to
obtain a simple analytical expression for the distance, DHS

PMC =
1
2 (γ − 1)(γ + 2

√
1 − γ − 2), and for the Kraus operators in

the approximation, {√1 − γ I,
√

γ |0〉〈0|,√γ |0〉〈1|}. In the
limit of small γ the distance of the PC (red/gray points) and
the PMC (green/light gray points) both scale quadratically
with γ . After Taylor expanding the distance expression for
the PMC and fitting the PC distance numerically in terms of
γ , it was found that the ratio of the quadratic coefficients
was 7.3. This number, which can be interpreted as the
ratio of the two distances in the limit of small damping,
limγ→0(DHS

PC /DHS
PMC), shows the improved performance of the

PMC over the PC. To further appreciate this improvement,
notice that the distance between the ADC and the identity
channel also scales quadratically in the limit of small γ . In
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this case, limγ→0(DHS
I /DHS

PMC) = 5. At small γ the distance
between the ADC and the identity is of comparable magnitude
to the distance between the ADC and PC approximation. The
fact that the quadratic coefficient is smaller for the identity
might lead one to believe that, for small γ , the identity is a
better approximation than the PC, but, of course, the identity
is not a valid option as it does not satisfy the trace distance
constraint.

The results obtained by including or not including measure-
ment operators are best illustrated in the inset of Fig. 1. Here we
examine, for γ = 0.25, the closest PC and PMC approximation
under the constraint. The figure shows a cross section of the
Bloch sphere (black dotted) and its transformation by the ADC
(black solid) and the closest approximate PC (red/gray) and
PMC (green/light gray). The nonunital PMC preserves the
asymmetry of the transformation along the z axis. Notice that
for these error channels the deformed Bloch sphere is still
symmetric with respect to rotations around z.

As mentioned before, the distance constraint guarantees
that for every initial pure state its distance to the resulting state
after the target transformation is not greater than its distance
to the resulting state after the model approximation. For
both the ADC and its approximations the largest discrepancy
between input and output occurs when the initial state is |1〉.
The distance constraint has a nice geometric interpretation,
provided that the error is sufficiently low. As shown in the
inset of Fig. 1, both the green (light gray) and the red (gray)
curves lie inside the black solid curve and further away from the
initial states (black dotted curve). For the PMC approximation,
this interpretation is satisfied for any value of γ . However,
for the PC approximation this interpretation fails for γ > 0.5
when, as mentioned before, the best approximation results in
a reorientation of the mapped density matrices with respect to
the initial Bloch sphere. Furthermore, the PMC approximation
satisfies the distance constraint for any input state, whether
pure or mixed. It is impossible to satisfy this condition for
the PC or any unital approximation: Simply consider the
maximally mixed state, which is mapped to itself by a unital
channel, but mapped to a different state by a nonunital one.
In fact, by this same argument, it is clear that the distance
constraint is impossible to satisfy for every initial state, pure
or mixed, when the approximation channel has a different fixed
point from the target transformation.

Figure 2 shows the results of the approximation of the
PolφC by the error models introduced earlier. Once again,
each point corresponds to a numerical minimization. Because
of the unital nature of this channel, it is the addition of the
Clifford operators rather than the measurement operators that
improve the approximation. For both the PC and the PMC, the
distance between PolφC and the best approximation was found
to be DHS

PC = 1
2p2 sin2(2φ) for p � 2/3. When the Clifford

operators are included in the approximate channel, the distance
is reduced to DHS

CC = 1
6p2[sin(2φ) + cos(2φ) − 1]2 for p �

6/7 and 0 < φ < π/4. Not only does the distance decrease
with the addition of the Clifford operators, the period of the
distance function is reduced from π

2 to π
4 , because between

every two Pauli axes there is a Clifford axis. Notice the great
improvement in the CC approximation with respect to the
PC one. At the worst point of the CC (which in this interval
occurs at φ = π/8,3π/8), the PC is 8.7 times worse. For the

FIG. 2. (Color online) Minimum Hilbert-Schmidt distance be-
tween several approximate error models and the polarization along
an axis in the x-y plane of the Bloch sphere as a function of the
polarization angle. Although not shown, the results for PMC and
CMC are the same as the results for PC and CC, respectively. The
distances scale quadratically with p, so the results are normalized
by p2.

PC(CC) approximation when p > 2/3(6/7), the trace distance
constraint cannot be satisfied.

Despite the large number of operators in the CMC, the
best approximation uses a small number of them: I, Z, and
the two axes closest to the polarization axis. If we only
employ Pauli axes, the best approximation in Kraus representa-
tion is {√1 − px − py − pz I,

√
px X,

√
py Y,

√
pz Z}, where

px = p cos2(φ), py = p sin2(φ), and pz = p cos(φ) sin(φ).
If we employ the whole Clifford group, the best
approximation in the interval 0 � φ � π/4 is given
by {√1 − p1 − p2 − p3 I,

√
p1 X,

√
p2 HXY ,

√
p3Z}, where

HXY = 1√
2
(X + Y ), p1 = 1

3p[2 cos(2φ) − sin(2φ) + 1], p2 =
1
3p[2 sin(2φ) − cos(2φ) + 1], and p3 =

√
2−1
6 p[cos(2φ) +

sin(2φ) − 1].
The inset in Fig. 2 illustrates the closest PC (red/gray) and

CC (blue/dark gray) approximations to the PolφC (black solid)
with p = 0.25 and φ = π/8. For the PC approximation, the
greatest discrepancy between the input and output states occurs
when ρ = 1

2 [I + cos( 3π
4 )X + sin ( 3π

4 )Y ]. For the CC approxi-
mation, this occurs when ρ = 1

2 [I + cos ( 5π
8 )X + sin ( 5π

8 )Y ].
We have seen that the addition of the measurement-

induced translations and the Clifford operators improves the
approximation of two specific error channels. To determine
how the method works for general errors, we generated 1000
random process matrices and computed the distance of the
best approximation that each one of the four approximate
channels could make. For the 1-qubit case, a process matrix is
a 4 × 4 Hermitian positive matrix M with four constraints in
the normalized Pauli basis: tr(M) = 2, Re(M01) = −Im(M23),
Re(M02) = Im(M13), and Re(M03) = −Im(M12). To generate
this matrix we first create a 4 × 4 diagonal matrix D with real,
positive diagonal entries that add to 2. We then create a 4 × 4
random unitary matrix U and apply this unitary transformation
to D to obtain M = UDU †, which is positive with trace 2. We
then enforce the last three constraints mentioned earlier and
keep the random process if the matrix is still positive.
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FIG. 3. (Color online) Hilbert-Schmidt distance between the
random error channels and the best approximations attained with
each model as a function of the distance between the error channel
and the error-free channel (I ). The slope of a line joining the origin
and a point represents the distance of the best approximation to that
error relative to the magnitude of the error.

Figure 3 illustrates the distance between each random error
channel and the best approximation as a function of the
distance between the error channel and the identity channel.
Notice that as the number of operators in the error models
increases, both the mean and the median distance between each
model and the random error decreases and the distributions
become more compact, as summarized in Table II. For this
data, the improvement of adding either Clifford gates, CC, or
measurement-induced translation operators, PMC, over PC is
comparable. The total set of operators leads to an order of
magnitude improvement over the PC. In the case of the CMC,
for the 1000 random channels tested, the number of nonzero

TABLE II. Summary of the approximations obtained with each
of the four error models.

Channel Distance mean Distance median Distance variance

PC 1.7 × 10−2 1.4 × 10−2 1.4 × 10−4

PMC 3.4 × 10−3 2.4 × 10−3 1.1 × 10−5

CC 9.8 × 10−3 7.5 × 10−3 7.0 × 10−5

CMC 1.1 × 10−3 4.2 × 10−4 2.2 × 10−6

parameters used in the approximations varied from four to 29
with a median of 12. This is in contrast to the ADC and the
PolφC where only one and three parameters, respectively, are
required due to the symmetry of the error channels.

We have presented an extension to the random Pauli error
model which is still compatible with efficient simulation using
the Gottesman-Knill theorem and leads to a computationally
tractable description of realistic error models such as amplitude
damping. Our method can be extended to multiqubit channels
but the optimization becomes more difficult as the number
of Clifford operators grows quickly with n. In many cases,
symmetries of the underlying error channels will minimize
the number of Clifford operators that must be considered.
We also note that conditional measurements followed by
Clifford gates can be used to generate a classical Toffoli
[Z measurement followed by a conditional controlled-NOT

(CNOT) gate] and to mimic thermalization processes for spin
interactions (measurement of ZZ followed by a conditional
spin flip). We plan to examine the performance of quantum
error-correcting codes under a wider range of nonunital error
channels. Based on the relative distance of the PMC and PC
approximations to the ADC for small errors, we expect that
the CMC approximation of a nonunital channel will yield a
nontrivial change in the code threshold of order unity relative
to the PC approximation.
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