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Non-Markovian master equations from piecewise dynamics
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We construct a large class of completely positive and trace-preserving non-Markovian dynamical maps for

an open quantum system. These maps arise from a piecewise dynamics for statistical operators characterized
by a continuous time evolution interrupted by jumps, randomly distributed in time and described by a quantum
channel. The state of the open system is shown to obey a closed evolution equation, given by a master equation
with a memory kernel and an inhomogeneous term. The non-Markovianity of the obtained dynamics is explicitly
assessed studying the behavior of the distinguishability of two different initial system’s states with elapsing time.
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Open quantum systems naturally arise in quantum mechan-
ics due to the lack of isolation, and one of the basic difficulties
in the field is the derivation of closed irreversible evolution
equations for the system only, taking into account the interac-
tion with the environment [1-3]. In particular an open issue is
the characterization and study of memory effects described by
these irreversible dynamics. An important class of dynamical
evolutions is given by quantum dynamical semigroups, which
by construction ensure complete positivity (CP) and have
a number of attracting physical and mathematical features.
The semigroup property ensures the existence of a closed
evolution equation, known as the master equation, whose
general expression has been determined in the 1970’s just
thanks to the requirement of CP [4,5]. The operators appearing
in the master equation can be easily linked to the microscopic
events which characterize the dynamics. Moreover the exact
solution can be expressed in terms of a Dyson expansion,
which allows for a natural reading in terms of a piecewise
dynamics for the statistical operator consisting of a relaxing
evolution interrupted by jumps.

In this Rapid Communication we show how a similar
construction can be exploited to obtain a large class of
non-Markovian completely positive trace-preserving (CPT)
maps, still admitting closed evolution equations. The building
blocks of this construction are a collection of time-dependent
maps, together with a waiting time distribution describing the
random occurrence in time of interaction events described by
a quantum channel. The operational construction provides a
direct physical reading of the different contributions to the
dynamics. The resulting master equations exhibit an integral
kernel which warrants CP of the solution, one of the crucial
difficulties in looking for extensions of the Lindblad result
[6-11].

Master equations. For a semigroup we have p(t) = ®(t)p,
where the time evolution operator obeys the master equation
d®(t)/dt = LD(¢) and satisfies

O(11 + 12) = () P(11),

Introducing a self-adjoint operator H and operators L; that
can be associated with microscopic interaction events, e.g.,

Y t1,tp = 0.
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the exchange of an excitation between system and bath, the
operator £ called the generator takes the form [4,5] Lp =
Rp + pRY + Jp,where R = —iH — (1/2) Y, L} Ly, and the
CP superoperator 7 reads

k

Introducing further the superoperator R(¢), which gives the
semigroup obtained by exponentiating the operator R

R(t)p = R pe'®,

the exact evolution can be written as the Dyson series

o0 t 2
owp=ROp+ Y. [dn-- [ an
=1 0 0

X R(t = t)) TRty — ta—1) -+ - TR()p. (1)

Here p denotes the reduced system state taken as the initial
condition, and the result follows from the Schwinger formula
[12] granting in particular trace preservation. This solution can
be naturally described as a sequence of jumps, corresponding
to transformations induced by the CP map 7, distributed over
an underlying relaxing evolution given by the semigroup R(%).
This kind of dynamics is universally accepted as Markovian.
Indeed the fact that the state of the system at a time #; + #, only
depends on its state at a previous time #; expresses a feature
that is naturally associated with a lack of memory and therefore
with Markovianity (M). In this sense also a collection of two
time evolution maps ®(¢ 4 7,7) obeying the composition law

(1 +1,0) = Oy + 1,1)P(11,0), V1,1, >0,

where each map is CPT, embodies the same idea of inde-
pendence from the states at previous times, and is therefore
taken as a natural criterion to assess or define M, known as
divisibility [13,14]. Most recently a novel idea has been put
forward to characterize M, based on neither a representation
of the dynamics nor the notion of memory as dependence on
the previous states of the system, but rather on the notion of
distinguishability of system’s states, and on its behavior in
the course of the dynamics, which calls for an involvement
of the environment and of correlations [15,16]. It turns out
that this criterion is satisfied by a dynamics characterized by
divisibility, but is in general less restrictive [17-20].
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Derivation from piecewise dynamics. We now build on
these known results to construct a much wider class of time
evolutions, which admit a natural reading in terms of piecewise
dynamics, with microscopic interaction events embedded in
a continuous time dynamics. These dynamics obey closed
evolution equations expressed by means of a master equation,
possibly admitting an inhomogeneous contribution, which
keeps track of the initial condition. As a starting point
we consider Eq. (1), replacing the semigroup R(¢) with a
collection of time-dependent CPT maps F (), which describe
the time evolution between jumps. The events taking place over
the background of the continuous time evolution are described
by a CPT map &£, namely, a quantum channel, and their
distribution in time is characterized by an arbitrary waiting
time distribution, so that the number of events in time realizes
arenewal process. In terms of these basic building blocks, one
has, given an initial state p, a time-evolved state given by

4]

AP = poOF D+ /0 diy - /0 L
n=1

Xpn(l;tnv~~-»t1)~7:(t_tn)g"'g]:(ll)p' (2)
Here p,(t;t,, ... ,t;) denotes the exclusive probability density
for the realization of n events up to time ¢, at given times
t1, ...,t,, with no events in between. This probability density
for a renewal process reads

pn(t;tn» cee stl) = f(t - tn) to f(t2 - tl)g(tl)v (3)

with f(¢) a waiting time distribution, i.e., a distribution
function over the positive reals, and g(z) = 1 — fot dtf(r)its
associated survival probability, expressing the probability that
no jump has taken place up to time ¢. Thanks to CPT of
the maps £ and F(¢) the obtained dynamics is indeed well
defined. CP is warranted by stability of the positive cone of
CP maps under composition. Regarding trace preservation,
due to Eq. (3) for a renewal process, the probability pi(t) to
have k counts up to time ¢ obeys

pi(t) = /0 drf(t — 1) pe-1(2), “)

with  po(t) = g(¢). Iterating this identity one obtains
TrA(t)p = Z,fio pi(t)p = p. The constructed collection of
CPT time evolutions A(t) are functionals of F(z), f(¢), and
&, and allows a simple operational interpretation in terms of
the random action of a fixed quantum channel over a given
dynamics, not necessarily obeying a semigroup composition
law.

Laplace transform and master equation. We now observe
that, according to its definition in Eq. (2), the map A(#) obeys
the integral equation

A() = g()F (@) + / def(t — OF( — DEAT),  (5)
0

which in Laplace transform, here denoted by a hat, simply
reads

Au) = gFw) + FFEAw). (6)
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Starting from this expression, as described in the Supplemental
Material [21], one finally obtains the closed master equation

d t
E,O(t)=/0 dt (1 — ©)Ep(t) + Z(1)p(0), (7

with the kernel and inhomogeneous term given by

d d
K@) = E[f(t)f(t)] + f(0)8@), I() = E[g(t)f(t)]-
(®)

This is the main result of our article. We stress the fact that
the map A(t), solution of Eq. (5), or equivalently Eq. (7), is
CPT by construction. It can be obtained as the inverse Laplace
transform of the solution of Eq. (6)

Aw) =1 — FFWE " ¢ Fw). 9)

This identity provides a compact general expression of the
Laplace transform of the exact solution in terms of the
transform of the elementary maps determining the time
evolution. Note that the result has been obtained without
making any restrictive assumption on the dimensionality of
the Hilbert space of the system.

Limiting expressions. Before considering the non-
Markovianity (NM) of the class of master equations introduced
above in view of the recently proposed criteria [13,15], we
point to some special cases already considered in the literature.
First a quantum dynamical semigroup is recovered if F(¢) —
e'£, with £ in Lindblad form, and £ — 1, independently of the
waiting time distribution f(z). Indeed, the solution given by
Eq. (9) thanks to the properties of the Laplace transform with
respect to shifts now reads Aw) = Z,fczo 8w — L) f*u — L),
and therefore, also using pi(u) = gf(u)f"(u), which follows
from Eq. (4), we have p(t) = e'“p. More generally, for a
nontrivial CPT map & rearranging terms one obtains [21]

%p(t) =Lp) + / dr k(t — 0)e" "V [E —1]p(r),  (10)
0

where the C-number kernel reads Iz(u) = f (u)/&(u). This
equation has been previously considered for the special case
of a Lindblad generator given by a simple commutator,
pointing to a possible microscopic derivation [7,22]. For a
vanishing Lindblad generator, one has in particular p(t) =
Z/?io pk(t)é'k p, a class of non-Markovian evolutions studied
in [7,20,23].

If we allow for a generic CPT map F(¢), but do consider the
events as a reset of the continuous time dynamics described
by F(t), so that £ — 1, we end up with

d ! ,
E’OO)Z/(; drf(t —)F @ —0)p(r) + g0 F()p, (11)

which for the case of a memoryless waiting time of exponential
type, f(t) =Te T, so that g(t) = e, recovers the result
recently obtained relying on a collisional model assuming
collisions with independent ancillas [24].

Non-Markovianity. We now study the NM of the dynamics
described by the master equation (7). Indeed, despite the
fact that the considered master equation can include more
general situations than a semigroup dynamics generated by
a Lindblad operator, the degree of NM of the obtained
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dynamics is still to be ascertained. To this aim we will make
reference to the definition of NM associated with the idea of
revival of distinguishability among different states advocated
in [15,16], considering the trace distance as a natural quantifier
of distinguishability. As it has been shown, this criterion is
more stringent than the violation of divisibility in terms of
CP maps [17-20]. As a result, if we detect NM by using
the notion of distinguishability, we know that the considered
dynamics is non-Markovian also from the divisibility point
of view. We recall that the trace distance between two states
p1(t) and p,(¢) is given by the trace norm of their difference
D(p1(1),p2(1)) = 51| p1(£) — pa(1)]l1, which is the sum of the
modulus of the eigenvalues of their difference. It takes values
between zero and one and can be interpreted as a measure of
the distinguishability among states. In particular, relying on
the fact that the trace distance is a contraction with respect
to the action of a CPT map, M of the map is identified with
the monotonic decrease in time of the trace distance among
any couple of possible initial states. NM is then detected
whenever the time derivative of the trace distance grows at
a certain time ¢, for at least a couple of initial states, i.e.,
D(pi(t),p2(t)) > 0. To highlight this behavior, let us make
specific choices for the system and the different maps and
functions determining the time evolution A(t). We therefore
consider the Hilbert space C2, and take as CPT map &£ a
Pauli channel & p = o;p0;, withi = 0,x,y,z and oy = 1. We
further take as waiting time distribution f(¢#) a convolution
of exponential distributions. These waiting time distributions
bring with themselves a natural time scale given by the mean
waiting time. Finally we have the freedom to consider a
collection of time-dependent CPT maps. The latter also have
an intrinsic time scale, and the interplay between the two time
scales plays an important role in the characterization of NM.
To this aim we will analyze two situations, corresponding
to different physical implementations. As a first example
we take the map F,(¢), which only affects coherences, and
which according to the trace distance criterion by itself always
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describes a non-Markovian dynamics. As a complementary
situation we will deal with the time evolution F, () which
itself admits both a Markovian and a non-Markovian limit,
and affects all components of the statistical operator.

Examples. We first consider the dephasing dynamics F;(¢),
which multiplies the off-diagonal matrix elements of the
statistical operator by the function D(t). Working in C? it
is convenient to represent statistical operators through their
coefficients on the linear basis {o;/+/2}, so that maps can
be represented as matrices [25,26]. This dephasing map
in particular is represented as a diagonal matrix Fy(t) =
diag(1, D(t),D(¢),1), and the same holds for the Pauli maps
which take the general form E = diag(l,e,,¢,,¢;), with &; =
=+1, the sign depending on the specific choice of map. Relying
on Eq. (9), these expressions after some algebra [21] lead to
the following compact result for the time evolution map

Aq(t) = diag(1,X (@), Y (t),Z(1)). (12)

For the expression of the time-dependent functions appearing
in the evolution map we consider the functional

Emi = S8
1+ fM(u)
where M denotes an arbitrary function of time. X (¢) and Y (¢)
are then given by one of the functions dy (1) = L?[D](r), de-
pending on the value of the ¢;, while Z(¢) is given by either the
identity or the function g(t) = Y ooy pan(t) — Y ey P2nt1(0),
which gives the difference between the probability to have
an even and an odd number of jumps. Given the explicit
expression of the map, one can calculate the time derivative
of the trace distance among two different initial states, which
shows in particular that one has NM whenever the modulus of
one of the functions d4. () or g(t) grows, as discussed in the
Supplemental Material [21]. This case is depicted in Fig. 1(a),
considering a dephasing map D(¢) = cos(rt). In this case the
dynamics given by F,(¢) alone never allows a Markovian
description. Here the rate X sets the natural time scale for this

13)

)

T/A 5530

FIG. 1. (Color online) (a) Modulus of the functions d_(¢) and ¢(¢) for a dephasing dynamics described by D(¢) = cos(At), and waiting
time given by the convolution of three equal exponentials I'e™"*. The growth of any of these quantities, as discussed in the Supplemental
Material [21], provides a direct signature of NM of the time evolution map A,(¢). The quantities are plotted as a function of At and I'/A. The
semitransparent surface corresponds to d_(¢), while the meshed surface represents ¢(¢). It immediately appears that for growing ratio I'/A,
determining the relation between the time scales inherent in F,(¢) and f(¢), the oscillations in d_(¢) are suppressed. The NM is then only
detected by g(t), arising due to the action of the map &, which describes the events, in this case spin flips, in between the continuous time
evolution F, (). (b) Modulus of g_(¢) and & (¢), here for a continuous dynamics . (¢) involving both populations and coherences, and waiting
time corresponding to the convolution of two equal exponential distributions. The ratio y /A appearing in the function G(¢) given by Eq. (16)
is set equal to 3, corresponding to NM of F () alone. Again the growth of the modulus of any of these functions warrants NM. The function
g_(t) given by the semitransparent surface only detects NM for small I', while the mashed surface /. (¢) shows that NM also takes place for
frequent events, that is, large I' /A, even though it is confined to shorter and shorter time intervals.
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contribution to the dynamics, to be compared with the time
scale 1/ T given by the mean waiting time associated with the
waiting time distribution f(¢). As it appears in Fig. 1(a), if
I'/A > 1, so that subsequent events are very close in time, the
contribution to NM due to F,(t) is suppressed, since on a short
enough time any time evolution map is Markovian.

As a further example we consider the dynamical map
F.(t), affecting both populations and coherences, that arises
considering the interaction of a two-level system with a
bosonic field in the vacuum state [1]. The map is characterized
by the function G(t), depending on the spectral density of the
environment, and in matrix form reads

Fy () = diag(1,G(1),G(0),|IGO) + BIG®)IP = 1), (14)

where B(x) denotes the 4 x 4 matrix with entry x in the bottom
left corner as the only nonzero element. Exploiting Eq. (9) we
can obtain the expression of the time evolution map [21]

A4 (¢) = diag(1,X(2),Y (), Z()) + B(W(1)), (15)

where now X(t) and Y(¢) take the expressions gi(t) =
L[G1(1), while Z(1) corresponds to h+(t) = LY[|GI*1(0).
The function W(t), determined by f(¢) and |G(z)|?, does
not affect the trace distance, since it corresponds to a fixed
translation of the state [27]. A typical expression of G(¥) is
given by

G(t) = e ™*[cosh(71/2) + (A7) sinh(y1/2)], (16)

where 7 = V'A% — 2y 1, and has the interesting feature that for
y /A < 1/2 the map F.(¢) itself is Markovian, while for y /A
above this threshold one has NM [17]. The NM of the ensuing
overall dynamics A(¢) is considered in Fig. 1(b), where we
have plotted the modulus of the functions g_(¢) and A (¢) for
G(t) asin Eq. (16). Again the growth of the modulus of any of
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these functions is a witness of NM. It appears indeed that for
a wide range of parameters the dynamics is non-Markovian,
yet the NM is actually the result of an interplay of the features
of all the three elements determining the dynamics, namely,
Fi(t),&,and f(¢). Indeed for values of the ratio y /A such that
F(¢) itself is non-Markovian, the dynamics A(7) might still
be Markovian, if the ratio I'/A of the time scales associated
with F,(¢) and f(¢) is high enough. On the contrary, even a
Markovian F, (¢) can give rise to a non-Markovian dynamics
because of the action of the map £ in between the continuous
time evolutions, and of the distribution in time of these events.

Conclusions. We have obtained a large set of closed
non-Markovian master equations starting from a piecewise
dynamics described by a continuous time evolution interrupted
by random jumps. The solution of these equations is warranted
to be a CPT map. These master equations involve both a mem-
ory kernel and an inhomogeneous term. The basic ingredients
in the construction are a collection of time-dependent maps,
together with a waiting time distribution describing the random
occurrence of events characterized by a quantum channel. We
have considered the connection of this result with the standard
expression of quantum dynamical semigroups, as well as more
recent examples of non-Markovian master equations obtained
starting from microscopic models. In particular, we have
certified the NM of the obtained time evolution by studying
the behavior in time of the distinguishability between two
different initial states, as quantified by the trace distance.
Finally, the operational interpretation of the structure of these
master equations paves the way for their use in concrete
applications.
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