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Cooperative decay rate and cooperative Lamb shift from a nanospherical configuration
of two adjoining atomic species
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The eigenmodes of a nanosphere configuration where the core is an ensemble of two-level atoms with resonance
frequency ωC , and the shell is an ensemble of two-level atoms but with shifted resonant frequency ωB are obtained
for different values of the ratio of the core radius to the shell outer radius as function of (ωC − ωB ). I show that the
eigenmodes belong to one of two branches. The dominant decay mode for superradiant emission may belong to
either branch, depending on the system’s parameters. In instances of configurations where the cooperative decay
rate values for the two branches become equal, the cooperative exponential amplification (decay) is accompanied
by temporal oscillations.
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I. INTRODUCTION

Since the seminal work of Dicke [1] on superradiance it has
been widely assumed, with rare dissent [2], that the cooperative
decay rate (CDR) of an ensemble of identical two-level
atoms occupying any geometrical shape with dimensions much
smaller than the wavelength of the transition radiation is
simply the product of the number of particles in the ensemble
multiplied by the isolated atom decay rate. As recently as
2010, Prasad and Glauber [3] critiqued the original Friedberg,
Hartmann, and Manassah paper [2], which took exception to
that prevailing view.

In Refs. [4,5], responding to the critique of Ref. [3] and the
authors’ concurrent desire to explore some interesting aspects
of nanoscale electrodynamics, R. Friedberg and the author
considered the same spherical geometry used in Ref. [3] but
assumed, instead of the uniform distribution of the resonant
atoms in the sphere, a varying radial density. They obtained
approximate analytical results, confirmed by numerical cal-
culations, which give non-Dicke rates for the CDR of the
different cases considered, as they asserted that they would
earlier in Ref. [2]. In addition to resolving the original
issue of contention on the value of the CDR from a small
sample with nonuniform density, the spherical eigenmode
expansion used in Refs. [4,5] to compute the CDR and the
cooperative Lamb shift (CLS) allowed these authors to obtain
in a direct manner the plasmonics eigenmodes for different
internal configurations of metallic nanospheres [6,7], without
having to restrict derivation to the electrostatic approximation.
This same method proved able, as well, to predict what was
called the Dicke-Purcell effect, i.e., the enhancement of the
CDR for an ensemble of atoms that are enclosed in a metallic
nanoshell [8,9].

In this Brief Report, I use the same mathematical tech-
nique to analyze superradiance from a system consisting of
two species of atoms with nonequal but close resonance
frequencies. The configuration that I shall consider consists
of a nanospherical structure, where one of the species fills the
sphere core, while the other species occupies the surrounding
outer shell. I compute the eigenmodes for this combined
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system and show that its solutions belong to one of two distinct
branches. I show that, for a given geometry depending on the
detuning between the two atomic resonant frequencies, the
dominant mode may belong to one or the other branch.
The possible crossing in the value of the real part of the
system’s two principal eigenmodes branches, for certain
configurations, implies that a fast oscillatory time development
will develop within the superradiant emission time temporal
exponential envelope rise (decay) of an inverted (weakly
excited) system.

This report is organized as follows. In Sec. II, I shall review
the constitutive equations for each region of space and derive
the expression relating the wave vector in the core and shell
regions. In Sec. III, I review the form of the eigenmodes
in spherical configuration, the boundary conditions, and the
secular determinant relating the wave number of the different
regions. In Sec. IV, the equations obtained by combining the
constitutive equations and the secular determinant resulting
from the boundary conditions are simultaneously solved, for
some special values of the ratio of the core radius to the outer
radius of the shell and the normalized detuning between the
two species resonant frequencies to obtain the CDR and CLS
for this system. I conclude in Sec. V.

II. CONSTITUTIVE EQUATIONS

The Gaussian units will be used throughout. The three
regions of space shall be designated by the letters A, B, C
from the outside in, thus,

A passive dielectric r � R, (1)

B species B βR � r � R, (2)

C species C r � βR, (3)

where 0 � β � 1. Thus R is the outer radius of the B species
shell, and βR is its inner radius.

The eigenmodes of Maxwell’s equations in spherical geom-
etry [10] are designated by angular indices l,m (corresponding
to the spherical harmonics Ym

l ) and a radial index s as well as
a binary choice (E, M), where E and M refer respectively to
the electric and magnetic modes. As the sphere is very small,
we limit our attention to the cylindrically symmetric electric
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dipole modes, El,m,s = E1,0,s . Accordingly we shall suppress
the subscripts l = 1, m = 0 and keep only the subscript s.
Hence the common (complex) eigenfrequency for a decay
mode will be called ωs and the associated wave numbers
kA
s ,kB

s ,kC
s . The resonant frequency of the active atoms in the

core (when isolated) is ωC, while that in the shell is ωB, and
the corresponding wave number in the vacuum is k0 = ωC/c.

In each region there is a constitutive equation, specific to
the material occupying that region, that links the wave number
in that material to the complex eigenfrequency. In region A,
(the passive dielectric) one has simply(

kA
s

)2 = εA ω2
s /c

2 = n2ω2
s /c

2, (4)

where εA is a fixed (real) number, independent of the mode.
In region B we have(

kB
s

)2 = εB
s (ωs)ω

2
s /c

2, (5)

where εB
s is given by the one-pole formula

εB
s (ωs) = εB

∞ − CB

ωs − ωB + ωL,B + iγB
, (6)

where εB
∞ is the background dielectric constant in region B,

and the other quantities are defined following Eq. (8).
In region C we have(

kC
s

)2 = εC
s (ωs) ω2

s /c
2, (7)

where εC
s (ωs) is also given by a one pole formula

εC
s (ωs) = 1 − CC

ωs − ωC + ωL,C + iγC
. (8)

Here CC = 4π℘2
CnC/h̄, nC is the atomic number density in

region C, ℘C is the reduced dipole matrix element for the
two-level transition of species C, ωL,C = 1

3 CC is the Lorentz
shift due to the Clausius-Mossotti local field correction, and
γC is the collisional half-width of the line (γC

∼= 0.6 CC) [11].
(Corresponding expressions for the region B hold, with C
replaced by B.)

It is to be noted that the Kramers-Kronig relation that
requires only causality for its validity allows the susceptibility
and consequently the dielectric function to be analytically
continued in the lower half of the complex-frequency plane.
This allows us to use the same functional form of εB and εC

for complex ωs as the familiar one for real ω.
Before proceeding further, I shall replace the wave numbers

by dimensionless equivalents: u0 = k0R, us = kA
s R, vs =

kB
s R, ws = kC

s R, and introduce the normalized quantities:
�s = ωs/CC,	C = γC/CC, �C = ωC/CC. The normalized
eigenfrequency can be written

�s = �C − i
s, (9a)

where

−i
s = u2
0

u2
0 − w2

s

− 1

3
− i	C. (9b)

Introducing �B = ωB/CC, � = �C − �B, � = CB/CC,

	B = γB/CC and substituting in Eq. (6), one finds the first

equation relating ws and vs ,

vs = u0

[
εB
∞ − �

� − i 
s + 1
3� + i	B

]1/2

. (10)

In the next section, using the boundary conditions of the
Maxwell fields, I shall find the other equation relating ws

and vs . This equation will include the geometric parameters of
the system’s configuration.

III. EIGENMODES IN SPHERICAL CONFIGURATION

The coupling between species B and species C is that
resulting from imposing Mawell fields boundary conditions
at the different interfaces.

A. Fields and boundary conditions

For a cylindrically symmetric dipole mode E1,0,s , the
expressions for �B and �E in any one of the three regions
depend on two constant coefficients specific to that region, but
otherwise have the same form in each region. Letting Fi stand
for Ai , Bi , or Ci in each respective region, where i = 1 or 2,
we have [11]

�B(r,θ,φ) = [
F1j1

(
kF
s r

) + F2n1
(
kF
s r

)]
P 1

l (cos(θ ))êφ (11)

and

�E(r,θ,φ) = − ik0(
kF
s

)2
r

[
2
[
F1j1

(
kF
s r

)+ F2n1
(
kF
s r

)]
P1(cos(θ ))êr

+ {
F1

[(
kF
s r

)
j0

(
kF
s r

) − j1
(
kF
s r

)]
+F2

[(
kF
s r

)
n0

(
kF
s r

) − n1
(
kF
s r

)]}
P 1

1 (cos(θ ))êθ

]
,

(12)

where P1(cos(θ )) = cos(θ ) and P 1
1 (cos(θ )) = − sin(θ ) are

Legendre polynomial and associated Legendre function, and
j0, j1 and n0, n1 are respectively zeroth- and first-order
spherical Bessel and Neumann functions.

To avoid a singularity at r = 0, we must have
C2 = 0 (13)

and to have a pure outgoing wave in r > R, we must have
A2 = iA1. (14)

In addition, Maxwell’s equations require continuity of Bφ

and Eθ at the boundaries r = βR and r = R

C1j1
(
kC
s βR

) = B1j1
(
kB
s βR

) + B2n1
(
kB
s βR

)
, (15)(

kC
s βR

)−2
C1

[
kC
s βRj0

(
kC
s βR

) − j1
(
kC
s βR

)]
= (

kB
s βR

)−2{
B1

[
kB
s βRj0

(
kB
s βR

) − j1
(
kB
s βR

)]
+B2

[
kB
s βRn0

(
kB
s βR

) − n1
(
kB
s βR

)]}
(16)

and

B1j1
(
kB
s R

) + B2n1
(
kB
s R

) = A1h
(1)
1

(
kA
s R

)
, (17)(

kB
s R

)−2{
B1

[
kB
s Rj0

(
kB
s R

) − j1
(
kB
s R

)]
+B2

[
kB
s Rn0

(
kB
s R

) − n1
(
kB
s R

)]}
= (

kA
s R

)−2
A1

[
kA
s Rh

(1)
0

(
kA
s R

) − h
(1)
1

(
kA
s R

)]
, (18)

where h
(1)
l (q) = jl(q) + inl(q).
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B. Secular determinant

Equations (15)–(18) are a set of four linear homogeneous
equations in the four unknowns A1,B1,B2,C1. For a solution

to exist, the characteristic secular determinant for this system
must vanish

det

⎛
⎜⎜⎜⎝

j1(wsβ) −j1(vsβ) −n1(vsβ) 0

v2
s jV (wsβ) −w2

s jV (vsβ) −w2
s nV (vsβ) 0

0 j1(vs) n1(vs) −h
(1)
1 (nu0)

0 (nu0)2jV (vs) (nu0)2nV (vs) −v2
s h

(1)
V (nu0)

⎞
⎟⎟⎟⎠ = 0, (19)

where jV (q) = qj0(q) − j1(q), and likewise for nV (q) and h
(1)
V (q). Finding ws and vs reduces to simultaneously solving Eqs. (10)

and (19).
Having computed vs = kB

s R, ws = kC
s R as function of u0 and the physical parameters, the quantities B1/C1, B2/C1, A1/C1

are uniquely determined by solving⎛
⎜⎝

j1(vsβ) n1(vsβ) 0

j1(vs) n1(vs) −h
(1)
1 (nu0)

(nu0)2jV (vs) (nu0)2nV (vs) −(vs)2h
(1)
V (nu0)

⎞
⎟⎠

⎛
⎜⎝

B1/C1

B2/C1

A1/C1

⎞
⎟⎠ =

⎛
⎜⎝

j1(wsβ)

0

0

⎞
⎟⎠ . (20)

IV. RESULTS

For a small sphere with single species uniform resonant
atomic density, embedded in a passive dielectric with index of
refraction n, the Dicke value of the CDR [12–14] is

Re(
̃Dicke) ≈ 2n5

(1 + 2n2)2
u3

0, (21)

where 
̃ = 
 − 	. In Dicke’s theory, Im(
Dicke) = 0.
I shall consider in the illustrations, the following values for

the different parameters u0 = 0.2, n = 1, � = 1, 	B = 	C,
and plot the wave vector in region B, and 
s as function of
the normalized detuning � for different values of β. Solving
simultaneously Eqs. (10) and (19), I obtain two primary modes.
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FIG. 1. (Color online) The variables associated with the first
branch of the eigenmodes for β = 0.8: (a) The real and (b)
the imaginary parts of the normalized wave vector in the shell;
(c) the normalized cooperative decay rate, and (d) the normalized
cooperative Lamb shift are plotted as functions of the detuning
between the normalized resonant frequencies of the two species.
u0 = 0.2,n = 1,εB

∞ = 1,	B = 	C = 0.6.

In Figs. 1 and 2, I plot the values of the wave vector
in region B and 
s (where 
̃s = 
s − 	C) as function of
�, for β = 0.8. I denote by the subscript (1), the mode
which at � = 0 (i.e., only one species is present) has
Re(
̃(1)(� = 0)) ≈ 2

9u3
0, and by the subscript (2), the mode

which at � = ∞ (i.e., the resonance frequency of the B
species is far enough from the resonance frequency of the C
species that no interaction between the species is present) has
Re(
̃(2)(� = ∞)) ≈ 2

9β3u3
0, i.e., only the atoms in the core

are cooperatively emitting.
In Fig. 3, I plot on the same panel the traces of both

Re(
̃(1)) and Re(
̃(2)) as function of �, for different values
of β. This permits us to determine the value of �int, defined
as Re(
̃(1)(�int)) = Re(
̃(2)(�int)). As it can be observed that
for small values of β, the two traces do not intersect.
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FIG. 2. The variables associated with the second branch of the
eigenmodes for β = 0.8: (a) The real and (b) the imaginary parts of
the normalized wave vector in the shell; (c) the normalized coop-
erative decay rate, and (d) the normalized cooperative Lamb shift
are plotted as functions of the detuning between the normalized
resonant frequencies of the two species. u0 = 0.2, n = 1, εB

∞ =
1, 	B = 	C = 0.6.
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FIG. 3. (Color online) The two branches of the cooperative decay
rate are plotted as function of the detuning between the normalized
resonant frequencies of the two species for different values of β.
u0 = 0.2, n = 1, εB

∞ = 1, 	B = 	C = 0.6. (a) β = 0.9, (b) β = 0.8,
(c) β = 0.7, (d) β = 0.5.

The values of �int, Re(
̃(�int)), Im(
̃(1)(�int)) −
Im(
̃(2)(�int)) for β = 0.9, 0.8, 0.7 for the curves of Fig. 3
are given respectively:

(i) For β = 0.9, �int = 0.902, Re(
̃(�int)) = 0.0007903,
Im(
̃(1)(�int)) − Im(
̃(2)(�int)) = −0.5129

(ii) For β = 0.8, �int = 1.275, Re(
̃(�int)) = 0.0006738,
Im(
̃(1)(�int)) − Im(
̃(2)(�int)) = −0.9354

(iii) For β = 0.7, �int = 2.027, Re(
̃(�int)) = 0.0005296,
Im(
̃(1)(�int)) − Im(
̃(2)(�int)) = −1.6877.

For the above parameters: Re(
̃Dicke) =
Re(
̃(1)(� = 0)) = 0.0017635.

The value of Im(
̃(1)(�int)) − Im(
̃(2)(�int)) determines
the frequency of oscillations within the increasing (decreasing)

exponential temporal envelope for emission for an initially
inverted (weakly excited) system.

V. CONCLUSION

The mathematical steps previously used to compute the
values of the CDR for a small sphere with a varying radial
density of the resonant atoms; the Purcell-Dicke enhanced
CDR of resonant atoms enclosed in a metallic shell; and
the plasmonics eigenfrequencies for different metallodielectric
configurations can be repeated to compute the CDR of a system
consisting of two species with detuned resonant frequencies
but spatially in contact.

The present approach provides a natural way to incorporate
the interaction between the two species by requiring that the
boundary conditions for the Maxwell fields at the interface
between the two materials be satisfied.

The two branches of solutions obtained describe the mode
of transition of the dominant mode from one branch of the
solutions to the other. The computations summarized in this
report give the value of the detuning at the intersection of
the different eigenmodes CDR curves, the value of the CDR
there, and the difference in the frequencies of the resonant
modes frequencies at the same point.

Although the present Brief Report analyzed only the details
of a spherical configuration, the methods used here can be
generalized to different geometries. The observed eigenmode
splitting and the strong correlation in the cooperative emis-
sion from atoms of two samples having different resonance
frequencies are expected to be general features for values of
the detuning not exceeding few cooperative Lamb shifts. The
specific parameters leading to the crossover in the cooperative
decay rates of the different modes is expected to be geometry
dependent.
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