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Degree of polarization in quantum optics through the second generalization of intensity
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The classical definition of degree of polarization (DOP) is expressed in the quantum domain by replacing
intensities through quantum mechanical average values of relevant number operators and is viewed as the first
generalization of intensity. This definition assigns inaccurately the unpolarized status to some typical optical
fields, e.g., amplitude-coherent phase-randomized and hidden-polarized light, which are not truly unpolarized
light. The apparent paradoxical trait is circumvented by proposing a new definition of DOP in quantum optics
through the second generalization of intensity. The correspondence of a new DOP to the usual DOP in quantum
optics is established. It is seen that the two definitions disagree significantly for intense optical fields but coincide
for weak light (thermal light) or for optical fields in which occupancy of photons in the orthogonal mode is very
feeble. Our proposed definition of DOP, similar to other proposals in literature, reveals an interesting feature that
states of polarization of optical quantum fields depend upon the average photons (intensity) present therein.
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Polarization of light, ensuring transversal character, is a
centuries-old concept discovered by Bartholinus [1]. In clas-
sical optics, this trait of light is characterized by Stokes theory
(parameters) [2] geometrically interpreted due to Poincare [3].
Remarkably, these Stokes parameters can also be applied to
some optical quantum fields for inferring polarization nature,
where they are defined to be quantum mechanical average
values of the Stokes operators [4]. Although the polarization
of the optical field has acquired indispensable candidacy
for demonstrating fundamental issues of quantum mechanics
as well as performing ingenious experiments in quantum
optics [5], the basic understanding of optical polarization in
terms of spatiotemporal variables of optical fields remains
unexplored.

Although the studies on optical polarization may largely be
classified in two extremes [perfect (complete) polarized state
and unpolarized state], optical fields may exist in infinitely
many states which are neither polarized nor unpolarized. In
1971, the unpolarized optical field is rigorously investigated
wherein the structure of its density operator is discovered
[6]. Other prominent works [7] on the state of unpolarized
light have brought in new insights about its quantum nature
in conjunction with its tomography. Also, in Ref. [6], it
is emphasized that Stokes parameters prescribe insufficient
conditions for characterizing the state of unpolarized electro-
magnetic radiation, especially when higher-order correlations
between optical-field amplitudes are critical [8]. On the
other hand, perfect polarized light is defined by requiring
the disappearance of light (signal) in at least one transverse
orthogonal mode [9], although this treatment does not provide
a procedure for testing whether an arbitrary quantum state of
light is perfect polarized or unpolarized.

Modern approaches for ascertaining the state of polarization
witnessed two complementary methods: computable measures
and operational measures. The former measure [10], based
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upon the “notion of distance” of optical quantum states from
the state of unpolarized light, is applied to introduce expres-
sions for degree of polarization (DOP). On the other hand, the
latter approach is nothing but a Stokes-parametric approach.
Notably, Klimov et al. [11] formulated a pragmatic and
ingenious criterion for DOP in terms of minimal fluctuations in
Stokes parameters on the Poincare sphere. Astute inspection of
higher-order correlations in Stokes parameters and variables,
where only equal numbers of bosonic creation and annihilation
operators are involved [12], buttresses clinching evidence
against a general propensity in favor of Stokes parameters
because these Stokes-parametric correlation functions are, in-
herently, not synonymous to higher-order Glauber correlation
functions [13]. Thus, not only the distance-based approach,
being an abstract conception, lacks correspondence to classical
description of the optical polarization and transcribes variant
values of DOP for the same quantum state, but also skepticisms
mount pertaining to operational measures due to unprece-
dented incisive analyses [14] highlighting the inadequacy
of the Stokes theory. Moreover, Luis [15] contrived, by
drawing analogy from SU(2) Lie algebra of Stokes operators
to those for components of Jordon-Schwinger spin angular
momenta [16], that the SU(2) Q function is the most suitable
distribution function for probabilistic description of optical
polarization of quantum states on the Poincare sphere. The
SU(2) Q function of quantum states is, in turn, applied to
cast a DOP as a “distance” from the uniform distribution
possessed by unpolarized light. Later on, this SU(2) Q-
function approach is generalized to characterize the states of
polarization of the nonparaxial three-dimensional optical field
[17], the description of which has witnessed various alternative
approaches [18]. However, Karassiov [19] recognized that
Stokes operators found a distinct sort of Hilbert space for
their operation in contrast to those of spin angular momenta.
This is why, recently in the spirit of a classical description
of optical polarization, a quantum phase-space description of
polarized optical field is carried out [20]. Nonetheless, some
serious objections may be drawn to the Luis proposal: First, it
does not ascribe the value unity for the coherent light (perfect
polarized state), a multiphoton state; and second, the SU(2)
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Q function does not connect manifolds with different photon
excitation.

Recent trends in quantum optics spearhead new physical
effects such as quantum Darwinism, quantum imaging, ghost
imaging, and spatiotemporal multipartite entanglement [21] in
which spatiotemporal features of the optical field, its quantum
state engineering, and bases-based quantum measurements are
harnessed. Vociferously, none of the preceding definitions of
DOP, whether they may be a computable (distance based) or
operational (Stokes parametric) or SU(2) Q function, explore
innate relationships possessed by spatiotemporal properties of
the optical quantum fields.

Our viewpoint on optical polarization stems from its clas-
sical description, i.e., by the superposition of two transverse
orthogonal harmonic oscillators of synchronized frequency
emulating two transverse orthogonal components of a har-
monic electromagnetic plane wave in any basis of description
preserving nonrandom values of “ratio of real amplitudes”
and “difference in phases” or nonrandom values of the “ratio
of their complex amplitudes” which define the “index of
polarization” [22] for perfect polarized light. In a quantum
regime, a quantum criterion is established [see Eq. (7)] by
invoking the fact that is due to Mehta and Sharma [9]. This
criterion prescribes a recipe for characterizing whether a light
in any arbitrary quantum state is perfectly polarized and picks
out simultaneously the characteristic parameters [23].

We urge that the vacuum state of the optical field (virtual
photons) must find a paramount position in the theory of
optical polarization. Therefore, in this paper, we introduce
an alternative judicious expression of DOP by employing the
second generalization of intensity in which virtual vacuum
photons enter through the projection operation. Our definition,
contrary to other prevalent proposals for DOP, meets the very
basic requirements of the term DOP in verbatim furnishing a
unit value for the perfect polarized state (coherent state) and a
vanishing value for the unpolarized state of light.

First, we shall describe our criterion to characterize per-
fect optical polarization to establish consistency. A plane
monochromatic optical field propagating along the z direction
in free space can, in general, be described by a vector potential
�A in the form

�A = êxA0xcos(ψ − φx) + êyA0ycos(ψ − φy),

ψ = ωt − kz,

or in analytic-signal representation

�A = (êxAx + êyAy)e−iψ , Ax,y = A0x,0ye
iφx,y , (1)

where Ax,y are classical complex amplitudes; A0x,0y , real
amplitudes and phase parameters, φx,y (0 � φx,y < 2π ) pos-
sess, in general, random spatiotemporal variation with angular
frequency, ω in linear polarization basis (êx,êy) of transverse
plane to �k(=kêz) which is the propagation vector of magnitude,
k and êx,y,z are unit vectors along the respective x, y, and z

axes forming a right-handed triad.
We consider a pellucid property of perfect polarized optical

field, namely, the nonrandom ratio of complex amplitudes of
transverse orthogonally polarized modes

Ay/Ax = p, (2)

as a definition. Here, p is a nonrandom complex parameter
in the linear-polarization basis (êx , êy) and is termed as
the index of polarization [22] which renders characteristic
polarization parameters (ratio of real amplitudes and difference
in phases). Evidently, one may note that the polarized optical
field (through nonrandom p) is effectively a monomodal
optical field since only one random complex amplitude suffices
for its complete statistical description.

Additionally, if one introduces new parameters A0 (real ran-
dom amplitude defining global intensity), χ0 (polar angle), �0

(azimuth angle), φ (random global phase) on a Poincare sphere,
satisfying inequalities 0 � A0, 0 � χ0 � π , −π < �0 �
π , 0 � φ < 2π , respectively, involving transforming equa-
tions in terms of old parameters A0 = (A2

0x + A2
0y)1/2, χ0 =

2 tan−1(A0y/A0x), and �0 = φy − φx ; φ = (φx + φy)/2, the
analytical signal �A in Eq. (1) yields a self-instructive form

�A = ε̂0A; A = Ae−i	 ; A = A0e
iφ,

(3)
ε̂0 = êxcos

χ0

2
e−�0/2 + êysin

χ0

2
e�0/2.

Interpretatively, this form of vector potential �A in Eq. (3)
may be construed as a single-mode polarized optical field,
statistically explicable by a single complex amplitude A polar-
ized in the fixed direction ε̂0 specifying the polarization mode
(ε̂0, �k). Here, the complex unit vector ε̂0 (ε̂∗

0 · ε̂0 = 1) assigns
the parametrized expression of the index of polarization on the
Poincare sphere p = Ay/Ax = tan χ0

2 ei�0 . Visibly, the state of
optical polarization is specified by the nonrandom values of p,
which, in turn, is fixed by the nonrandom values of χ0 and �0

defining a point (ε̂0) on the unit Poincare sphere analogous to
its counterpart Stokes parameters.

One may develop a quantum theory for perfect optical
polarization on a similar classical lineage. In quantum optics,
the optical field [Eq. (1)] is described by the vector potential
operator

�̂A =
(

2π

ωV

)1/2

[(êx âx + êy ây)e−iψ + H.c.]

=
(

2π

ωV

)1/2

[(ε̂ âε̂ + ε̂⊥âε̂⊥ )e−iψ + H.c.],

in the linear-polarization basis (êx,êy) or in the elliptic-
polarization basis (ε̂,ε̂⊥) [24], respectively, where ω is the
angular frequency of the optical field and V is the quantization
volume of the cavity, and H.c. stands for Hermitian conjugate.
Orthonormal properties of ε̂(=εx êx + εy êy) and ε̂⊥(=ε⊥x êx +
ε⊥y êy) provide the relationships between bosonic-annihilation
operators âε̂ (âε̂⊥ ) with those in the linear-polarization basis
(êx,êy) as

âε̂ = ε∗
x âx + ε∗

y ây, âε̂⊥ = ε∗
⊥x âx + ε∗

⊥y ây. (4)

The pure (mixed) dynamical state of a monochromatic
optical beam, propagating along the z axis and polarized in
the mode (ε̂0, �k), may be specified by a state vector |ψ〉(ρ) in
its Hilbert space. Obviously, such light does not have signal
(photons) in the orthogonal mode (ε̂0⊥,�k), i.e.,

âε̂0⊥|ψ〉 = 0, (5)
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or âε̂0⊥ρ = 0, which yields, on applying Eq. (4), (ε∗
0⊥x âx +

ε∗
0⊥y ây)|ψ〉 = 0. Refurbishing it by the orthogonality relation

between ε̂0 and ε̂0⊥, one obtains the defining equation
(criterion) for perfect optical polarization

ây |ψ〉 = pâx |ψ〉 (6)

or âyρ = pâxρ, the quantum analog to the classical perfect
optical-polarization criterion [Eq. (2)], giving p = ε0y/ε0x

[= tanχ0

2 ei�0 , from Eq. (3)]. Multiplying Eq. (5) from the

left by the inverse annihilation operator â−1
x = â†x(1 + â†x âx)−1

[25], we obtain

P̂|ψ〉 = p(1 − V̂x)|ψ〉 (7)

or P̂ρ = p(1 − V̂x)ρ, where P̂(≡â−1
x ây) is recognized as polar-

ization operator and V̂x is the vacuum projection operator for
x-polarized virtual photons V̂x ≡ ∑∞

ny=0 |0,ny〉〈ny,0|, where
ny is the number of y polarized photons. As a demonstration
of the criterion [Eq. (7)], one may consider the biphotonic
qutrit state |ψ〉 = 1

3 |2,0〉 + 2
3 |1,1〉 + 2

3 |0,2〉, which provides

p = √
2 showing that light is plane polarized in a direction

making an angle of 2 tan−1(
√

2) with the x axis having the
characteristic parameter ratio of real amplitudes and difference
in phases equal to

√
2 and 0, respectively.

Second, the first generalization of intensity and inadequacy
of DOP is pointed out. A simple experiment may be accom-
plished to record the maximum and minimum intensities of a
light falling on a polarizer whose fast axis is set along a unit
polarization vector ε̂0. Obviously, for a light of arbitrary state of
polarization, one obtains the extremum intensities (Iε̂0 )max =
Ipol + 1

2Iunpol and (Iε̂0 )min = 1
2Iunpol, where Ipol,Iunpol stand for

intensities of polarized and unpolarized light, respectively.
DOP, in classical optics, is expressed as

P = Ipol

Itotal
=

(
Iε̂0

)
max − (

Iε̂0

)
min(

Iε̂0

)
max + (

Iε̂0

)
min

. (8)

For polarized light, (Iε̂0 )min = 0 implying DOP, P = 1, and for
unpolarized state, DOP, P = 0 because (Iε̂0 )max = (Iε̂0 )min.

A natural generalization of Eq. (8) to the quantum domain
can be affected by replacing the intensity Iε̂0 by the quantum
mechanical average value of the photon number operator N̂ε̂0,

i.e., Iε̂0 → nε̂0 = Tr[ρ̂N̂ε̂0
], where Tr stands for trace, ρ̂ is

density operator for the optical field, N̂ε̂0 = â†ε̂0
âε̂0 , and â†ε̂0

(âε̂0 )
is the creation (annihilation) operator for the optical-field mode
polarized along ε̂0. Hence, in the quantum domain, Eq. (8)
takes the form

P (I ) =
(
nε̂0

)
max − (

nε̂0

)
min(

nε̂0

)
max + (

nε̂0

)
min

. (9)

Evidently, Eq. (9) is a quantum version of the definition for
DOP in classical optics [Eq. (8)] and may be regarded as the
first generalization of intensity [26]. Let us verify whether
Eq. (9) meets basic requirements, viz., the DOP, P (I ) attains
zero value for the unpolarized state and unit value for the
perfectly polarized state.

Let us consider an amplitude-coherent phase-randomized
(multiphoton) optical field propagating along the positive êz

direction, the quantum state of which, in the transverse linear
polarization basis (êx , êy), may be specified by the density

operator

ρ̂ = 1

(2πA0)2

∫∫
d2αxd

2αyδ(|αx | − A0)

× δ(|αy | − A0)|αx,αy〉〈αx,αy |, (10)

where δ(−) is a Dirac-δ function, A0 is a real am-
plitude, |αx,αy〉 are bimodal quadrature coherent states,
(âx,ây)|αx,αy〉 = (αx,αy)|αx,αy〉, and (âx,ây) are annihilation
operators for x-and y-polarized photons, respectively. Noting
âε̂0 = ε∗

0x âx + ε∗
0y ây [Eq. (4)], one obtains the intensity along

ε̂0 as

nε̂0 = Tr
[
ρ̂N̂ε̂0

]
= Tr[ρ̂|ε0x |2 â†x âx + |ε0y |2â†y ây

+ ε0xε
∗
0y â†x ây + ε∗

0xε0y â†y âx]

= (|ε0x |2 + |ε0y |2)A2
0 = A2

0, (11)

independent of the unit polarization vector ε̂0(=ε0x êx +
ε0y êy and |ε0x |2 + |ε0y |2 = 1). Clearly, Eq. (11) demon-
strates that for this multiphoton (amplitude-coherent phase-
randomized) optical field the DOP, P (I ) is zero, suggesting it,
unequivocally, to the status of unpolarized state. But, this is
not true because all its quantum statistical properties are not
symmetric about the direction of propagation êz [8]. This op-
posite instance breeds doubts about the definition (9) obtained
through the first generalization of intensity in quantum optics,
which, in turn, necessitates another generalization (the second
generalization of intensity).

Third, the DOP through the second generalization of
intensity is introduced by considering those measurement
events in which one of the exit channels of the polarization
analyzer registers no photons and takes the average intensity
in the other channel. It is, therefore, proposed that instead of
replacing Iε̂0 in Eq. (8) by nε̂0 = Tr[ρ̂N̂ε̂0

] for accomplishing
the quantum version P (I ) [Eq. (9)] of DOP in quantum optics,
we must replace Iε̂0 by

nε̂0 = Tr
[
ρ̂N̂ε̂0

V̂ε̂0⊥
]
, (12)

where V̂ε̂0⊥ is ε̂0⊥ mode’s vacuum projection operator, i.e.,
V̂ε̂0⊥ = |0〉ε̂0⊥ ε̂0⊥〈0|. Equation (12) may be regarded as the
second generalization of intensity which leads to the second
modification in DOP in quantum optics as

P (II) =
(
nε̂0

)
max − (

nε̂0

)
min(

nε̂0

)
max + (

nε̂0

)
min

. (13)

We first show that the definition (13) meets the basic
requirements, i.e., the DOP, P (II) picks zero value for the
unpolarized state and unity value for the perfectly polarized
state. For a beam polarized along ε̂0, propagating in the êz

axis, we note (nε̂0 )max = nε̂0 and (nε̂0 )min = nε̂0⊥ = 0, which
provides the unit value for DOP, P (II). Next, for unpolarized
light having density operator [6] in the basis (ε̂0,ε̂0⊥),
ρ = ∑∞

n=0 Bn

∑∞
r=0 |r,n − r〉(ε̂0,ε̂0⊥)(ε̂0,ε̂0⊥)〈r,n − r|, gives the

number of photons nε̂0 = ∑
nBn = B1 + 2B2 + 3B3 + · · ·

from Eq. (12), showing independence on polarization
vector ε̂0, which clearly gives the value zero for DOP, P (II)

from Eq. (13).
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Moreover, correspondence of Eq. (13) can be seen through
the vacuum projection operator Vε̂0⊥ in Weyl representation
[27], i.e., V̂ε̂0⊥ = (1− : N̂ε̂0⊥ : + 1

2! : N̂2
ε̂0⊥ : − 1

3! : N̂3
ε̂0⊥ : + · · ·),

where N̂ε̂0⊥ = â†ε̂0⊥ âε̂0⊥ is the number operator of virtual
photons and the symbol : : denotes the normal ordering of
creation and annihilation operators. Evidently, it demonstrates
that if occupancy in the ε̂0⊥ mode is extremely feeble, i.e.,
nε̂0⊥ � 1, V̂ε̂0⊥ ≈ 1, an identity operator, which, in turn,
ensures the equality of photons in two definitions nε̂0 ≈ nε̂0

and, hence, the two definitions coincide. Also, if the beam is
very weak, i.e., Tr[ρ(N̂ε̂0 + N̂ε̂0⊥ )] = nε̂0 + nε̂0⊥ � 1, which is
the case of a thermal light, the two definitions agree.

The foregoing discussion demonstrates that if the photon
numbers in the orthogonal mode become significant, the two
definitions of DOP will substantially be dissimilar. Further-
more, nonlinear dependence of photons nε̂0 on the orthogo-
nally polarized photons nε̂0⊥ leads to an interesting feature that
the DOP may not only depend on the nature of the optical field,
but also on the average photon numbers (intensity). That is, if
we find DOP for the field ρ = ∫

d2αd2βP (α,β)|α,β〉〈α,β|,
and then increase the average photon numbers by a factor
of m without affecting the nature of the field, i.e., re-
placing its density operator by ρ = ∫

d2αd2βP (α,β)|√mα,√
mβ〉〈√mα,

√
mβ| or by ρ = ∫

d2αd2β P ′(α,β)|α,β〉〈α,β|,
with P ′(α,β) = (1/m) P (α/

√
m,β/

√
m), the degree of po-

larization changes. We shall explore this peculiar aspect for
two multiphoton optical fields (amplitude-coherent phase-
randomized and hidden optical-polarized field) in the follow-
ing discussion. Such an intensity-dependent feature of various
DOPs has been intensively surveyed in Ref. [10].

Finally, we shall test the efficacy of Eq. (13) to assess the
polarization states of some typical multiphoton optical fields
for which the conventional definition (9) fails as it assigns the
status of the unpolarized state. Applying Eq. (12) for evaluation
of photon numbers (intensity) in the mode (ε̂0,�k = kêz), one
obtains

nε̂0 = Tr
[
ρ̂N̂ε̂0

V̂ε̂0⊥
]

= Tr

[
ρ̂

∞∑
n=0

n|n,0〉(ε̂0,ε̂0⊥)(ε̂0,ε̂0⊥)〈n,0|
]

=
∞∑

n=0

n〈n,0|ρ̂|n,0〉(ε̂0,ε̂0⊥), (14)

where V̂ε̂0⊥ = ∑∞
n=0 |n,0〉(ε̂0,ε̂0⊥)(ε̂0,ε̂0⊥)〈n,0| has been inserted.

Insertion of Eq. (10) in Eq. (14), after parametrizing the basis
vectors

ε̂0 = cos
χ

2
e−i�/2êx + sin

χ

2
e−i�/2êy,

ε̂0⊥ = sin
χ

2
e−i�/2êx − cos

χ

2
e−i�/2êy,

and expressing the complex amplitudes αx,y = |αx,y |eiϕx,y in
polar form, yields

nε̂0 = (2π )−2
∫ 2π

ϕx=0
dϕx

∫ 2π

ϕy=0
dϕy

∣∣αε̂0

∣∣2
exp

(−∣∣αε̂0⊥

∣∣2)
,

(15)

with

αε̂0 = a

{
cos

χ

2
exp

[
i

(
ϕx + 1

2
�

)]

+ sin
χ

2
exp

[
i

(
ϕy − 1

2
�

)]}
,

αε̂0⊥ = a

{
sin

χ

2
exp

[
i

(
ϕx + 1

2
�

)]

− cos
χ

2
exp

[
i

(
ϕy − 1

2
�

)] }
.

Since the integrand in Eq. (15) involves only the difference θ =
ϕx − ϕy and not ϕx and ϕy independently, one may simplify
Eq. (15) to yield

nε̂0 = (
A2

0

)2
e−A2

0

∫ 2π

θ=0

dθ

2π

[
1 + sin

χ

2
cos(θ + �)

]
× exp

[
A2

0 sin χ cos (θ + �)
]
. (16)

Use of the standard formula for the modified Bessel function of
order m [28], Im (z) = 1

π

∫ π

0 dθ cos (mθ ) exp[z cos θ ] in the
above expressions results as

nε̂0 = n0e
−n0 [I0(n0 sin χ ) + sin χI1(n0 sin χ )] , (17)

with intensity n0 ≡ A2
0. Since the modified Bessel function

Im(x) is a monotonically increasing function of x, for given m,
the maximum and minimum intensities in (ε̂0,�k = kêz) modes
will be(

nε̂0

)
max = n0e

−n0 [I0 (n0) + I1(n0)] for χ = π

2
, (18)

(
nε̂0

)
min = n0e

−n0 for χ = 0 or π, (19)

and the value of � does not matter. Substituting Eqs. (18) and
(19) into Eq. (13), one gets

P (II) =
(
nε̂0

)
max − (

nε̂0

)
min(

nε̂0

)
max + (

nε̂0

)
min

= I (n0) − 1

I (n0) + 1
, (20)

where I (n0) ≡ I0 (n0) + I1 (n0). The DOP [Eq. (20)] ob-
tained through the second generalization of intensity ev-
idently demonstrates the dependence on average photons
(n0). On limiting cases for average photons, when n0 →
0 (few photonic regime),I (n0) → 1 and P (II) → 0, which is
palpable because for small n0 only the second-order correlation
functions (Stokes theory) prevail, ensuring the unpolarized
state. But, for intense multiphoton optical fields, i.e., n0 →
∞,I (n0) → ∞ which signifies the typical nature P (II) → 1
ascertain perfect polarization.

Next, let us apply Eq. (13) for the unimodular hidden
optical-polarized field [29]. It is an optical field whose char-
acteristic polarization parameters ratio of real amplitudes and
sum of phases are unity and zero, respectively, possessing non-
random nature in contrast to the usual polarized optical field in
which the ratio of real amplitudes and difference of phases are
nonrandom characteristic polarization parameters. The state
of such an optical field is specified by the density operator

ρ̂ = 1

(2πA0)2

∫∫
d2αxd

2αyδ(|αx | − A0)δ(|αy | − A0)

× ∣∣|αx |eiθx ,|αy |eiθy
〉〈|αx |eiθx ,|αy |eiθy

∣∣, (21)
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with the condition θx = −θy = θ ′. It may be noted that the
calculations for various terms in Eq. (13) proceed in similar
fashions yielding the same results. Equation (17) would be the
same in both cases, which leads to an equivalent expression
for DOP [Eq. (20)] and a similar interpretational tenet as that
in the earlier case.

Concluding, an expression for degree of polarization (DOP)
in quantum optics is proposed by inserting a vacuum-mode
projection operator in the definition of intensity of optical
field. Its correspondence with the usual definition of DOP in
the quantum domain, derived by replacing intensity in the
classical definition of DOP by quantum mechanical average
values of number operators, is sought. The efficacy of the
proposed definition is demonstrated for typical multiphoton
optical fields where the usual definition fails to predict the
true polarization nature. Precisely, the proposed definition
of DOP uses a pragmatic approach through modifying the

very definition of intensity rather than to rely on the abstract
notion of distance of quantum states from the unpolarized
state as well as to incomplete correlation functions of Stokes
variables (parameters). Therefore, the polarization of the
optical quantum field is either characterized by the criterion
[Eq. (7)] for perfect polarization or by the definition [Eq. (13)]
for the partial (mixed) polarization. Moreover, for multimodal
multiphoton optical quantum fields, generalization of DOP is
straightforward [30].
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