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Formation of quartic solitons and a localized continuum in silicon-based slot waveguides
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We explore the possibility of exciting the so-called quartic solitons in specially designed slot waveguides based
on silicon and silica or silicon nanocrystals. This requires the excitation of the structure with quasi-transverse-
magnetic polarized pulses—for which the Raman effect is absent—and at a specific infrared wavelength for
which only the second- and fourth-order group velocity coefficients are nonvanishing. Pulses launched in these
conditions will generate a spectrally localized continuum coming from the spectral interference of many quartic
solitons.
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Starting from 1993, Höök, Karlsson, Buryak, and Akhme-
diev [1–4] demonstrated theoretically the existence of a family
of solitary wave solutions of the equation
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where A(z,t) is the electric field envelope, β2,4 are, respec-
tively, the second- and fourth-order group velocity dispersion
(GVD) coefficients of the waveguide calculated at a reference
frequency ω0 (taken to be the central frequency of the input
pulse), and γ is the nonlinear coefficient of the fundamental
fiber mode. Equation (1) is valid when ω0 is located at
a local maximum (or minimum) of the GVD, where β3

vanished identically. The properties of such peculiar solitary
waves—which are dubbed quartic solitons (QSs)—have been
since then studied in detail. It was found that QSs exist
only for β2,4 < 0, can have or not have oscillating decaying
tails, and can form symmetric (in-phase) and antisymmetric
(out-of-phase) bound states, and that only the single-peak
solitons can be stable [2–5].

In principle, it would be possible to design specific
solid-core photonic crystal fibers (PCFs) [6] with a quartic
profile of the GVD as required by Eq. (1) by using, for
instance, the dispersion-flattened fibers reported in Ref. [7], or
the nanobore fibers reported in Ref. [8]. However, the pertur-
bation induced by the Raman effect would completely destroy
the QSs. Indeed, from the very beginning of the propagation,
their central frequency would continuously translate due to
the intrapulse Raman self-frequency shift [9], thus moving all
solitons away from the point at which β3 = 0, which immedi-
ately breaks the validity of Eq. (1). This is mainly the reason
why the above theoretical works have been considered only as a
mathematical curiosity, only marginally discussed in textbooks
[10,11], and largely forgotten during the past two decades.

However, the recent advent of silicon photonics [12–15]
has opened many interesting possibilities in nonlinear optics,
mainly due to its potential applications in the spectral region
extending from the near- to the mid-infrared. The high refrac-
tive index of silicon, combined with the silicon-on-insulator
(SOI) technology, allows a tight confinement of the optical
modes and a consequent increase of the nonlinear coefficient of
the waveguide, enabling efficient nonlinear optical interactions
at low power levels and in relatively short length.

In this Brief Report we propose a feasible way to observe
and use the generation of QSs in specially designed

silicon-based waveguides. The two structures that we
propose—both of which are built on a silica substrate—have
been inspired by Refs. [16,17] and are depicted in Figs. 1(a)
and 1(b). In Fig. 1(a) we show the structural parameters of
our silicon-silica (Si-SiO2) waveguide, where the GVD for
quasi-transverse-electric (TE) and quasi-transverse-magnetic
(TM) modes and the mode profile for the quasi-TM mode
are also shown. In Fig. 1(b) we show the same information
as in Fig. 1(a), but for our silicon-silicon nanocrystals
(Si-SiNc) waveguide. The gray-shaded circles, centered at the
wavelengths λ0 at which β3(λ0) � 0 (which will be referred
to as the quartic point), are the regions around which the
GVD can be approximated by including only β2 and β4 in
the dispersion. Note that in those regions, the dispersion is
anomalous (β2 < 0), the GVD curvature is negative (β4 < 0),
and β3 is as small as 1.9 × 10−5 ps3/m [for the structure of
Fig. 1(a)]. As described above, these are exactly the necessary
conditions for the possible existence of localized QSs, and
the parameters of the structure must be carefully designed in
order to achieve the correct sign and curvature of the GVD at
the desired wavelength.

Apart from the shape of the GVD, one must consider
the impact of the two-photon absorption (TPA) generated by
the free carriers around λ0. As demonstrated in numerous
experimental works (see, e.g., Refs. [18–21]), the impact
of TPA is greatly reduced if λ0 > 2.2 μm, away from the
two-photon band edge, where the three-photon absorption is
also insignificant [19–21].

The final crucial property for the present work is that
for an SOI waveguide fabricated along the [1̄10] direction
on the [110]×[001] surface, stimulated Raman scattering
(SRS) cannot occur when an input pulse excites the quasi-TM
mode of the waveguide [15,22]. Thus, for pulses launched
close to λ0 = 2πc/ω0, the nonlinearity is dominated by the
Kerr effect and is not affected by the carrier dynamics,
and the dimensionless propagation equation can be thus
written as

i∂ξψ +
∑
m�2

imδm∂m
τ ψ + (1 + is∂τ )|ψ |2ψ = 0, (2)

where we have performed the typical scalings A ≡ √
P0ψ , t ≡

t0τ , and z ≡ z0ξ , where z0 = t2
0 /|β2|, δm ≡ βm/(m!|β2|tm−2

0 ),
βm is the mth order dispersion coefficient, P0 ≡ (γ z0)−1, and
s ≡ (ω0t0)−1, with t0 being the input pulse duration [10]. In
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FIG. 1. (Color online) The silicon-based structures (both on a
SiO2 substrate) studied in this Brief Report. (a) GVD of quasi-TE
(dashed line) and -TM (solid line) modes of the Si-SiO2 slot
waveguide. Inset below: TM-mode profile at λ0 = 2592 nm. Inset
above: geometry and materials of the structure. Parameters are
h = 700 nm, w1 = 220 nm, w2 = 60 nm, w3 = 600 nm. (b) GVD
of quasi-TE (dashed line) and -TM (solid line) modes of the Si-SiNc
slot waveguide. Inset below: TM-mode profile at λ0 = 2511 nm.
Inset above: geometry and materials of the structure. Parameters are
h = 700 nm, w1 = 190 nm, w2 = 80 nm, w3 = 570 nm. In both
figures, the red dot indicates the wavelength λ0 at which β3 = 0, and
the gray area is the region where the quartic approximation of the
GVD, and therefore the use of Eq. (2), is valid.

Eq. (2) coefficients δ2 and δ4 are dominant and both negative,
while |δ3| � 1 in proximity of the quartic point. γ is the
nonlinear coefficient of the structure calculated with a mode
solver. For subwavelength waveguides with large refractive
index contrast between core and cladding, the nonlinear pa-
rameter is defined as γ = k(ε0/μ0)

∫
n2(x,y)n2(x,y)[2|eν |4 +

|e2
ν |2]dA/(3| ∫ (eν × h∗

ν) · ẑdA|2) [23]. We have calculated the
individual components of the integral using COMSOL and
integrate it over the silicon core region where the optical mode
is confined tightly.

In Eq. (2), it was very important to take into account the
shock operator that multiplies the Kerr nonlinear term, which
comes directly from the Maxwell equations when using a
perturbative reduction to the envelope [24]. The shock operator
introduces a nonlinear change in the group velocity, due to
which different parts of the pulse travel at different velocities,
leading eventually to optical shocks [10]. Such an operator
considerably influences the dynamics in those situations where
the Raman effect is absent, as in the present case. This
constitutes the main difference between Eq. (1) and Eq. (2),
the latter having now a direct physical interpretation in the
systems studied here. It is therefore crucial to check that the
shock term does not destroy the QSs around the quartic point
where third-order dispersion (3OD) is negligible. To verify
this for the structure of Fig. 1(a), we launched an input pulse
ψin = Nsech(τ ) at wavelength λ0 = 2.6 μm in the simulation
of Eq. (2), and propagated it for several dispersion lengths,
see Fig. 2, in the absence [Fig. 2(a)] and in the presence
[Fig. 2(b)] of the shock operator, for the parameters indicated
in the caption. At this point it should be noted that for Fig. 2(b)
the full model of Eq. (2) is used where 3OD is also included in
the simulation. However, the effect of the latter is found to be
negligible since the optical pulse is launched in the vicinity of
the quartic point. It is clear by comparing these two figures that
the shock term has the effect modifying the velocity of each

FIG. 2. (Color online) (a) Propagation of an input pulse ψin =
Nsech (τ ), with N = 10 and δ4 = −0.01, no shock term (s = 0)
and no 3OD (δ3 = 0). Due to the nonintegrability of Eq. (2), which
induces the presence of a solitonic friction, the pulse splits into several
fundamental quartic solitons, approximated by Eqs. (3) and (4).
(b) Same as in (a), but in the presence of a shock term (s = 0.03) and
3OD (δ3 = 0.0017). The shock term induces an asymmetric splitting
of the solitons, which all decrease their velocity with respect to the
case of (a). (c) Position of the parameters (a,k) of each soliton formed
in (b) after a propagation distance ξ = 10 (dots), on the predicted
curve calculated by using Eqs. (3) and (4), indicated with a solid
line. The dashed line indicates the relation between a(q) and k(q)
that would exist for conventional Schrödinger solitons, for which
a(q) = k(q). The squares indicate the extracted parameters a(q) and
k(q) obtained by fitting with a function f = a(q)sech[k(q)τ ]. It is
therefore evident that all the localized structures formed [which are
numbered from 1 to 5 in (b)–(d)] are quartic solitons and not simple
Schrödinger solitons. (d) XFROG spectrogram of (b) at ξ = 10.

individual QS, without affecting its shape or stability during
the propagation, and actually allowing the generation of more
solitons than what occurs in the case of s = 0. To verify this
fact, we compare the approximate analytical nonoscillating
solutions of Eq. (2), for s = 0 and δ3 = 0, obtained via
variational methods, with the actual solitons produced in the
simulations (with s �= 0 and δ3 �= 0). Such solutions are given
by Ref. [4] ψ(ξ,τ ) = f (τ )eiqξ , where q is the nonlinear wave
number, f = a(q)sech2[k(q)τ ], with a(q) and k(q) being the
two functions

a(q) ≡
[

7

3
k2(q) + 80

3
|δ4|k4(q)

]1/2

, (3)

k(q) ≡
[√

9 + 400|δ4|q − 3

80|δ4|
]1/2

. (4)

The solid line in Fig. 2(c) shows the relation between k(q)
and a(q) given by Eqs. (3) and (4), while the dots indicate
the parameters of the solitons extracted with a fit from the
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simulation (numbered from 1 to 5) given in Fig. 2(b) in the
(a,k) space. One can see that the dots are very well predicted
by the solid line, indicating the formation of true QSs in
the simulations. To exclude that these are just conventional
Schrödinger solitons, in Fig. 2(c) we also plot a dashed line
indicating the relation f = a(q)sech[k(q)τ ] for a(q) = k(q),
which is a straight line. When we extract (by means of
a hyperbolic secant fit) the values of a(q) and k(q) of
each soliton from the simulation of Fig. 2(b), we obtain
the squares shown in Fig. 2(c). These are not placed in
correspondence with the dashed line and are not even placed on
a straight line as it should be for Schrödinger solitons, therefore
demonstrating that what we see are true QSs. In Fig. 2(d)
we show the cross-correlation frequency resolved optical
gating (XFROG) spectrogram of the propagation shown in
Fig. 2(b), for a propagation distance ξ = 10. XFROG is
a standard technique used to represent ultrashort pulses in
frequency and time domain and is defined as the convolution
S(τ,ω,ξ ) = |∫ ∞

−∞ ψ(ξ,τ ′)ψref(τ − τ ′) exp(iωτ ′)dτ ′|2, where
ψref is the reference window function, generally taken as
the input pulse [10]. From the XFROG the separation of the
different QSs in both space and frequency is evident. As we
describe below, each soliton acquires a small frequency shift
from the quartic point. The correct dispersion experienced
by each soliton is naturally taken automatically into account
in the full Eq. (2), since the dispersion operator changes
its value according to the individual frequency of each
pulse.

Finally, in Fig. 3 we show the propagation of a t0 = 40 fs
pulse in the structure of Fig. 1(a), for λ0 = 2.6 μm, with other
parameters reported in the caption. The pulse propagation
simulation has been obtained by solving the full Eq. (2) using
a common split-step Fourier algorithm with a fourth-order
Runge-Kutta for the nonlinear part [10]. Energetic femtosec-
ond lasers at the infrared frequencies considered in this work
are commonly made of chromium-doped crystals [25]. The
formation of a continuum extending from approximately 2
to 3 μm is the consequence of the strong spectral interference
between many QSs forming near the quartic point of the GVD,
which are close in the frequency domain due to the absence
of the Raman effect (and thus of any deceleration that can
act on the solitons, followed by a continuous self-frequency
shift [9]) for the chosen quasi-TM input polarization. Each
of the solitons in Fig. 2(d) undergoes a small frequency shift
from the quartic point, which can be either positive or negative,
due to the initial splitting of pulses. Therefore, each soliton
experiences a different group velocity, as can be seen by
recalculating the Taylor expansion in the dispersion operator
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FIG. 3. (Color online) Formation of a QS-induced continuum.
The bottom part shows the GVD (dashed-dotted line) of the quasi-TM
mode vs wavelength for the structure shown in Fig. 1(a). The top
part shows the input pulse spectrum (dotted line) and the output
spectrum (solid red line) after a propagation of ξ = 10. Input
pulse duration is t0 = 40 fs, input wavelength is λ0 = 2.6 μm,
at which β2 � −0.05 ps2/m, β3 � 1.9 × 10−5 ps3/m, and β4 �
−2.5 × 10−5 ps4/m. The nonlinear coefficient for the structure of
Fig. 1(a) is calculated by using the vector model of Ref. [23], and
is γ � 42 m−1 W−1. The corresponding fundamental power is P0 =
0.74 W. Input pulse shape is Nsech (t/t0), with soliton order N = 5.

in Eq. (2). However, it is interesting (and surprising) to note
that the quartic solitons are robust and do not tend to become
Schrödinger solitons, as demonstrated clearly in Fig. 2(c).
Therefore, Fig. 2(d) cannot be interpreted as a conventional
pulse splitting of Schrödinger solitons as in Ref. [26].

In conclusion, we have demonstrated analytically and nu-
merically the possibility of the observation of localized quartic
solitons in specially designed silicon-based slot waveguides.
The absence of the Raman effect for TM-polarized pulses,
together with specific structures that allow a quartic GVD
curve to be realized far from the two-photon absorption region
of silicon, permits the generation of many nonradiative QSs
and the formation of a spectrally localized continuum around
the quartic point of the GVD.
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