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Line-shape comparison of electromagnetically induced transparency
and Raman Ramsey fringes in sodium vapor
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We have simultaneously studied electromagnetically induced transparency (EIT) and Raman Ramsey fringes
(RRF) in sodium vapor, in the same theoretical framework and the same experimental scheme. RRF spectra and
EIT spectra can be simply distinguished by whether the gate timing of the detection is set at the beginning (RRF)
or at the end (EIT) of the excitation pulses. The EIT spectral peaks exhibited pronounced ac Stark shifts linearly
depending upon the pumping power (8.8 kHz/mW), while in the RRF spectra such shifts were almost negligible
(0.19 kHz/mW), provided that the pulse separation is sufficiently large. This fact promotes RRF as a strong
candidate for next-generation compact atomic clocks. Transient spectra in between RRF and EIT have also been
investigated by changing the gate timing within the excitation pulse, and the transition time from RRF to EIT
was found to be of the order of a few microseconds.
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I. INTRODUCTION

Development of simple, compact-size, and high-accuracy
atomic clocks has long been needed for many applications
such as GPS (global positioning system) receivers, underwater
sensor systems, and so on. Electromagnetically induced trans-
parency (EIT) [or, coherent population trapping (CPT)] [1–3]
has been one of the strong candidates for such applications
[4–7]. In EIT, two waves called probe (frequency ωp) and
coupling (ωc) are applied to an atomic vapor having a three-
level � system [see Fig. 1(a)], and the EIT signal is observed as
an increase in the transmission spectrum when the two-photon
resonance condition (ωp − ωc = ω21) is satisfied, where ω21

denotes the sublevel splitting frequency of the atom. Since
an EIT-based atomic clock does not need a microwave cavity
compared to an optical-RF double-resonance-type clock, it
reduces the device size considerably. One severe drawback
of an EIT clock, however, may be the ac Stark shift, where
the signal peak shifts linearly with the pumping laser power.
This effect obviously leads to erroneous operation of the
atomic clocks. On the other hand, in the case of recently
investigated Raman Ramsey fringes (RRFs) [8–10] (Ramsey
fringes due to stimulated Raman resonances [11,12]), where
probe and coupling beams are applied in a pulsed manner,
such peak shifts are reported to be much smaller, or almost
negligible. Although experimental results of RRF have already
been reported in several papers [13–15], a theoretical approach
as well as detailed comparison of theory and experiment for
RRF and EIT have been left uninvestigated. Considering this
situation, it is now very important to present a unified theory
for EIT and RRF in order to perform systematic measurement,
and to compare these two as possible candidates for the
next-generation atomic clocks.

The purpose of this paper is to theoretically and experimen-
tally investigate EIT and RRF phenomena simultaneously by
using a hot sodium vapor, and compare the two line shapes. We
find that both EIT and RRF can be studied in one theoretical
framework, or in a single experimental setup. Figure 1(b)
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shows the pulse timing sequences in our experiment. Both
probe and coupling beams are pulsed with pulse duration τ and
separation T . (In this paper, we employ names “probe” and
“coupling” to be consistent with our previous papers, but probe
is not necessarily weak compared to coupling. On the contrary,
through this paper probe and coupling powers are equal.) The
pulse duration τ is assumed to be much longer than any decay
times. Now the transmitted powers are monitored with a gated
(boxcar) integrator. When the gate timing is set at the end
of the pulse, we are to observe an EIT spectrum, because the
system is safely in a two-mode, three-level steady state. On the
other hand, when the gate is set at the beginning of the pulse,
we will observe an RRF spectrum because the transmission is
modified due to the free precession of the sublevel coherence.
In this way, only by the gate timing, both EIT and RRF spectra
can be obtained. Besides, by varying the gate timing t from
t = 0 (beginning of the pulse) to t = τ , the transient behavior
from RRF spectra to EIT spectra should be studied, as will be
shown later.

What we found in our theoretical and experimental study
was that the peaks of the EIT spectra are severely shifted to
the high-frequency side due to the ac Stark shift. On the other
hand, the peaks of the RRF central fringes are almost exactly at
the true clock transition, provided that the pulse separation T is
sufficiently large. Consequently, RRF is much superior to EIT
for the atomic clock application. In the following sections we
first present our theoretical analysis in this EIT-RRF system.
Our experimental setup will then be briefly mentioned and the
detailed experimental results will be finally given.

II. THEORY

The purpose of this theory section is to analytically derive
the line shapes for EIT and RRF in a unified manner and to
investigate the transient behavior from RRF to EIT when the
gate timing is varied from t = 0. Also, we will study the
transition from EIT to RRF when the pulse separation T

is increased from 0. In particular, we are interested in the
dependence of the line shapes on the probe power Ip and the
coupling power Ic, both of which can become strong so that
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FIG. 1. (Color online) (a) Related energy-level scheme for EIT
and RRF in sodium vapor. (b) Pulse sequence for EIT and RRF
experiments.

they will be treated nonperturbatively. In order to extract only
the intrinsic features of the phenomenon, we will simplify the
problem as much as possible.

As for the atomic system, we assume a three-level system
as shown in Fig. 1(a). In the real situation, the level |1〉
corresponds to 3S1/2, F = 1, |2〉 to 3S1/2, F = 2, and |3〉 to
3P1/2, F ′ = 1 or F ′ = 2 level of the sodium atom, respectively.
The pulse sequence is given in Fig. 1(b). Now we investigate
the time evolution of the sublevel coherence, the optical
coherences, and the absorption coefficient.

The Liouville equations for the optical coherences ρ13

and ρ23, and the ground-state sublevel coherence ρ12, can be
written as [16]

ρ̇13 = (iω31 − γ )ρ13 − i
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where ωij is the level splitting frequency and n�3 = n� − n3 is
the population difference between level � (� = 1 or 2) and level
3, and �j = 2pEj /h̄ is the Rabi frequency (j = p,c) for probe
and coupling, assuming, for simplicity, that the two transitions
1-to-3 and 2-to-3 have the same dipole moment p. γ and
γs are the optical and sublevel dephasing rates, respectively.
In ordinary textbook-style derivation of EIT, nonresonant

contributions are neglected so that the probe interacts only on
the 1-to-3 transition and coupling only on the 2-to-3 transition.
Here we are interested in derivation of the ac Stark shift in EIT,
and so we will keep nonresonant contributions in the above
equations.

These equations can be solved by Fourier decomposing the
optical coherences ρ�3 as

ρ�3(t) = ρ�3se
iωs t + ρ�3ce

iωct + ρ�3peiωpt + ρ�3ae
iωat , (2)

where the coherences are assumed to have Stokes (ωs = ωc −
ω0) and anti-Stokes (ωa = ωp + ω0) components [17,18]. On
the other hand, the sublevel coherence ρ12 has only a ω0

component and can be expressed as

ρ12(t) = ρ12u(t)eiω0t . (3)

Here we apply the adiabatic following approximation [19],
which states that the optical coherence decay γ is so rapid
compared to the sublevel coherence decay γs that all the
optical coherence coefficients ρ�3j appearing in Eq. (2) will
adiabatically follow the motions of ρ12u, n13, and n23 and
thus can be solved as steady-state solutions. By substituting
these results for the sublevel coherence component ρ12u, the
equation of motion for ρ12u is given by

ρ̇12u = −γ ′
s ρ12u − A. (4)

Here the coefficients γ ′
s and A are defined by

γ ′
s ≡ γs + iδs + 1
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)
�∗

p�c, (6)

where the two-photon detuning δs ≡ ω0 − ω21, and γj3� ≡
γ − i(ωj − ω3�) (j = s,c,p,a; � = 1,2). This equation of
motion for ρ12u [Eq. (4)] should be solved in three different
ways. First, in the EIT limit, where the pulse separation T is
long enough that everything is in a steady state, ρEIT

12u for the
EIT case is simply given by

ρEIT
12u = − A

γ ′
s

, (7)

and this represents the EIT line shape. Although this line shape
is very complicated, it can be reduced to a simple Lorentzian
if we make some assumptions. In the expression of Eq. (5),
if we assume that ω21 � γ , ωp ≈ ω31, and ωc ≈ ω32, then
γs32 ≈ iω21, γ ∗

p31 ≈ γ , γc32 ≈ γ , and γ ∗
a31 ≈ iω21, and γ ′

s can
be rewritten as

γ ′
s ≈ γs + |�total |2

4γ
+ i

[
δs − |�total|2

4ω21

]
. (8)

where |�total|2 = |�c|2 + |�p|2. We notice that in this case
Eq. (7) is a simple Lorentzian with a peak δs = |�total|2/4ω21

ac Stark shifted, and a width γs + |�total|2/4γ saturation
broadened. It should be emphasized that both the peak shifts
and the linewidths of EIT linearly depend on the total power
of probe and coupling.
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In the second way of solving Eq. (4), we consider the free-
precession period, where both the excitation pulses are off.
Here, by substituting �c = �p = 0 into Eq. (4), we obtain the
simple form as

ρ̇12u = −(γs + iδs)ρ12u. (9)

In this way the ρRRF
12u for RRF is simply related to ρEIT

12u as

ρRRF
12u = ρEIT

12u e−(γs+iδs )T . (10)

The third way of solving Eq. (4) is to obtain a general
solution. Here γ ′

s is always a constant of motion. In the
expression of A, n13 and n23 may depend on t . However, when
n13 + n23 is constant in time, A can be treated as constant also.
In this case, the solution of Eq. (4) is straightforward and given
by

ρ12u(t) = ρEIT
12u (1 − e−γ ′

s t ) + ρRRF
12u e−γ ′

s t . (11)

Remember that experimentally t represents the gate timing
and when the gate is at the beginning of the pulse (t = 0), it
gives the RRF line shape [ρ12u(0) = ρRRF

12u ], and when the gate
is at the end of the pulse (t = ∞), it goes back to the EIT line
shape [ρ12u(∞) = ρEIT

12u ]. Once the sublevel coherence ρ12u is
obtained, the optical coherences ρ13 and ρ23, and subsequently
the absorption coefficients αp (αc) for the probe (coupling)
pulse, can be obtained immediately by assuming the adiabatic
following approximation. They are given by

αp(t) = α0γ

[
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+ 1
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�c

�p

ρ∗
12u(t)

]
(12)

and
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+ 1

γc32

�p

�c

ρ12u(t)

]
, (13)

where α0 = kNp2/ε0h̄γ is the peak linear absorption coeffi-
cient with atomic density N . Exactly speaking, n13 and n23

are dependent on time because they decrease and increase
when the excitation pulses are turned on and off, respectively.
Such variation can be neglected when the pumping rates
P13 = |�p|2/2γ for the 1-to-3 transition and P23 = |�c|2/2γ

for the 2-to-3 transition are small compared to the spontaneous
emission rate �.

The real part of −αp(t) in the above expression directly
represents the experimentally observed transmission spectra
and is numerically simulated in Fig. 2, which is a contour
plot of −Re[αp] as functions of probe detuning δp and gate
timing t . The parameters used in this simulation were T =
8 μs, �p/2π = �c/2π = 10 MHz, and δc = 0 MHz. As for
the optical dephasing rate γ , γ /2π would be a half of the
natural linewidth (10 MHz) without a buffer gas, but with a
buffer gas, γ increases considerably. It is rather difficult to
measure γ but we set γ /2π = 500 MHz to fit the data. The
sublevel dephasing rate γs , on the other hand, is given by the
inverse of the time an atom stays within the optical beam. This
can be measured by the RRF decay time as a function of the
pulse separation T [see Eq. (10). and also see Fig. 4], and
we set it as γs/2π = 0.03 MHz. In Fig. 2, when the gate time
t = 0, the fringe pattern is clearly observed indicating the RRF
spectrum. As t becomes large, the fringes gradually disappear
and only one peak becomes pronounced, indicating the EIT
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FIG. 2. (Color online) Contour plot of transmitted probe power,
or −Re[αp], vs probe detuning frequency for various gate times t . The
spectra at t = 0 and t = 5 μs represent RRF and EIT, respectively.

spectrum. Note that the EIT peak is slightly shifted from the
clock transition to the right by the ac Stark shift. Exactly the
same plot should be obtained for αc, since the expression for αp

and αc are symmetrical and become the same when �p = �c.
It should also be noted that Eq. (12) can become an ordinary

textbook EIT expression αEIT [20,21]

αEIT = α0γ

γ − i(ωp − ω31) + |�c|2/4
γs−iδs

, (14)

for the absorption coefficient when we assume that n13 = 1,
n23 = 0, |�p|2 is negligible, and the γs32 term is negligible.
However, this expression cannot explain the ac Stark shift of
the EIT signal peak. The ac Stark shift appears only when we
take the Stokes or anti-Stokes coherences into the theory.

In this whole theory section we have neglected the
inhomogeneous broadening due to the Doppler distribution.
The extension of this theory, however, to the inhomogeneous
case is straightforward. In fact, we have calculated the RRF
line shapes for various Doppler shifts δs = kv, where v is the
atomic velocity. The line shapes hardly changed with various
δs values, and we can safely say that inclusion of the Doppler
broadening will not change our results.

III. EXPERIMENT

The experimental setup was similar to our previous EIT
studies in Na vapor [16,22,23], as illustrated in Fig. 3. The light
source was a single-frequency tunable ring dye laser (Coherent
CR699-21) tuned to the 3S1/2 − 3P1/2 D1 transition [24] of
the Na atom at 589.6 nm. First, by using the acousto-optic
modulator (AOM)1, the output beam was pulsed on and off
with repetition time 250 μs. The pulse separation T can be
varied from 0 to several tens of microseconds. The beam was
then divided for coupling and probe as shown in Fig. 3. The
coupling beam had a fixed frequency shift of −200 MHz with
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FIG. 3. (Color online) Schematic of the experimental setup: RDL,
ring dye laser; AOM, acousto-optic modulator; PBS, polarizing
beam splitter; HWP, half-wave plate; QWP, quarter-wave plate; PD,
photodetector.

AOM2, while the probe beam was variably frequency shifted
by +1571.6 ± 1 MHz by using an rf synthesizer in a double-
pass configuration with AOM3. In this way, the resultant probe-
coupling frequency difference can be varied around the Na
hyperfine splitting frequency 1771.626 MHz. The two beams,
after passing a single-mode fiber to improve the transverse
mode quality, collinearly impinged on a glass cell containing
a hot sodium atomic vapor with a Ne buffer gas of 30 Torr.
Both the beam spot sizes FWHM were 400 μm. A longitudinal
magnetic field of 2.1 G inside a magnetic shielding was applied
to extract only the field-insensitive transition [25]. Both the
probe powers Ip and the coupling powers Ic were made equal
in every experiment, so that the important parameter is the total
laser power It = Ip + Ic. The transmitted probe and coupling
powers were detected by a photodetector and analyzed by a
gated integrator whose gate width was typically 60 ns, which
was much shorter than the pulse width τ and the gate timing
t could be varied arbitrarily. For RRF measurement, the gate
t is set at the beginning of the pulse (t = 0), while for EIT t

was set at the end of the pulse (t = τ ). All the data were taken
by scanning the frequency synthesizer while monitoring the
gated integrator output.

IV. RESULTS

As the first measurement, the pulse separation T is varied
from T = 0 μs (continuous excitation) to 2, 5, 10, 20, and
40 μs with the gate pulse fixed at RRF position. Figure 4
shows the results. First of all, when T = 0 a single EIT
peak is observed but, as anticipated, the peak is ac Stark
shifted towards the higher frequency side compared to the
clock frequency (probe detuning δs = 0). When T is gradually
increased, the number of fringes increases accordingly and
the fringe spacing is indeed given by T −1. Also, the central
fringe peak positions indicated by the red arrows approach
the clock frequency and finally it is “locked” to δs = 0. These
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FIG. 4. (Color online) Probe transmission spectra for various
pulse separation T . The curve for T = 0 represents the EIT spectrum.
Red arrows indicate the peak positions.

findings already claim that RRF peaks exhibit more precise
clock frequency for sufficiently large T .

One of our main concerns is how the excitation laser powers
affect the EIT-RRF line shapes, especially peak positions and
the linewidths. Figure 5 shows our main results of EIT-RRF
line shapes for various total laser powers It . Here the EIT line
shapes and RRF line shapes exhibit clearly different behaviors
of power dependence. In the EIT case, the peak positions
(indicated by red arrows) shift towards the right linearly with
It , and also the saturation broadening (also proportional to It ) is
clearly seen. On the other hand, for RRF, the central fringe peak
position hardly moves from the clock frequency and the signal
linewidth (defined by a half of the central fringe separation) is
almost the same. This strongly supports that RRF is much more
robust against power fluctuation. The EIT and RRF line-shape
asymmetry observed in Fig. 5 (for example, the 6.0-mW case,
which has a rather sharp rise in the left wing and a slow fall
in the right wing) may be explained by assuming the Gaussian
transverse mode profile of the probe and coupling beams. In
this case the Rabi frequencies are not uniquely determined
but are distributed within some range. Then the superposition
of narrow unshifted line shapes and broad ac-Stark-shifted
line shapes will result in such asymmetric shapes as shown in
Fig. 5.

More detailed and quantitative analyses are given in Figs. 6
and 7. Figure 6 is the plot of peak positions vs total beam power
It for EIT and RRF, and both the slopes are well approximated
by linear lines. The fitted slopes gave 8.8 kHz/mW for EIT and
0.19 kHz/mW for RRF. [In terms of power density, they are ex-
pressed as 64 Hz/(mW/cm2) for EIT and 1.4 Hz/(mW/cm2)
for RRF.] This shows a 46 times improvement of the peak shift
of the clock transition by using the RRF method. Figure 7
shows the linewidths vs It for EIT and RRF. Once again,
both slopes are linear functions of It and the fitted slopes gave
32 kHz/mW for EIT and 0.48 kHz/mW for RRF. This time the
enhancement factor is 67. Remember that the RRF linewidths
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FIG. 5. (Color online) EIT spectra (upper figure) and RRF spectra
(lower figure) for various total beam power It = 6.0, 2.9, 1.4, and
0.7 mW. Red arrows indicate the peak positions.

can be narrowed by increasing the pulse separation T but with
a sacrifice of the reduction in signal intensity.
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FIG. 6. (Color online) Signal peak position vs total beam power
for EIT and RRF.

0

50

100

150

200

250

0 1 2 3 4 5 6 7

Li
ne

w
id

th
 (k

H
z)

Total beam power (mW)

EIT

RRF

FIG. 7. (Color online) Linewidth vs total beam power for EIT and
RRF.

Finally the transient behavior from RRF line shapes to EIT
line shapes has been investigated, as shown in Fig. 8. This
measurement may be important because we need to know the
characteristic time scale of the fringe decay. (Theoretically this
is expressed in Fig. 2.) By changing the gate pulse timing from
t = 0 to several tens of microseconds, it is clearly seen that
the RRF line shape gradually returns to the EIT line shape,
losing the fringe information, and the signal peak moves back
to the original ac-Stark-shifted peak. The characteristic fringe
decay time is of the order of a few microseconds, and the decay
time is given by the inverse of the saturation broadened EIT
linewidth, as expected from the theory section. Of course, in
order to obtain a nice RRF line shape, the gate width has to be
of the order of this decay time.

V. CONCLUSION

We have simultaneously studied EIT and RRF in a two-
mode, three-level system by using a hot sodium vapor, both
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FIG. 8. (Color online) Transition from RRF to EIT by varying
the gate timing t . From top to bottom, t = 0, 2, 4, and 30 μs.
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theoretically and experimentally. The transmission spectra
were found to switch between RRF and EIT, depending upon
whether the beginning or the end of the pulse is gated for
detection. Besides, by changing the gate position gradual
transition from RRF to EIT could be observed, in agreement
with the theoretical prediction.

Comparisons of EIT and RRF line shapes were extensively
studied both theoretically and experimentally, especially from
the viewpoint of application to next-generation compact-size
atomic clocks. We have found that, both in terms of signal
peak position stability and linewidth stability, RRF is far
superior to EIT, due to pronounced ac Stark shifts for EIT.
This fact should promote RRF as a strong candidate for

next-generation compact atomic clocks. Although this work
has been performed in a sodium vapor, a similar theoretical and
experimental study should be possible in other alkali metals
such as rubidium and cesium.

Finally, we should point out that such an RRF type
of very high-resolution spectroscopy can be applied for
monitoring very small pulsed perturbations taking place in
the free-precession period. For example, a pulsed pertur-
bation such as ac Stark shift with magnitude 10 kHz and
duration 10 μs should cause a 0.1π radian phase shift of
the RRF fringes, which is easily detectable. The challenge
of monitoring this type of phase shift is underway in our
laboratory.
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