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Extreme output sensitivity to subwavelength boundary deformation in microcavities
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We demonstrate a generic and robust mechanism that leads to an extreme output sensitivity to a deep
subwavelength boundary perturbation in wavelength-scale microcavities. A deformation of the cavity boundary
on the order of ten-thousandth of a wavelength may flip the output directions by 180◦, corresponding to a
variation of 0.1 nm for a 1-μm-radius cavity. Our analysis based on a perturbation theory reveals that such
tiny structural change can cause a strong mixing of nearly degenerate cavity resonances with different angular
momenta, and their interference is greatly enhanced to have a radical influence on the far-field pattern. Our
finding opens the possibility of utilizing carefully designed wavelength-scale microcavities for fast beam steering
and high-resolution detection.

DOI: 10.1103/PhysRevA.87.023833 PACS number(s): 42.55.Sa, 05.45.Mt, 42.25.−p

I. INTRODUCTION

Optical microcavities have a wide range of applications
from coherent light sources in integrated photonic circuits to
cavity quantum electrodynamics, single-photon emitters, and
biochemical sensors [1,2]. For example, ultrahigh quality (Q)
factor microcavities have demonstrated extraordinarily high
sensitivity in detection of single molecules and viruses [3–5].
The extremely long lifetime of whispering-gallery modes
in circular microcavities greatly enhances the interaction of
the circulating light with a tiny perturbation on the cavity
boundary, which leads to a shift of resonant frequencies.
However, the long lifetime also means a slow response of
the sensors, limiting the sampling frequency. Moreover, the
ultrahigh Q is very fragile against surface roughness, which
is common to semiconductor microdisks and -rings, and the
cavity size cannot be reduced to wavelength scale due to Q

degrading.
In this article we present a fundamentally different scheme

to achieve an extremely sensitive response to a perturbation
on the cavity boundary. By exploring deformation induced
coupling between nearly degenerate cavity resonances, we
show that a variation on the order of 0.1 nm along the boundary
of a 1-μm-radius disk can flip the output direction by 180◦,
which is much more dramatic than the relative frequency shift
(�ω/ω � 1) of the current microcavity sensors. Our scheme
is applicable to wavelength-scale microcavities with relatively
low Q factors, and it allows fast response and is robust
against the surface roughness. Moreover, it provides a means
of rapid steering of microcavity emission with low-energy
consumption, which has important applications for microlasers
and single-photon emitters.

Previous studies have shown that cavity deformation can
strongly modify the intracavity ray dynamics and the output
directionality [6–16]. The intracavity ray dynamics becomes
(partially) chaotic for a large deformation from an integrable
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cavity shape, and the emergence of unstable manifolds of
distinct geometries lead to dramatically different emission
patterns from similarly deformed microlasers [11]. For a small
deformation from a circle or sphere [7,17–22], evanescent tun-
neling is dominant over refractive escape, and it can be highly
directional due to nonperturbative phase-space structures in
the intracavity ray dynamics. All these studies were performed
in the semiclassical regime, where the cavity size R is much
larger than the wavelength λ. As such, the variation of the
boundary, though small compared to R, is comparable to or
even larger than the wavelength. The same variation of the
boundary as a fraction of R becomes much smaller than the
wavelength in the wave regime, where R → λ [23–25]. Thus
one would have expected the deformation to have a much
weaker influence, for example, on the output directionality and
intracavity field distribution. While the intracavity field distri-
bution is indeed insensitive to the deformation in the wave-
length regime, the output directionality is surprisingly much
more sensitive than the prediction of the intracavity ray dy-
namics, which we attribute to deformation induced coupling.

Mode coupling in microcavities has been extensively
studied [26–29], but the extreme sensitivity we report here has
never been found. Both numerical simulation and perturbation
theory show that the ultrahigh sensitivity is unique for the
output directionality and absent in all other properties of the
resonances, such as the frequencies, Q factors, and intracavity
field patterns mentioned above. Thanks to the generality of the
wave equations, our findings can be applied to other types of
waves such as polaritons and acoustic waves.

Below we first present the numerical results that show
the dramatic sensitivity of the output directionality on the
boundary deformation in Sec. II, followed by the analysis
based on a perturbation theory that reveals the underlining
mechanism in Sec. III. In Sec. IV, we discuss the generality of
our approach and its potential applications.

II. OUTPUT SENSITIVITY: NUMERICAL SIMULATIONS

Although our results are relevant for a variety of de-
formed cavities, we present below a simple example of a
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FIG. 1. (Color online) Intracavity field distribution (a) and far-
field intensity pattern (b) of mode 1 at kR = 4.387 − i1.809 × 10−5

in a quadrupole cavity with R = 1 μm, ε2 = −0.01, ε3 = 0, and
n = 3. Black solid contour in (b) represents the far field obtained from
the second-order perturbation theory, which agrees almost exactly
with the numerical data (red shadow). Green dash-dotted contour
shows the envelope 1 + cos(2θ ). (c), (d) Same as (a), (b), but the
cavity is now sightly perturbed with ε3 = 10−4. The resonance shifts
slightly to kR = 4.387 − i2.039 × 10−5.

two-dimensional dielectric cavity slightly deformed from a
circle. The deformation is characterized by harmonic perturba-
tion of the boundary, ρ(θ ) = R[1 + ε2 cos(2θ ) + ε3 cos(3θ )]
in the polar coordinates, where |ε2|, |ε3| � 1. A small dipolar
term (ε1 cos θ ) mostly leads to a lateral shift of the cavity,
and it can be eliminated by choosing a proper origin of the
coordinate system. Because the cavity has reflection symmetry
with respect to the horizontal axis, the cavity resonances
have either even parity or odd parity about θ = 0◦. Below
we consider the even-parity modes, and the analysis of
the odd-parity modes is similar. Using a scattering matrix
approach [30,31] we calculate the cavity resonant frequencies
and Q factors of transverse electric (TE) modes (electric
field parallel to the disk plane), which are most common
in microdisk lasers. The dramatic boundary sensitivity to
be discussed below also exists for transverse magnetic
(TM) modes.

We first consider slightly deformed quadrupolar cavities
with ε2 = −0.01 and ε3 set to zero. Series of quasi-whispering-
gallery mode (WGM) can be found, and Fig. 1(a) shows
one at Re[kR] ≈ 4.387 (mode 1). Its output is bidirectional
towards θ = 0◦, 180◦ [Fig. 1(b)], which we analyze in the
polar coordinates together with the intracavity field:

ψ (m)(r,θ ) =
{∑

p ApJp(nkr) cos(pθ ), r < ρ(θ ),∑
p BpHp(kr) cos(pθ ), r > ρ(θ ).
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FIG. 2. (a) U versus ε3 for modes 1 (solid line) and 2 (dashed
line) in Fig. 5(a). First-order (dotted line) and second-order (dash-
dotted line) perturbation results for mode 1 are also shown.
(b) Ratio of Hankel coefficients |B7/B9| (solid line) and |B6/B9|
(dashed line) of mode 1 as a function of ε3.

Jp(nkr), Hp(kr) are the pth order Bessel function and out-
going Hankel function, respectively. Ap(Bp) will be referred
to as the Bessel (Hankel) coefficients inside (outside) the
cavity. Since |ε2| � 1, each WGM has a dominant angular
momentum m inside the cavity, and for mode 1 m = 9. The
quadrupolar deformation ε2 cos(2θ ) scatters light from m to
m ± 2. Since the m + 2 component is more tightly confined
within the cavity, the far-field pattern is largely determined by
the interference of the m and m − 2 components [Fig. 3(b)].
When the latter two have almost equal amplitudes, their
beating gives rise to an envelope function 1 + cos(2θ ), which
agrees well with that of mode 1.

To alter the output directionality strongly, a ε3 cos(3θ )
deformation is added to ρ(θ ) which generates additional
m ± 3 components, with m − 3 stronger than m + 3 outside
the cavity. Consequently, the dominant Hankel coefficients
are m,m − 2,m − 3 as shown in Fig. 3(d) for mode 1 at
ε3 = 10−4; they not only have comparable amplitudes but
also similar phases. Since cos(6θ ) is symmetric about the
vertical axis while cos(7θ ) and cos(9θ ) are antisymmetric,
it interferes with the other two constructively along θ = 0◦
and destructively along θ = 180◦, creating the directional
emission shown in Fig. 1(d). Note that by changing the sign
of ε3, the output direction of mode 1 is reversed, since the
cavity changes to its mirror image about the vertical axis, i.e.,
ρ(π − θ ) = R[1 + ε2 cos(2θ ) − ε3 cos(3θ )].

Below we measure the output direction by U ≡∫ 2π

0 dθ I (θ ) cos θ , where I (θ ) is the normalized far-field

intensity satisfying
∫ 2π

0 dθ I (θ ) = 1. U is zero for isotropic or
bidirectional emission, and positive (negative) for directional
emission along θ = 0◦ (180◦). U of mode 1 rapidly increases to
its maximum of 0.39 at ε3 � 2.7 × 10−4 [Fig. 2(a)], at which
the interference between even and odd angular components
is strongest. As ε3 further increases, the increasing amplitude
difference between even and odd angular components [see
Fig. 2(b)] reduces the interference effect, bringing down the
enhanced emission along θ = 0◦.

Despite the drastic change of the far-field pattern, the in-
tracavity field distribution remains nearly the same [Fig. 1(c)],
because the deformation introduced Bessel coefficient A6 in
mode 1 is much smaller than A9 [see Fig. 3(c)]. This holds
true even when ε3 increases to 10−3, at which B6 dominates
over B9 and B7 outside the cavity.
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FIG. 3. (Color online) Bessel coefficients inside the cavity (a) and
Hankel coefficients outside the cavity (b) of mode 1 at ε3 = 0. Red
crosses connected by solid line show the numerical data. Squares
and triangles are given by the first- and second-order perturbation
theories, respectively. (c), (d) Same as (a), (b), but the cavity is now
sightly perturbed with ε3 = 10−4. Note that the increase of |A6| in (c)
is very small compared with that of |B6| in (d).

III. ORIGIN OF THE OUTPUT SENSITIVITY

The observed boundary sensitivity cannot be accounted
for using semiclassical ray dynamics [7,8], in which light
is treated as particles undergoing specular reflections at the
cavity boundary. In this picture the dynamical properties of
light are usually represented by the Poincaré surface of section
(SOS), using the positions of rays incident on the boundary
(represented by the azimuthal angle θ ) and the corresponding
angles of incidence χ . As shown in Figs. 4(a) and 4(b), the
majority of the SOS remains regular in the presence of a small
ε2 and ε3, with unbroken Kolmogorov-Arnold-Moser curves
representing the WGM trajectories (θ ∈ [0◦,360◦]). There are
a few islands corresponding to stable periodic orbits, including
the right (“�”) triangle which becomes unstable when ε3

changes from 0 to 10−4. To investigate its connection to the
change of emission directionality, we perform ray tracing
which includes the effect of all dynamical structures in the
phase space. Figure 4(c) plots the intensities of output rays
for ε3 = 0◦ and 10−4, which are very similar and peaked
at θ = 0◦, 180◦. This result shows that the stability change
of the right triangular orbits is just a coincidence and not
related to the dramatic change of the output directionality
observed in the actual modes. We note that the ray model
applies in the semiclassical regime, where the same value of
ε3 stands for a boundary perturbation (∼ε3R) much larger than
the wavelength and where a stronger effect would have been
anticipated.

Another way to understand the bidirectional output at
ε3 = 0 intuitively is from the curvature of the boundary. It
is highest at θ = 90◦, 270◦, and the evanescent tunneling at
these places is also strongest, giving rise to the bidirectional
emission observed. This picture, however, fails when ε3

becomes nonzero. For example, the highest curvature points
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FIG. 4. (Color online) (a) SOS for the intracavity ray dynamics at
ε3 = 0. The islands near sin χ = 0.5 correspond to the left (“�”) and
right (“�”) triangular orbits, and the ones near sin χ = 0.7 correspond
to the diamond orbit (“
”). Red dashed line indicates the critical
line, i.e., sin χ = 1/n. (b) Same as (a) but at ε3 = 10−4. The right
triangular orbit becomes unstable. (c) Output directionality obtained
by tracing 40 000 random rays uniformly distributed in the SOS above
the critical line. The output is collected each time they refract at the
boundary. Thin black solid line and thick dashed red line are for
ε3 = 0 and 10−4, respectively. Insets: Above-mentioned orbits shown
in real space, which display little change with ε3.

only shift about 1◦ at ε3 = 10−4, which cannot explain the
dramatic change of the output directionality we observe.

The failure of the two approaches above to capture the
output sensitivity highlights the wave nature of the observed
radical response and implies a strong mechanism that has
not been explored before. To identify this mechanism, we
examine the cavity modes in the vicinity of mode 1, which
form a higher-Q and a lower-Q series [Fig. 5(a)]. A correlation
is observed between the output direction of the higher-Q
mode and its frequency spacing to the nearby lower-Q mode:
mode 1 has the largest U at ε3 = 10−4 and its distance to its
quasidegenerate partner (mode 1′) is also the shortest. Mode 1′
has a dominant angular momentum m′ = 6, which appears in
mode 1 when ε3 �= 0. These observations suggest a coupling
between modes 1 and 1′. Recent studies [23,32] show that
a higher-Q mode can acquire the directional emission of a
lower-Q mode via coupling. However, this scenario does not
take place here; mode 1′ emits more or less symmetrically
along θ = 0◦,180◦ (see Fig. 6). In addition, the relative
changes of the complex frequencies of the coupled modes
(e.g., 1 and 1′), which are normally used to determine mode
coupling, are only of the order 10−7. Thus what we presented
here is quite an untypical scenario of mode coupling.

To understand the relation of mode coupling and the
boundary sensitivity, we adopt a perturbation theory [33–36]
to the TE modes. Since the cavity is slightly deformed from
a circle, we use the resonances k0 of a circular cavity of
radius R as the unperturbed basis and treat the deformation
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FIG. 5. (Color online) (a) Complex resonant frequency kR (red
crosses) of a cavity with R = 1 μm, ε2 = −0.01, ε3 = 10−4, and
n = 3. Triangles show the second-order perturbation results for the
high-Q series. The corresponding resonances in a circular cavity of
the same R are marked by black dots. (b) Output direction U of the
high-Q resonances (squares) and their distances to the nearest low-Q
resonances in the complex frequency plane (triangles) versus Re[kR]
of the high-Q modes.

ε2 cos(2θ ) + ε3 cos(3θ ) ≡ εf (θ )/R as the perturbation. k0 are
determined by the boundary condition for TE modes in a
circular cavity, i.e.,

Tm(k0R) ≡ J ′
m(nk0R)

nJm(nk0R)
− H ′

m(k0R)

Hm(k0R)
= 0. (2)

The resonant frequency in the deformed cavity can be
expanded as k = k0 + k1ε + k2ε

2 + O(ε3). For convenience,
we rewrite Ap = ap/Jp(nkR), Bp = (ap + bp)/Hp(kR),
and normalize ψ(
r) by scaling the dominant ap to unity. In
the Appendix we show that all ap �=m and bp are at least of
order ε1; thus we define ap �=m ≡ αpε + βpε2 + O(ε3) and
bp ≡ μpε + γpε2 + O(ε3). By expanding the TE boundary
conditions to ε2 around r = R, k = k0, we find the corrections
to the resonant frequency k as well as the coefficients ap

and bp.
With the second-order corrections βp �=m and γp given in the

Appendix, the perturbation theory reproduces the numerical
results nicely (Figs. 1, 2, and 5). In fact, the essence of the
extreme output sensitivity is already well captured by the first-
order corrections,

αp �=m = 1

Tp

[
k0RSm

(
H ′

p

Hp

− H ′
m

Hm

)
− T ′

m

]
Fpm, (3)

μp = k0RSmFpm, (4)
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FIG. 6. (Color online) Intracavity field distribution (a) and far-
field intensity pattern (b) of a low-Q resonance [mode 1′ in Fig. 5(a)]
at k′R = 4.391 − i2.019 × 10−2 with ε3 = 10−4.

as shown in Fig. 2(b). We have dropped the arguments
of the Bessel and Hankel functions and defined
Fpm ≡ cp

∫ 2π

0 f (θ ) cos(pθ ) cos(mθ )dθ/2πR (cp = 2 − δp,0)
and Sp(x) ≡ nJ ′

p(nx)/Jp(nx) − H ′
p(x)/Hp(x).

The presence of another WGM k′
0R with a dominant angular

momentum m′ in close vicinity of k0R implies that Tm′(k0R) ≈
Tm′(k′

0R) = 0. When this occurs, the m′ component in
ψ (m)(r,θ ) is much enhanced via αm′ , since T −1

m′ (k0R) � 1.
This large prefactor amplifies the small boundary perturbation
of cos (m − m′)θ , especially when the m′ component is leakier
(m′ < m) and has a strong influence on the field outside the
cavity. For example, the unperturbed WGMs corresponding to
modes 1 and 1′ are k0R = 4.388 − i1.226 × 10−5 with m = 9
and k′

0R = 4.391 − i1.153 × 10−2 with m′ = 6. The factor
|T −1

m′ (k0R)| = 7.930 is much larger than its typical value in the
absence of quasidegeneracy. As a result, αm′ increases rapidly
with Fmm′ = ε3/2; so does Bm′ with respect to Bm. The weaker
output sensitivity of the other higher-Q modes in Fig. 5(a),
e.g., mode 2 [see Fig. 2(b)], can also be understood; their
wider separation from the nearest lower-Q mode leads to a
smaller enhancement factor |T −1

m′ (k0R)|. We note that the first-
order correction to the resonance, k1 = −εk0Fmm, vanishes
unless f (θ ) changes the average radius (i. e.,

∫
f (θ )dθ �= 0),

assuming that f (θ ) does not contain the 2mth-order harmonic
perturbation cos(2mθ ). More importantly, it does not contain
the quasi-degeneracy enhancement factor T −1

m′ (k0R). Thus the
frequency and Q-factor do not show a radical response to
the deformation, and the second order treatment is needed to
capture the shift of the resonances [Fig. 5(a)].

Note that although αm′ also appears in the Bessel co-
efficient Am′ , |Am′/Am| increases much more slowly due
to the much smaller factor |Jm′(nkR)/Jm(nkR)| compared
with |Hm′(kR)/Hm(kR)| in |Bm′/Bm|, which explains the
almost identical intracavity field distribution, while the output
directionality changes dramatically with ε3.

Another important factor for the extreme sensitivity is the
phase of αm′ , which differs from am(≡1) by π/2 as given by
(3). With another relative phase of π/2 in the asymptotic form
of the Hankel function, i.e., Hp(kr → ∞) ∝ exp(−ipπ/2),
the m′ component interferes constructively with the m and
m − 2 components along θ = 0◦ and destructively along
θ = 180◦.

IV. DISCUSSION AND CONCLUSION

The above analysis based on the perturbation theory
reveals that the dramatic response of the output directional-
ity originates from the deformation introduced coupling of
quasidegenerate resonances with different angular momenta.
This mechanism is general, and the exact shape of the cavity,
e.g., the value of ε2 or the presence of higher-order harmonics,
is not crucial.

To demonstrate this generality, here we consider another
example where the cos(2θ ) term is absent in the boundary
shape. At ε3 = 0 the cavity is circular and the output of all
WGMs are isotropic. As shown in Fig. 5(a), modes 1 and
1′ still form a quasidegenerate pair, which leads to a rapid
increase of |B6| with ε3 in mode 1. The beating of m = 9 and
m′ = 6 in mode 1 gives rise to a tridirectional output even at
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FIG. 7. (Color online) Intracavity field distribution (a), far-field
intensity pattern (b), Hankel coefficients (c), and Bessel coefficients
(d) of mode 1 at ε2 = 0 and ε3 = 10−4. Other parameters and figure
symbols are the same as in Figs. 1 and 3.

ε3 = 10−4 (see Fig. 7). Note that the value of |B6| is almost the
same as in the previous example [Fig. 3(d)], which is largely
determined by the first-order perturbation and all εp �=3 only
contribute weakly.

To further support the generality of our approach, we
also consider boundary roughness in the example where
ε2 = −0.01. We first treat the boundary roughness as a
perturbation with a wide range of angular momenta, i.e.,
δρ(θ ) = R

∑
p δp cos(pθ ), in which we have assumed δρ(θ ) =

δρ(−θ ) for simplicity. The perturbative contribution of the
high-order harmonics (p � 1) only occurs to Bessel and
Hankel coefficients of large angular momenta to the leading
order. These components decay rapidly outside the cavity
and have little effect on the far field. Thus the far-field
intensity pattern only changes with low-order harmonics in
the boundary roughness, and we consider δp(p = 4,5, . . . ,8)
with a random amplitude up to 10−3 when varying ε3. We
found that the far-field intensity pattern is modified in the
presence of these extra terms, but the sensitivity to ε3 survives.
Figure 8(a) shows one example of δρ(θ ), and from Fig. 8(b)
we see that U of mode 1 also displays a sensitive dependence
on ε3, similar to the case without the surface roughness. In
Fig. 8(c) we model the surface roughness in a different way.
We include 30 Gaussian bumps and pits randomly distributed
around the cavity, with a random amplitude up to 10−3R and
a full width at half maximum of 5◦. Again the sensitivity of U

to ε3 can still be observed.
The examples given above emphasize that the key of

the dramatic sensitivity of the output directionality is the
quasidegeneracy, which has a weak dependence on the small
boundary deformation as we have shown using the perturbation
theory. As a consequence, quasidegenerate modes can be
conveniently identified by examining those of the circular
cavity given by Eq. (2). Due to the different spacings of the
high-Q and low-Q mode series, accidental quasi-degeneracies
occur such as for modes 1 and 1′ in Fig. 5(a). To further reduce
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FIG. 8. (a) δρ(θ ) modeled as R
∑8

p=4 δp cos(pθ ). In this ex-
ample ε4 = 0.4278 × 10−3, ε5 = 0.4814 × 10−3, ε6 = 0.8559 ×
10−3, ε7 = 0.9886 × 10−3, and ε8 = 0.3936 × 10−3. (b) U of
mode 1 versus ε3 with the boundary roughness shown in (a).
(c) δρ(θ ) modeled as random Gaussian bumps and pits. (d) U of
mode 1 versus ε3 with the boundary roughness shown in (c). For
simplicity we have assumed that δρ(θ ) = δρ(−θ ).

the frequency separation of a quasidegenerate pair, one may
fine-tune the effective index of a microdisk by changing the
disk layer thickness, varying the composition of the material,
or using thermal control or carrier injection. Our results can
also be directly generalized to terahertz frequency, microwave,
and acoustics, due to the scalability of the wave equation.

Our findings offer many practical applications, including a
fast and energy efficient way of steering optical signals from
microcavities. Using micro-electro-mechanical or optome-
chanical approaches, one can introduce the proposed cavity
deformation and switch the microcavity emission between
two or even more desired directions. This can be very useful
not only to microlasers but also to single-photon emitters,
allowing the delivery of single photons to multiple ports.
Utilizing the time reversal of this scheme, i.e., using a
passive cavity as a coherent perfect absorber [37,38], one can
selectively inject optical signals from different directions into
microcavities, again on a fast time scale and with minimal
energy cost.
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APPENDIX: PERTURBATION THEORY FOR TE MODES

In this section we present the perturbation theory for
TE modes in a deformed microdisk cavity, which is more
complicated compared with a similar approach for TM modes
introduced in Ref. [33]. The “asymmetry” in the boundary
conditions for TE modes

ψ<(ρ,θ ) = ψ>(ρ,θ ),
1

n2

∂ψ<

∂r
= ∂ψ>

∂r
, (A1)

due to the factor of n−2 leads to a more complicated
perturbation series and an additional first-order correction.
Here ψ<(>)(r,θ ) are the wave function inside (outside) the
cavity. By expanding the boundary conditions to O(ε2) at
r = R, we obtain

ψ< − ψ> = −εf (θ )

(
∂ψ<

∂r
− ∂ψ>

∂r

)

− 1

2
ε2f (θ )2

(
∂2ψ<

∂r2
− ∂2ψ>

∂r2

)
, (A2)

1

n2

∂ψ<

∂r
− ∂ψ>

∂r
= −εf (θ )

(
1

n2

∂2ψ<

∂r2
− ∂2ψ>

∂r2

)

− 1

2
ε2f (θ )2

(
1

n2

∂3ψ<

∂r3
− ∂3ψ>

∂r3

)
. (A3)

Using the ansatz

ψ<(r,θ ) =
∑

p

ap

Jp(nkr)

Jp(nkR)
cos(pθ ), r < ρ(θ ),

(A4)

ψ>(r,θ ) =
∑

p

(ap + bp)
Hp(kr)

Hp(kR)
cos(pθ ), r > ρ(θ ),

we derive

ψ< − ψ> = −
∑

p

bp cos(pθ ), (A5)

1

n2

∂ψ<

∂r
− ∂ψ>

∂r
= k

∑
p

[
apTp(kR) − bp

H ′
p(kR)

Hp(kR)

]
cos(pθ ).

(A6)

We see that all ap �=m and bp are at least O(ε) by comparing
the above expressions to the expansions (A2) and (A3). Thus
we rewrite ap �=m ≡ αpε + βpε2 + O(ε3) and bp ≡ μpε +
γpε2 + O(ε3). In the case of TM modes μp = 0 as (ψ< − ψ>)
is at least O(ε2) [33] by substituting the correspondent of
Eq. (A3) into (A2).

Using (A4) we can rewrite the differences on the right-hand
sides of Eqs. (A5) and (A6) as

∂ψ<

∂r
− ∂ψ>

∂r
= k

∑
p

[
apSp(kR) − bp

H ′
p(kR)

Hp(kR)

]
cos(pθ ), (A7)

∂2ψ<

∂r2
− ∂2ψ>

∂r2
= − k

R

∑
p

[Sp(kR) + kR(n2 − 1)]ap cos(pθ ) + k

R

∑
p

[
H ′

p(kR)

Hp(kR)
−

(
p2

kR
− kR

)]
bp cos(pθ ), (A8)

1

n2

∂2ψ<

∂r2
− ∂2ψ>

∂r2
= − k

R

∑
p

[
Tp(kR) + p2

n2kR
(n2 − 1)

]
ap cos(pθ ) + k

R

∑
p

[
H ′

p(kR)

Hp(kR)
−

(
p2

kR
− kR

)]
bp cos(pθ ), (A9)

1

n2

∂3ψ<

∂r3
− ∂3ψ>

∂r3
=

∑
p

[
kTp(kR)

(
p2 + 2

R2
− n2k2

)
− (n2 − 1)k3

H ′
p(kR)

Hp(kR)
+ 3p2

n2R3
(n2 − 1)

]
ap cos(pθ )

−
∑

p

[
k
H ′

p(kR)

Hp(kR)

(
p2 + 2

R2
− k2

)
− 1

R

(
3p2

R2
− k2

)]
bp cos(pθ ). (A10)

When deriving the last three expressions, we have used J ′′
p (z) + 1

z
J ′

p(z) + (1 − p2

z2 )Jp(z) = 0 and its derivative, which give, for
example,

J ′′
p (nkR)

Jp(nkR)
= − 1

nkR

J ′
p(nkR)

Jp(nkR)
+

(
p2

n2k2R2
− 1

)
, (A11)

J ′′′
p (nkR)

Jp(nkR)
= J ′

p(nkR)

Jp(nkR)

(
p2 + 2

n2k2R2
− 1

)
− 1

nkR

(
3p2

n2k2R2
− 1

)
. (A12)

Next we expand the Bessel and Hankel functions around k = k0. It is straightforward to see that the zeroth-order term in (A6)
vanishes, which is consistent with the right-hand side of (A3). We keep the terms in Eqs. (A2) and (A3) up to order ε2 in the
discussion below, and Eqs. (A5)–(A10) become

ψ< − ψ> = −
∑

p

(μpε + γpε2) cos(pθ ) + O(ε3), (A13)

1

n2

∂ψ<

∂r
− ∂ψ>

∂r
= εk0

⎡
⎣k1RT ′

m(k0R) cos(mθ ) +
∑
p �=m

αpTp(k0R) cos(pθ ) −
∑

p

μp

H ′
p(k0R)

Hp(k0R)
cos(pθ )

⎤
⎦
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+ ε2

[
k2

1RT ′
m(k0R) + k0k2RT ′

m(k0R) + 1

2
k0k

2
1R

2T ′′
m(k0R)

]
cos(mθ )

− ε2
∑

p

[
k1μp

H ′
p(k0R)

Hp(k0R)
+ k0μpk1R

(
H ′

p(z)

Hp(z)

)′

z=k0R

+ k0
H ′

p(k0R)

Hp(k0R)
γp

]
cos(pθ )

+ ε2
∑
p �=m

[k1αpTp(k0R) + k0αpk1RT ′
p(k0R) + k0Tp(k0R)βp] cos(pθ ) + O(ε3), (A14)

∂ψ<

∂r
− ∂ψ>

∂r
= k0Sm(k0R) cos(mθ ) + εk1[Sm(k0R) + k0RS ′

m(k0R)] cos(mθ )

+ εk0

⎡
⎣∑

p �=m

αpSp(k0R) −
∑

p

μp

H ′
p(k0R)

Hp(k0R)

⎤
⎦ cos(pθ ) + O(ε2), (A15)

∂2ψ<

∂r2
− ∂2ψ>

∂r2
= −k0

R
[Sm(k0R) + k0R(n2 − 1)] cos(mθ ) + O(ε1), (A16)

1

n2

∂2ψ<

∂r2
− ∂2ψ>

∂r2
= −(n2 − 1)

m2

n2R2
cos(mθ ) − εk0k1T

′
m(k0R) cos(mθ ) − ε

∑
p �=m

[
k0

R
Tp(k0R) + p2

n2R2
(n2 − 1)

]
αp cos(pθ )

+ ε
∑

p

[
k0

R

H ′
p(k0R)

Hp(k0R)
−

(
p2

R2
− k2

0

)]
μp cos(pθ ) + O(ε2), (A17)

1

n2

∂3ψ<

∂r3
− ∂3ψ>

∂r3
= (n2 − 1)

[
3m2

n2R3
− k3

0
H ′

m(k0R)

Hm(k0R)

]
cos(mθ ) + O(ε1). (A18)

Henceforth we drop the arguments in the Bessel and Hankel functions. The first-order terms of ε in (A2) are then

−
∑

p

μpε cos(pθ ) = −εf (θ )k0Sm cos(mθ ), (A19)

which gives the first-order correction in bp:

μp = (k0R)SmF (1)
pm, (A20)

where F (ν)
pm = cp

∫ 2π

0 f ν(θ ) cos(pθ ) cos(mθ )dθ/(2πRν) (ν = 1,2). We have dropped the superscript of F (1)
pm in the main text.

The first-order terms of ε in (A3) are

εk0

⎡
⎣T ′

mk1R cos(mθ ) +
∑
p �=m

αpTp cos(pθ ) −
∑

p

μp

H ′
p

Hp

cos(pθ )

⎤
⎦ = εf (θ )

m2

n2R2
(n2 − 1) cos(mθ ), (A21)

which give

k1R = 1

T ′
m

[
m2

n2k0R
(n2 − 1) + k0RSm

H ′
m

Hm

]
F (1)

mm, (A22)

αp �=m = 1

Tp

[
m2

n2k0R
(n2 − 1) + k0RSm

H ′
p

Hp

]
F (1)

pm. (A23)

Using Tm = 0, or nH ′
m/Hm = J ′

m/Jm, and the relation

T ′
m =

[
J ′′

m

Jm

−
(

J ′
m

Jm

)2 ]
−

[
H ′′

m

Hm

−
(

H ′
m

Hm

)2 ]
(A24)

= − (n2 − 1)m2

(nk0R)2
− H ′

m

Hm

Sm, (A25)

Eq. (A22) is reduced to k1 = −k0F
(1)
mm, which is the same as the first-order correction to TM resonances [33].

The ε2 terms in (A2) are

−
∑

p

γpε2 cos(pθ ) = −εf (θ )

⎡
⎣ε

(
k1Sm + k0k1RS ′

m − k0μm

H ′
m

Hm

)
cos(mθ ) + εk0

∑
p �=m

(
αpSp − μp

H ′
p

Hp

)
cos(pθ )

⎤
⎦

+ k0

2R
ε2f (θ )2[Sm + k0R(n2 − 1)] cos(mθ ), (A26)
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from which the second-order correction in bp can be derived:

γp =
(

k1RSm + k0k1R
2S ′

m − k0Rμm

H ′
m

Hm

)
F (1)

pm + k0R
∑
q �=m

(
αqSq − μq

H ′
q

Hq

)
F (1)

pq − k0R

2
[Sm + k0R(n2 − 1)]F (2)

pm (A27)

= (n2 − 1)(k0R)2

[
1 + n2

(
H ′

m

Hm

)2 ]
F (1)

mmF (1)
pm + (n2−1)k0R

∑
q �=m

1

Tq

(
Sq

m2

n2k0R
+ k0R

n
Sm

J ′
q

Jq

H ′
q

Hq

)
F (1)

qmF (1)
pq

− k0R

2
[Sm + k0R(n2 − 1)]F (2)

pm. (A28)

The ε2 terms in (A3) are

ε2

[
k2

1RT ′
m + k0k2RT ′

m + 1

2
k0k

2
1R

2T ′′
m

]
cos(mθ ) + ε2

∑
p �=m,m′

[k1αpTp + k0αpk1RT ′
p + k0Tpβp] cos(pθ )

− ε2
∑

p

[
k1μp

H ′
p

Hp

+ k0μpk1R

[
H ′

p

Hp

]′
+ k0

H ′
p

Hp

γp

]
cos(pθ )

= −εf (θ )
k0

R

⎡
⎣−(k1Rε)T ′

m cos(mθ ) −
∑
p �=m

(
Tp + p2

n2k0R
(n2 − 1)

)
αpε cos(pθ )

+
∑

p

(
H ′

p

Hp

− p2

k0R
+ k0R

)
μpε cos(pθ )

]
− 1

2
ε2f (θ )2(n2 − 1)

[
−k3

0
H ′

m

Hm

+ 3m2

n2R3

]
cos(mθ ), (A29)

the left-hand side of which can be simplified using Eq. (A21). From the mth harmonic on both sides we obtain the second-order
correction to the resonance,

T ′
mk2R = −1

2
(k1R)2T ′′

m + γm

H ′
m

Hm

+ μmk1R

[
H ′

m

Hm

]′
+

[
k1RT ′

m − k1

k0

m2(n2 − 1)

n2k0R

]
F (1)

mm +
∑
p �=m

(
Tp + p2

n2k0R
(n2 − 1)

)
αpF (1)

mp

−
∑

p

(
H ′

p

Hp

− p2

k0R
+ k0R

)
μpF (1)

mp + 1

2
(n2 − 1)

[
(k0R)2 H ′

m

Hm

− 3m2

n2k0R

]
F (2)

mm, (A30)

and from the pth harmonic on both sides we obtain the second-order correction to ap �=m:

Tpβp = −αpk1RT ′
p + γp

H ′
p

Hp

+ μpk1R

[
H ′

p

Hp

]′
+

[
k1RT ′

m − k1

k0

m2(n2 − 1)

n2k0R

]
F (1)

pm +
∑
q �=m

(
Tq + q2

n2k0R
(n2 − 1)

)
αqF

(1)
pq

−
∑

q

(
H ′

q

Hq

− q2

k0R
+ k0R

)
μqF

(1)
pq + 1

2
(n2 − 1)

[
(k0R)2 H ′

m

Hm

− 3m2

n2k0R

]
F (2)

pm. (A31)

In the main text we have shown that the perturbation theory gives good agreement with the wave solutions. Here we
give one simple analytical example to further confirm its validity: f (θ ) = R, i.e., a disk of radius ρ = R(1 + ε) in which
F (1)

pm = F (2)
pm = δpm. The exact resonance can be easily obtained from scaling, i.e., k = k0R/(R + εR) ≈ k0(1 − ε + ε2) + O(ε3),

which implies k1 = −k0 = −k0F
(1)
mm, as given by Eq. (A22), and k2 = k0.

To confirm the latter, we note that Eq. (A30) takes the following form:

k2RT ′
m = −1

2
(k1R)2T ′′

m + k1RT ′
m + γm

H ′
m

Hm

+ 1

2
(n2 − 1)

[
(k0R)2 H ′

m

Hm

− 3m2

n2k0R

]

+μmk1R

[
H ′

p

Hp

]
− k1

k0

m2(n2 − 1)

n2k0R
−

(
H ′

m

Hm

− m2

k0R
+ k0R

)
μm. (A32)

Using

T ′′
m = − T ′

m

k0R
+ 2(n2 − 1)m2

n0(k0R)3
− 2

H ′
m

Hm

S ′
m, (A33)

H ′′
m(kR)

Hm(kR)
= − 1

kR

H ′
m(kR)

Hm(kR)
+

(
m2

k2R2
− 1

)
, (A34)

the right-hand side of Eq. (A32) is reduced to k0RT ′
m,

indicating that k2 = k0, as we have expected. Since the cavity
is still circular and the angular momentum is conserved, all
αp �=m, βp �=m in the expansion of ψ< and μp �=m, γp �=m in the
expansion of ψ> should be zero. Indeed this is the case as can
be read off from Eqs. (A20), (A23), (A28), and (A31).
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