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We investigate nonequilibrium phase transitions for driven atomic ensembles interacting with a cavity mode
and coupled to a Markovian dissipative bath. In the thermodynamic limit and at low frequencies, we show that
the distribution function of the photonic mode is thermal, with an effective temperature set by the atom-photon
interaction strength. This behavior characterizes the static and dynamic critical exponents of the associated
superradiance transition. Motivated by these considerations, we develop a general Keldysh path-integral approach
that allows us to study physically relevant nonlinearities beyond the idealized Dicke model. Using standard
diagrammatic techniques, we take into account the leading-order corrections due to the finite number N of atoms.
For finite N, the photon mode behaves as a damped classical nonlinear oscillator at finite temperature. For the
atoms, we propose a Dicke action that can be solved for any N and correctly captures the atoms’ depolarization

due to dissipative dephasing.
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I. INTRODUCTION

Much interest has recently been directed towards under-
standing many-body dynamics in open systems away from
thermal equilibrium. This subject is not new, as the analogies
between threshold phenomena in dynamical systems, such as
the laser, and the conventional phase transitions have been
recognized over 40 years ago. However, recent experiments
with ultracold atoms in optical cavities offer intriguing
possibilities to explore the physics of strongly interacting
atom-photon systems far away from thermal equilibrium from
anew vantage point. Many fundamental concepts of condensed
matter physics, ranging from classification of phase transitions
to the universal behavior of correlation functions in the vicinity
of quantum critical points in the presence of driving and
dissipation, need to be revisited in light of these developments.

In this paper, we investigate nonequilibrium phase transi-
tions for driven atomic ensembles interacting with a cavity
mode that is subject to dissipation, focusing specifically
on the dynamical superradiance transitions and associated
self-organization of the atoms observed in Refs. [1-3]. Due
to the interplay of external driving, Hamiltonian dynamics
and dissipative processes, the observed Dicke superradiance
transitions [1,2] exhibit several properties [4—7] which are
not present in the closed Dicke model [8—11]. Recently, it was
shown that other more interesting quantum many-body phases,
such as quantum spin and charge glasses with long-range ran-
dom interactions [12—-14] mediated by multiple photon modes
could potentially be simulated with many-body cavity QED.

In what follows we first review the physics of the nonequi-
librium Dicke transition in optical cavities with conventional
techniques of quantum optics. Using linearized Heisenberg-
Langevin equations, we demonstrate that, at low frequencies
and close to the phase transition, the system evolves into a
thermal state with a high effective temperature proportional to
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the atom-photon interaction strength. The static and dynamic
critical exponents at the high-temperature phase transitions are
analogous to those in a conventional laser (or, more precisely,
optical parametric oscillator) threshold.

To treat the interplay between external driving, dissipation,
and many-body interactions in a more general setting, we
next develop a unified approach to describe phase transitions
in open quantum systems based on Keldysh path integrals
[15-21]. This approach is used to analyze the driven Dicke
model in the presence of finite-size effects and atomic
dissipative processes. Both perturbations are nonlinear and
cannot be treated by the usual quantum-optical methods.
Instead, we apply nonperturbative techniques specific to
the path-integral approach. We find that the low-frequency
dynamics is thermal even in this case, allowing for an effective
equilibrium description.

We expect the Keldysh approach to be directly applicable
to other dissipative models such as the recently discussed
central spin model [22] or fermionic lattice models [23-26].
We believe that the Keldysh calculations are not more involved
and sometimes simpler than those of the usual quantum-optics
frameworks [27,28]. At the same time, they facilitate an
easy comparison to other phase transitions of condensed
matter physics. One of the objectives of the present paper
is to make the Keldysh approach more accessible to the
broader quantum-optics community. At the same time, we
hope that the Keldysh perspective will be helpful for condensed
matter physicists to understand driven dissipative atom-photon
systems—especially in view of the qualitatively different
energy scales and bath properties in quantum optics.

The paper is organized as follows: In Sec. II we introduce
the Dicke model and perform a brief analysis with linearized
Heisenberg-Langevin equations pointing out that the relevant
low-frequency correlations are thermal. In Sec. III, we map
the operators of the master equation and the associated
Liouvillians for dissipative processes to the field content of
an equivalent real-time, dissipative Keldysh action S[a*,a]
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with a*, a being the photon field variables. In Sec. IV
we introduce the atomic degrees of freedom and study the
thermodynamic limit N — oo of the open Dicke model.
We define a nonequilibrium distribution function F(w) and
compare it to the equilibrium case, finding that both diverge
at low frequencies as 1/w. In Sec. V we study the effects of a
finite size N. Combining analytic and numerical methods, we
derive the critical scaling of the photon number as function of
N and find it to be equivalent to an equilibrium system at finite
temperature and distinct from the zero-temperature case. In
Sec. VI we propose an effective method to describe the effects
of single-atom decay across the phase transition of the Dicke
model. We again find that the distribution function is thermal,
but with renormalized couplings and, in particular, a different
critical coupling g.. Section VII concludes the paper with a
summary of our main results and some final remarks.

II. THERMAL NATURE OF OPEN DICKE TRANSITION

The Dicke Hamiltonian [8,9] describes N two-level systems
or “qubits” represented by Pauli matrix operators ¢;* and o7,
coupled to a quantized photon mode represented by bosonic
creation and annihilation operators at, a:

N N
iAo @ g At
H:woaTaJr—E a;+—§ of@ +a). (1)
2 i=1 N i=1

Here wy is the photon frequency, w, is the level splitting of
the qubits, and g is the qubit-photon coupling, assumed to
couple all qubits uniformly to the photon. Equation (1) is
invariant under an Ising-type Z, transformation, @ — —a and
0} — —o;. In the thermodynamic limit N — oo, and for
sufficiently strong qubit-photon coupling g, the ground state of
Eq. (1) spontaneously breaks this Ising symmetry and exhibits
a phase transition to a “superradiant” phase with a photon
condensate (a).

In the context of ultracold dilute gases in optical cavities,
Dimer et al. [4] proposed to implement the qubits using two
hyperfine states of the atoms and showed that, close to the
transition, the relevant Hilbert space can be exactly mapped
to Eq. (1). Inspired by the work of Dimer et al. [4], the qubit
states of the Dicke model were realized using two collective
motional degrees of the Bose-Einstein condensate of the atoms
in the cavity [2,29]; see Ref. [30] for a review. In that case w,
becomes a collective recoil frequency and the two Dicke states
are components of a dynamically forming charge density wave.

This open realization of the Dicke model in optical cavities
with pumped atoms is different from the closed-system Dicke
model (1) due to the interplay of coherent drive and dissipation:

1. Coherent drive. The photon-atom coupling g describes
the scattering of pump photons and rotates, as function of time,
at the pump frequency w,. To obtain the time-independent
Dicke model (1), one has to move to a rotating frame, where
the explicit time dependence of the original Hamiltonian is
“gauged” away.! In this frame, the parameter w, appearing in
Eq. (1) is the cavity-pump detuning wy = . — @, wWhere w,
is the bare cavity frequency.

'See, for example, Eq. (4) of Ref. [4] or Eq. (2) of Ref. [31].
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2. Dissipation. In addition to the coherent dynamics gener-
ated by the Hamiltonian (1), there is a dissipative contribution
consisting of cavity loss and dissipative processes for the
atoms. In the rotating frame, this vacuum is effectively out
of equilibrium and leads to the nonequilibrium Markovian
master equation (cf. Appendix A),

&p = —i[H,p]+ Lp. (2)

Here p is the density matrix and L is the Liouville operator in
Lindblad form:

Lp = KkeLypLl = {LLa,p}), 3)

where the curly brackets {,} denotes the anticommutator and
L, is a set of Lindblad or quantum-jump operators. In the
present work we consider two types of dissipative processes:
cavity photon loss and single-atom dissipative dephasing. The
former is modeled by the Liouvillian

Lewp = k(2apa' — {a'a,p)), 4)

where « is an effective decay rate (inverse lifetime) of a cavity
photon, of the order a few MHz [2]. Modelling the dissipative
dynamics of the atoms depends on the specific implementation
of the driven Dicke model usually involving local processes of
each two-level atom separately. In Sec. VI, we account for the
dissipative dephasing of the atoms in an approximate way by
resorting to a simplified effective low-frequency model.

A. Heisenberg-Langevin analysis

We now study the above nonequilibrium Dicke model
using conventional quantum-optical techniques; namely, the
Heisenberg-Langevin equations of motion [27,28]. We will
later repeat and extend these calculations using the Keldysh
path-integral approach in the following sections. The master
equations (2) and (3) with Hamiltonian (1) and cavity dissipa-
tion (4) is equivalent to the equations of motion

4= —iwpgd — Kk — iaf + F,

JN

o + Y8 s At

o iw.o; ﬁal (a+ah, %)
67 = =25 (0] — o7 )@ +a).

l ﬁ L l

Here the force F = F(t) is a stochastic Markovian operator
satisfying (F(H)F'(t")) = 2k8(t — t') and (F(t)!F(t)) = 0.
This term is needed in order to preserve the commutation re-
lation [4(¢),aT(+)] = 1, which would otherwise exponentially
decrease. See, for example, Ref. [32] for a detailed study of
the single-atom case, N = 1.

To analyze the dynamics below the superradiance threshold
in the limit of N — 0o, we assume that the atoms are fully
polarized $* = % >, 07 ~ —N/2 and neglect nonlinear terms
in the equations of motion. The resulting operator equations
can be solved exactly in the Fourier domain as has been done
in detail in the work of Dimer et al. [4] and we will not
repeat their calculations here. We just add one simple point
to their comprehensive analysis; namely, that the relevant
low-frequency dynamics of the photons occurs in the presence
of a finite effective temperature. This is most easily seen from
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the equation of motion for the real-valued phase-space co-
ordinate x(w) = [a(w) + a'(—w)] /+/2wy. Defining stochas-
tic force operators f(w)= ﬁ{}" (w)[k — i(wy + w)] +
Fl(—w)lk + i(wy — w)]}, we can write the equation of motion
as

4g2wzw0

2 _ 2
w7 w

[(—K +io) +op - }x(w) = flw).  (6)

The force operator satisfies

K2—|— 2+ 2
ETRTY S0+ o).

(7

At low frequencies, we can neglect high-order terms in w.
Equation (6) becomes identical to the Langevin equation of
a classical particle in a harmonic potential with oscillation
frequency «, defined by

1
E(f(w)f(w’) + f(o) f(w) =«

Wo

4 2
o =k? +wf— g0 (®)
Wz

and friction constant 2«x. In the same low-frequency ap-
proximation, the correlation function of the stochastic force
operators on the right-hand side of Eq. (7) becomes identical
to the “noise correlations” provided by an equilibrium classical
bath at a nonzero temperature

per _ A+ _ gL ©)

o 4wy w;

In contrast to the temperature in an equilibrium problem,
the low-frequency effective temperature here is not a global
property of the system, but is in general observable-dependent.
In Sec. IVD, we present a systematic generalizable way
to extract low-frequency effective temperatures based on
observable-dependent fluctuation-dissipation relations. We
already here quote the effective temperature for the atoms
(see Sec. VI for the details of the computation):

J/z-i-a)?

4w,

T, = , (10)
where w, is the recoil energy and y is an effective single-atom
decay rate. Because Tdfff #* Txeff, the different parts of the
driven system do not equilibrate to each other and, although
the dominant low-frequency correlations are thermal, the
system is not in a global thermal state. We remark that our
definition of effective temperature does not coincide with the
one commonly used in laser theory, as discussed in Sec. IV D:
the former relates the fluctuations of the field to its response in
the rotating frame, while the latter compares the fluctuations
of the field to an equilibrium situation in the laboratory frame.

B. Photon-flux exponent

The Langevin equation (6) becomes dynamically unstable
at the Dicke transition, correspondent to the point where o
vanishes or, equivalently to the critical coupling

Wt + k2
g = ——uw,. (11)
4(1)0
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Upon approaching the Dicke transition, the number of
photons diverges as |g — g.|™", where v, is called the
“photon-flux exponent” [5]. For the present nonequilibrium
Dicke transition, it was found [5,6] that v, = 1, in contrast
to the equilibrium case of a quantum phase transition at zero
temperature [11], where v, = % We now explain that this
discrepancy is due to the finite effective temperature of the
low-frequency fluctuations of the system.

The photon number is related to the fluctuations of x by

2

2(n) + 1 = 2w((x*) + (p*)) = 2a)0(1 + %)(ﬁ. (12)
0

Here we defined p =i(a — a')/~/2wy and, by repeating

the above derivation of the Langevin equation, observed

that (p)2 = (Kz/a)(z))(x)z. We can compute (x?) using an

equilibrium partition function equivalent [33,34] to the (low-

frequency limit) of the Langevin equation (6):

F ) 1,
Z =exp —@ , with F = Ea x“. (13)
Performing the Gaussian integral we obtain
i et 1
2m)+1 =21+ = |Joo=5 ~ ——,  (14)
W} o 18 — &l

leading to the correct photon-flux exponent v, = 1.

The above results indicate that, from the point of view
of phase transitions, it is incorrect to call the driven Dicke
transition a quantum phase transition even though it is “made
of quantum ingredients”, i.e. two collective motional states
of a Bose-Einstein condensate (BEC) [2]. Instead, it should
be regarded as a classical phase transition belonging to the
dynamical universality class of the classical Ising model
with no conserved quantities and infinite-range interactions,
a mean-field version of the “Model A” of Hohenberg and
Halperin [35]. The effect that dissipation induces a finite
effective temperature is not new. In several other condensed
matter systems [36—38], the coupling to a nonequilibrium bath
typically admixes the pure many-body states of the closed
system, transforming pure quantum phase transitions into
thermal phase transitions (see also Refs. [16,17,22,39,40]).
What is perhaps more surprising is that both the low-frequency
effective temperatures of the photons and of the atoms are
not set by the cavity loss rate «, but rather by the atom-
photon interaction g and the effective single-atom parameters,
respectively.

As a side remark we note that, being complex-valued
objects, the photons have two normal modes, or ‘“quara-
tures”. One quadrature is thermally amplified and diverges
at the Dicke transition. The second, orthogonal quadrature is
quantum squeezed [4], remains gapped at the transition, and
therefore does not influence the thermal nature of the phase
transition. These attenuated and amplified quadratures arise
naturally as the eigenmodes of the photon correlation function
(see Sec. IV B).

C. Dynamic critical exponent

In addition to the photon flux exponent, we identify a
second indicator of criticality: the dynamical exponent. This
exponent governs the decay of the two-time correlations close
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to criticality. Going back to the Langevin equation (6) and
keeping the w” terms we obtain

(Vo 4+ 2ikw + aP)x(w) = f(w), (15)

w(2)+K2+w2

(f@) f() =« do+o),  (16)

wo

where we defined a dimensionless parameter V =14
dwyg? /wf. For simplicity we further approximate V & 1 and
obtain the correlation function?
{2().£0)) = G (1)
/ do ;.. K(w%—i-/cz—i—a)z)
=i [ —e
2 200[(2kw)? + (a2 — w?)?]
e—fK
= Stz (@8 + % + a?)eos(vnr’)

+ iV m2 (@} + 12 — o¥)sinvm?n)], (A7)

2

where we defined m?> = a?> — 2. In the vicinity of the
transition, for 0 < @ < «, the frequency m becomes purely
imaginary and the oscillatory behavior in the above expression
disappears. This is a generic feature of dissipative phase
transitions (see Appendix C). For sufficiently large times and
approaching the transition « — 0 (where only the closest pole
to zero contributes), we then obtain

2 2
L

({(2@®),20)}) = Rora? (18)
wot
The correlation time
2K 1
=~ (19)
o lgc — g™

is governed by a dynamical exponent v, = 1.

The remainder of the paper is dedicated to the development
of a unified and generalizable Keldysh approach. The Dicke
model will be used as a prototypical test object and we compare
our results to those of other approaches, where available.

III. KELDYSH APPROACH FOR CAVITY VACUUM

In this section, we introduce the real-time Keldysh formal-
ism and fix our notation by considering the case of a single elec-
tromagnetic mode in an open cavity (without atoms). We also
indicate how to relate the operators of the master equation (2)
to the field content and choice of time contour in a Keldysh
action (see also Refs. [15,18,41]).

The decay of a single boson (the cavity photon) into a
continuum of modes (the external vacuum) is described by the
master equation

do = —ilwod'a, pl +k(apa’ —{a'a, p)).  (20)

This equation results from the (fully unitary) Heisenberg
equation for the coupled system-bath setting, where the system

2In the vicinity of the phase transition the approximation V = 1
is justified only if @] + k> < w?. However, both the qualitative
behavior of the correlation function and the analytic expression for
the long-time asymptotics remain the same even beyond this limit.
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is described by the degrees of freedom @, @' and the bath by a
continuum of harmonic modes. Equation (20) is obtained by
eliminating (“integrating-out”) the bath in the Born-Markov
and rotating-wave approximation (cf., e.g., Ref. [27]).
The integration of the bath variables gives rise to an effective
evolution including dissipative terms. Performing the same
program in the path-integral formulation, we obtain the
Markovian dissipative action

o0
S, = / dt{a’(id, — wop)ay — a*(id, — wo)a_

[e¢]

—ik[2ara’ — (ala, + afa_)]}. 21

In the path-integral formalism, the quantum mechanical
operators are replaced by fluctuating, time-dependent, and
complex-valued fields (we omit the time argument for no-
tational simplicity). The fact that the density matrix can be
acted on from both sides, as reflected in the Heisenberg
commutator structure of the original evolution equation, finds
its counterpart in the presence of a forward (+4) and backward
(—) components of the fields. The former is associated to an
action on the density matrix from the left, and the latter to the
right. Indeed, in the first of line of Eq. (21) there is a relative
minus sign between the terms involving the two components,
reflecting the Heisenberg commutator structure of Eq. (2).
The terms in the second line instead display the characteristic
Lindblad form; the “jump” or “recycling” term is represented
by an explicit coupling of the two contours.

It is convenient [19-21] to introduce “center-of-mass”
and “relative” field coordinates, a, = (a4 +a-)/ «/E,aq =
(ay — a_)/~/2. These new coordinates are often referred to as
“classical” and “quantum” fields, because the first can acquire
an expectation value while the second one cannot. In this basis,
and going to frequency space, we write

¢ /(a* a*)< 0 [GA]I(a»)(ad) o)
T L\IGR  w) DR (w) ag )’

where we used the notation [ = [* 42 and ag.(t) =
fw et a 4(). This classical-quantum basis is often referred
to as the RAK basis: the entries are the inverse retarded (lower
left) and advanced (upper right) Green’s functions, and the
inverse Keldysh component. The RAK action (22) can be

easily inverted to deliver the photonic Green’s functions

(Gk(w) GR(“’)>‘ 0 [T @)
Gl 0 ) \[GF] () ’

DX (w)
(23)
where the Keldysh Green’s functions is a matrix product
GK(w) = —GR(w)DX(0)GA (). (24)

For the open cavity of Eq. (21) the RAK inverse Green’s
functions are

R/A

(G =w—wo+ZF, DK =3xK (25)

with the “self-energies”
A .
X = —ik,

IR = 4ik, =X =2ik. (26)
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It is a key property of a Markovian system that the Keldysh
component Z}f, in Eq. (26) is frequency independent. As can
be seen from Appendix A, this is due to a separation of scales
between (i) the large pump (w,) and cavity (w.) frequencies,
which are both optical frequencies in the terahertz range
(~10" Hz corresponding to temperatures T ~ 10* K), and
(ii) the characteristic frequency of the electromagnetic vacuum
outside the cavity (<10'> Hz corresponding to temperatures
T <300 K).

In the literature, it is often argued that a frequency-
independent non-zero inverse Keldysh component indicates an
effective finite-temperature state. The Markovian lossy cavity
is a simple counterexample: Even though the inverse Keldysh
component is constant ~2ik, the state is pure and the effective
temperature zero, as we will argue below.

We next introduce the key propagators that encode the
systems’ response and correlation functions. In equilibrium,
the two are rigidly related by the Bose (or Fermi) distribution
function; out of equilibrium, no such a priori knowledge is
available, and it is important to distinguish them.

A. Cavity spectral response function

The spectral response function encodes the system’s
response to active, external perturbations such as time-
modulated external fields coupling to spin or charge operators.
The spectral response function is the difference between the
retarded and advanced Green’s function:

A(w) = i[GR(w) — GA(w)]. 27
In the scalar case considered here, we have
Auat (@) = —2ImGR (), (28)

The frequency-integrated spectral response function is nor-
malized to unity, because of the exact commutator relation of
the bosonic degrees of freedom:

dw A

7 Aaat (@) = ([a,a") = 1. (29)
This “sum rule” is an exact property of the theory valid in—and
out of—equilibrium. In our example of one cavity mode,

2K
(@— w0 + 1>

Aaaf(w) = (30)

B. Cavity correlation function

The correlation function encodes the system’s internal
correlations, such as the frequency-resolved photon spectrum
of the intracavity photon fields. In the steady state, the photon
correlation function is related to the Keldysh Green’s function
by

Caat (1) = ({a(1), @'(0)}) = (a(1)a' (0) + a()a(1)) =i GX (1).
31)

Here the last identity is valid only in the specific case of a
scalar Keldysh Green’s function. At equal times this relation
results in

Caai(0)=2(&fa)~l—1=iGK(t=0)=i/;l—:GK(w). (32)
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For the single decaying cavity mode, characterized by
Egs. (22)—(26), it is easy to show that C,,i(®) = A,.1(w)
and the frequency integral over the Keldysh Green’s function
is unity yielding (afa) = 0. As expected, the steady state
corresponds to the cavity vacuum.

C. Comparison with closed system at equilibrium

In the absence of dissipation, the cavity becomes an isolated
harmonic oscillator. Its inverse Green’s functions are still given
by Eq. (22) with the self-energies serving only as regularization
parameters. At equilibrium,

E?,EQ = —le, ECEEQ = +ie, E(EEQ((;)) = 2ie coth [%]
(33)

Here, ¢ — 0 at the end of the calculation and T is the actual
temperature. Note that the Keldysh component is odd with
respect to the frequency, ZEEQ(—a)) = —EEEQ(a)), while in
the Markovian system (26) it is even.

Using Eq. (33), we obtain

2
AR () = lim €

Doy e THOTw

2e
C*w) = lim ———— coth —
aat (@) e (w — wp)? + €2 0 2T

1)
= 2ncoth2T8(a) o). 34)
In this noninteracting case, the spectral response function is
fully centered at the isolated mode with frequency wy. We
observe that, formally, the thermodynamic equilibrium limit
can be seen as a situation with an infinitesimal loss, replacing
k — €, and the replacement in the inverse Keldysh component
2ik — 2ie coth 3%.

D. Cavity distribution function and low-frequency
effective temperature

The response and correlations allow us to define a
fluctuation-dissipation relation, by introducing the distribution
function F(w):

GX(w) = GR(w)F(w) — F(w)G*(w)

& D¥(w) = [GR()] ' Fo) — F)GA )],  (35)

where the equivalence holds due to Eq. (24). At thermal
equilibrium the distribution F is universal and equals to the
unit matrix times

FEw) = coth — = 2ng( 2 ) +1.
(w) = co T ng T +
Frl(@) = sgn(o),

(36)

F, a)<<T(w) ~ © + B
with the Bose distribution ng(x) = (expx — 1)~!. The unit
matrix in field space signals detailed balance between all
subparts of the system.

In the present case, the system is out of equilibrium due
to its driven and dissipative nature. A notion of a temperature
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is not a priori meaningful: Neither must the driven system
equilibrate to an external heat bath with temperature 7 (in our
case, due to the separation of scales underlying the Markov
approximation, this temperature would be effectively 7 = 0
compared to the system scales), nor do the different subparts
of the system have to equilibrate with respect to each other. In
this work, we argue that a notion of a temperature nevertheless
emerges as a universal feature of the low-frequency domain of
Markovian systems. It is introduced by computing the F matrix
through Eq. (35) and comparing the low-frequency behavior
of its eigenvalues with the equilibrium result of Eq. (36). In
particular, if F has a thermal infrared enhancement ~1/w
for small frequencies, its dimensionful coefficient is identified
as an effective temperature. This notion of a “low-frequency
effective temperature” (LET) becomes particularly relevant in
the vicinity of a phase transition, where the spectral weight
encoded in G®, G* is concentrated near zero frequency.
Below, we will use this concept to establish a connection
between Markovian quantum systems and the classical theory
of dynamical universality classes according to Hohenberg and
Halperin [35]. Moreover, we find that, while all are governed
by the 1/w divergence in the distribution function, different
subparts of the system exhibit different LETs. In contrast to the
global temperature present in thermodynamic equilibrium, the
LET is not an external parameter but rather a system immanent
quantity, determined by the interplay of unitary and dissipative
dynamics.

In case of a decaying cavity, the Green’s functions are
scalars and we can easily invert Eq. (35) to obtain

_ GK((U) _ Caa'f(w) _
~ GR) - GM @) Aui(@)
confirming that the cavity vacuum has a zero effective
temperature. Moreover, as for a pure quantum state in the
equilibrium case at T = 0, the distribution function here also
squares to a unit matrix, F2(w) = 1.

An important difference between the zero temperature
equilibrium case and Markovian case appears in the sign
of the distribution function. In the former case (as for any
equilibrium distribution), F(w) is antisymmetric with respect
to the frequency w. On the contrary, for a Markovian bath
the distribution function is symmetric with respect to w; one
signature of a strongly out-of-equilibrium system.

F(w) 1. (37)

IV. KELDYSH APPROACH FOR PHOTON OBSERVABLES

We now analyze the Dicke model Eq. (1) with the
path-integral approach explained in the previous section.
We include cavity photon loss but defer the inclusion of
dissipative processes for the atoms to Sec. VI. Assuming
homogeneous qubit-cavity coupling, one can use the large-N
strategy of Refs. [9] and [11]. We introduce collective large-N
spin operators S, = %Zf\;l of and §* = %Zf\’:l(oﬂ' +0,7)
to write the Dicke model (1) in terms of one large spin coupled
to the cavity photon mode,

2g .
H =wod'a + w,S. + —=85*@a' + a). (38)
0 Y4 \/N

We then express the spin in terms of a Holstein-Primakoff
[11,42] boson operator b, defined by S, = —N/2 + b'b, St =
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VN —ibt ~ /N1 —i/2N)|bl, and §* = (ST + 57)/2.
Neglecting unimportant constants we obtain the normal or-
dered Hamiltonian

PO A A 1 A o~ PN
H=wyd'a + w.b'b + ga + Eﬁ)[b + b — mzﬁ(bT + b)b].
(39

At N — oo, the last, nonquadratic term vanishes and the
problem reduces to a linear system of two coupled bosonic
degrees of freedom one of which (the cavity mode a) decays
into a Markovian bath. As outlined in Sec. III, we can transform
the Liouvillian (4) with Hamiltonian (39) into an equivalent
Keldysh action with

S:Su+Sb+Saba

o fonf, )
b — Y cl*Yq w— w, 0 bq )

where S, is given by Eq. (22) and the interaction in terms of
the “classical” and “quantum” fields reads

40)

Suv = —8 / [(ay + a)bet + b)) + (@ + aZ)(by + )]

1
- m{[(acz +ay)(by + b)) + (ag + ay)(ba + byp)]
X [b:]bcl + b;bq] + [(aq + a:;)(bcl + bjl)
g + @b, + BNBD, + blbal). (D)

We now demonstrate that the static saddle-point solutions
of this action reproduce the results of other approaches [4].
Varying S with respect to the quantum components of the fields
and substituting a.(t) = ﬁao, b(t) = \/Ebo, a, =0,b, =
0, we obtain the coupled equations

95 (o +iK) 1= L) =0, @)
= (—w IK)ag — I — =Y,

aa;‘ 0 0—8&8 N O 0

as 3 *

where we chose by = bjj. These saddle-point equations admit
solutions with nonzero “ferromagnetic’ moment by and
superradiant photon condensate ay,

N 2 52 2 _ 52
b():jl: s g gc’ a0=:|: /2Nm, (44)
V 2 g2 Wy — ik

for atom-photon couplings larger than a critical value

2 2
wy + K

s 45
4en Wz (45)

8 > 8=

in agreement with the results known from the literature [5,6].
We are now going to integrate-out the atomic field b and obtain
an effective action describing the photons in the normal phase
(g < gc), where ap = by = 0. In Appendix B, we give the
corresponding expressions in the superradiant phase.

In the limit of N — oo, we can safely neglect the terms
proportional to 1/N in Eq. (40). We can rewrite Eq. (40) as an
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8 x 8 matrix multiplying the eight-component fields:

ac(w)
az(—w)
bei(w)
Vo) = | (46)
aqg(w)
a(—w)
by(w)
by(—w)

with the action

Sy =

| =

, 0 A0
f VJ(w)( _ [ (w)> Vy(@). (47)
@ [Gf><4] (a)) Dfx4

The subscript N stands for normal phase and the dagger T denotes transposition and complex conjugation. The block entries are
4 x 4 Green’s functions given by

o —wy+ ik 0 -8 -8
0 —w — wy — ik —g —g
[GE ] (@ = g g w—w, 0 |. Df,=2idiag(k.x.0,0). (48)
-8 -8 0 —w—w;

To obtain the photon-only action, we now integrate-out the Holstein-Primakoff field » and get a Keldysh functional integral that
goes only over the photon fields: ZX = [ D{a* a}eSmo=la"-a] with the photon-only action

0 Ga 1"
Al(ﬂl)) ( . » [ 2>;(2] (w)) A4((l)) (49)
[szz] (w) D3 (w)

The photon four-vector collects the classical and quantum field components

Spholon [a*,a] = /

w

ac(w)
Au(w) = Z"l((c;w) , (50)
q
ay(—w)

and the block entries are 2 x 2 photon Green’s functions which we now analyze one by one.

A. Photon spectral response function

The inverse retarded Green’s function of the photons is

1 w—wy+ ik + TR (w) > R(w)
[G§><2] (w) = R * . R * ) (51)
(X7 (-w)] —w —wy — ik +[Z5(—w)]
I
where the interaction induced photon-self energy reads the poles come in pairs, such that {A} = {—A*}, meaning that
2% they either are pure imaginary or come in pairs with opposite
R (w) = — 5 < > (52) real part. The explicit solution of
w* — 7
The characteristic frequencies of the system are defined by 1 26%w 2
. R -1 : 0= — = a)+—z)—a)+i/c2
the zeros of the determinant [G5, ,] ~(w), corresponding to the do t[ GE, (w)] ( 0T 5 ? ( )

poles of the response function GX ,(w). Due to the symmetry

—< 2 )2 (54)
UX[ngz(_w)]*Ux = ngz(w), (53) w? — a)g
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Im[o] (@9 Im(w] gL Y.
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/0 e z z' ‘0 ,Re[w] 0 : z. . z‘ ‘0 >Re[a)]
) - K ° [ ] -k ®
5 c d = c
Im{w] 9= 9 Im[o] dg=g
—Wy ~wW T w (O] “—Wy) —wW ]\ . (]
/0 : z z‘ ‘0 ,Re[w] 0 : z z‘ ‘0 )RE[O)]
[ ] [ ] [ ] [ ]
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FIG. 1. (Color online) Schematic plot of the position of the poles
of the retarede Green’s funciton (54) (a) At zero coupling g =0,
two poles can be associated with the photonic mode w = +wy +
ik and two with the atomic mode w = £w,. (b) In the presence
of a finite coupling g, the modes hybridize and the corresponding
frequencies are shifted in opposite directions. (c) When approaching
the transition, two solutions become purely imaginary and correspond
to damped modes. (d) At the transition point g = g. one of the poles
approaches zero, making the system dynamically unstable.

yields four poles, schematically plotted in Fig. 1. Note that, in
the vicinity of the phase transition, two poles become purely
imaginary. This phenomenon applies to generic dissipative
transitions as we further describe in Appendix C. In particular,
it has been previously observed for a dissipative critical
central-spin model [22]. Overdamping of collective modes,
due to a similar mechanism, has also been found in dissipative
multimode systems in symmetry-broken phases [16,17].

The imaginary part of the first diagonal element of GX ,(w)
corresponds to the photon spectral response function A4,
defined in Eq. (27) and plotted in Fig. 2 for different values of
the coupling g. In the absence of atom-photon coupling g = 0
(dotted curve) there is a single resonance peak at frequency
w = wy, broadened by the cavity decay rate « . A finite coupling
g (dashed curve) “collectively Rabi splits” the resonance [43]
into two distinct peaks, corresponding to two distinct poles
of the system. Upon approaching the Dicke transition (solid
curve), the spectral weight is shifted towards the low-frequency
pole; a precursor to the superradiant cavity mode.

B. Photon correlation function

The Keldysh component of the action (49) is

K _ 2ik 0
Dyur = ( L (55)
and the Keldysh Green’s function GX ,(w)=

—ngz(w)Dszszxz(w) is a2 x 2 matrix.

The first diagonal element of Gfxz, Coat = i(lO)Gsz(IO)T
corresponds to the photon correlation function defined in
Eq. (31) and is plotted in Fig. 2. As noted above in Eq. (32), its
frequency integral gives the steady-state photonic occupation
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15
10 ¢

Aaa*(w)
(e}
I
|

Caa* (a))

FIG. 2. (Color online) Photon spectral response function A, ()
and correlation function C,,i (w) as a function of real frequencies w.
Numerical parameters: wy = w, = 1, ¥ = 0.2 (leadingto g. &~ 0.51),
and g = 0 (dotted), 0.25 (dashed), 0.5 (solid).

and can be shown to diverge at the Dicke transition according
to Eq. (12). This result will be explicitly derived in Sec. VC
using a low-frequency effective description of GX. The photon
number diverges in the steady state despite the fact that the
system undergoes photon loss, and no explicit photon pumping
occurs within the model. The reason is that the coupling
constant g is an effective parameter, which in any concrete
physical realization microscopically involves a coherent laser
drive process compensating for the loss.

The matrix structure of the Keldysh Green’s function
GX ,(w) can be conveniently exploited to compute the quadra-
ture fluctuations for a general phase angle 6

ei?
5 o

[ o io\nK
(xg(@)xp(—w)) = %(6 e )szz(w)(
where xy is defined by

%a + e_iGaT). 57

Xp =
v 26()0
The corresponding equal time, frequency-integrated fluctua-
tions (xg(#)xg(1)) = fw (xg(w)x9(—w)) are plotted in Fig. 3
and diverge at the Dicke transition for all angles 8 except for
0* defined by

0* = — tan" ' (wp /K). (58)

The angle 6* can also be obtained as the phase angle for the
nondiverging eigenmode of the zero-frequency limit of the
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FIG. 3. (Color online) Frequency-integrated equal-time corre-
lations ((x(7))?) as function of the angle 6 for different values
of the coupling strength approaching the transition at g. ~ 0.51:
g = 0 (dotted), 0.25 (dashed), 0.5 (solid). The fluctuations in the
quadrature 6* = 7 — tan~!(wy/k) ~ 1.768 are independent of the
coupling strength. Numerical parameters: wy = w, = 1.0, k = 0.2.

Keldysh correlation function, thereby naturally yielding the
attenuated and amplified quadratures alluded to in Sec. II.

Here, in the case of the driven Dicke model, the equal-time
photon fluctuations of xg* inside the cavity are independent of
the atom-photon coupling and in particular are not attenuated
below the vacuum noise level (the g = 0 limit, without atoms
in the cavity). This is different from the case of the optical
parametric oscillator [44,45] where, at threshold, the equal-
time fluctuations of the nondiverging intracavity quadrature
are reduced to 50% of the vacuum level. This difference can
be traced back to the different frequency dependencies of the
effective driving term in the two situations. In the parametric
oscillator, the driving of the cavity occurs via a classically
treated photon pump laser, and the driving amplitude is
typically set to a constant coherent field amplitude. In the
present case of the driven Dicke model, the effective driving
of the cavity is mediated by the atoms via virtual absorption
and emission of photons from the pump laser into the cavity.
The corresponding driving term ~g2w. / (a)z2 — w?) is maximal
for frequencies w of the order of the atomic detuning w, and
vanishes for large frequencies.

Nevertheless, also in the driven Dicke model, the experi-
mentally relevant homodyne spectrum G5, (w) of the cavity
output field shows noise reduction below the vacuum level in
the 6* quadrature [4]. Following the standard “input-output
theory” [44,46], it is possible to show that the homodyne
spectrum can be linked to the Keldysh response function via

2

. out 2iKk 0 R
1Gn(w) = 0 » Gr (@) — 1osa|| — 1oy,

—2i

(59)

where ||M|)> = MTM. By applying the transformation (56)
to G9%,, it is possible to compute the fluctuations of the
output quadrature (Xoyug(@)Xout9(—w)). This quantity has
been studied in detail in Ref. [4]: at the Dicke transition,
the zero-frequency component of 6 = 6* tends to the max-
imally attenuated value of —1/(4wp). It should be noted,
however, that the equal-time frequency-integrated fluctuations
(Xout, 6+ (t)Xout, 0+ (¢)) are zero and therefore not attenuated below
vacuum level.
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C. Comparison with closed system at equilibrium

In the case of a closed system at equilibrium, the retarded
Green’s function is the same as Eq. (51), up to the replace-
ment k — €, and letting ¢ — 0. The corresponding spectral
response function A4,,i(w) is similar to the one shown for
the Markovian case, with the narrow peaks substituted by &
functions at the resonant frequencies. The Keldysh component
of the inverse Green’s function reads, at zero temperature:

< _ (2iesgn(w) 0
D2><2,EQ_< 0 —2iesgn(w) |- (60)

Again note the different symmetry under frequency reflection
with respect to Eq. (55).

D. Photon distribution function and low-frequency
effective temperature

We now show that the above mentioned difference between
the Markovian case and the equilibrium case leads to the
generation of a low-frequency effective temperature (LET)
for the former. For this purpose, we calculate the distribution
matrix F, defined in Eq. (35). Recall that at thermal equilib-
rium, F = coth[w/(2T)]1: it exponentially approaches unity
at high frequencies (Jw| > T) and diverges as 27 /w at low
frequencies (|w| <« T'). For our Markovian problem, using
Eq. (49) we find

2

2
F=o, + -2
: w0 — w?

Oy, 61)

where o, and o, are Pauli matrices. The F matrix is Hermitian
and traceless, so its two eigenvalues are real and opposite:

2¢%/w, 1 ?

Figure 4 shows the behavior of the positive eigenvalue in two
points of the phase diagram, nearby and far away from the
transition. In both cases, at low frequencies the eigenvalue
diverges as 1/w. Exploiting the analogy to the equilibrium

Se(w) = ﬂ:\/l +

fi(@)

FIG. 4. (Color online) Positive eigenvalue of the distribution
function F(w) for the same parameters as in Fig. 2. At low
frequencies the distribution diverges as 27.¢/w, where the finite
effective temperature is proportional to the photon-atom interaction,
T ~ g°.
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case, we obtain the LET

T = 5. (63)
w

Z

We find that T, is not proportional to the decay rate x. The
temperature is rather proportional to the effective interaction
between the spin and the photon. The quantity g is the scale
that leads to a competition of unitary and dissipative dynamics,
and the LET is a measure of this: For g = 0, the steady state
of the dissipative part of the dynamics (empty cavity) is an
eigenstate of the Hamiltonian, while this is no longer the case
for any finite g. In the limiting case of g — 0, the LET goes
to zero.

A closer inspection of Eq. (62) reveals an important differ-
ence between the Markovian bath and thermal equilibrium,
related to the presence of a second energy scale w,. If
w; > T, this energy scale does not affect the crossover
between the quantum and classical regimes, which then
proceeds monotonically, similar to an equilibrium problem. If,
on the other hand, w, < T, the quantum-classical crossover
of the Markovian bath occurs in an unusual way, highlighting
the nonequilibrium nature of the problem. Starting from a
divergence at zero frequency, the distribution function (62)
decreases as T.i/w, in analogy to an equilibrium system at
finite temperature. Then, instead of monotonically decreasing
towards the quantum regime where f ~ 1, it exhibits a second
divergence at w = w,. Since the spectral weight vanishes
sufficiently fast in this regime, the correlation functions still
remain finite; the pole in F accounts for a different scaling of
correlations and spectral properties in this regime (cf. Fig. 2).
At higher frequencies, it finally tends to one, following the
nonequilibrium curve f =~ T4 /(w — w;). The approach to the
quantum regime f & 1 is polynomial, unlike the exponential
approach in the equilibrium case. In Appendix D, we show
that the thermal 1/w divergence, leading to a finite LET, is
generic for Markovian systems.

We note that our definition of an effective temperature
is not the one commonly used in the context of laser
theory [28]. In this context, the effective temperature is used
only to describe the fluctuations of the photonic field, as
compared to the equilibrium fluctuations in the laboratory
frame. As a consequence, the divergence of the photon number
at the phase transition is always associated to a diverging
effective temperature. In contrast, our low-frequency effective
temperature (LET) describes the ratio between the fluctuations
and the response of the system in the rotating frame. It is finite
at the transition and, as we will see, allows us to map the
Dicke transition to an existing dynamical universality class of
equilibrium systems.

V. FINITE-N CORRECTIONS FROM A KELDYSH
AND LANGEVIN PERSPECTIVE

We now move beyond the quadratic theory by considering
the effects of finite N. Based on the formalism developed in
the previous section, we approach this problem by scaling
analysis, diagrammatic technique, and mapping to a low-
frequency effective Langevin equation. As will be seen below,
these methods show quantitative agreement with a Monte
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(a) (b) classical (c) quantum (d) 2. 4
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=4S

9
Glsa N

FIG. 5. (Color online) Nonequilibrium diagrammatic expansion
of the Dicke model to leading order in 1/N. The dashed lines indicate
“quantum” fields and the dotted lines “classical” fields. (a) Bare
Green'’s function of the photons (red) and of the atoms (blue). (b), (c)
Leading-order 1/N corrections: classical vertices contain only one
quantum field, while quantum vertices contain more than one (three
in this case). (d) One-loop correction to the retarded Green’s function.

Carlo solution of the original master equation, highlighting
the utility of the present formalism.

A. Scaling analysis

Up to this point we have considered only the thermody-
namic limit N — oo. In this limit, the resulting theory is
quadratic and can be studied by Keldysh means as well as by
the Heisenberg-Langevin method. Corrections due to a finite
N introduce nonquadratic terms into the problem and require a
more careful study. The present path-integral approach allows
us to develop a diagrammatic approach and to resum all
leading-order corrections in an organized fashion. A similar
approach has been used to study the instability of an optical
parametric oscillator in Refs. [45,47,48], where however the
emerging low-frequency thermal nature of the problem has not
been discussed.

Leading 1/N corrections to the Hamiltonian of the Dicke
model are easily obtained by retaining the first-order terms in
the Holstein-Primakoff approximation [see Eq. (39)]. These
terms are expressed using the Keldysh formalism in Eq. (41)
and contain products of four fields. In a diagrammatic descrip-
tion (see Fig. 5), they correspond to four-point vertices. These
vertices can be “classical” if they contain only one quantum
field (either b, or a,), or “quantum” if they contain three
of them. The former type can be casted into a semiclassical
description of the problem, while the latter describes genuine
quantum corrections.

Before going into the calculations, let us first study the
relevance [in the sense of the renormalization group (RG)] of
the classical and quantum vertices with respect to the critical
point in the thermodynamic limit (N — oo and g = g.).
From the low-frequency expansion of Eq. (76) we obtain that,
at this point, the photonic Keldysh action corresponds to

0 —2iKkd\ [ xalt)
S.. :/dt(xcl(f)xq(t))<2i;c8 8ikT, )(X (I))’ ©9
i X q

where 7T, is defined in Eq. (9). This action is invariant under
the scaling transformation

1
X(t) > —=x,4(t). (65)
q «/X q
Repeating the same analysis for the atomic field » we again
find that, under the scaling transformation, the classical
component b, is increased by a factor +/A and the quantum
component b, decreased by the same factor. Using the scaling

xa(t) = VAxa(0),

t — Aft,
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relation (65), we find that

%/dt Qi Peibeipg — Az%fdt Db (66)

%fdt¢cl¢q¢q¢q g %/dt(ﬁ;‘i’d' (67)

Here, ¢ are one of the a,a*, b, b* fields. Equation (66)
indicates that the classical vertex is relevant in the RG sense,
while the quantum vertex is at most marginal. In the limit of
N > 1its contribution is very small at low frequencies and can
be neglected. In contrast, the effects of the classical vertex grow
as we approach the transition and need to be taken into account.
The above scaling transformation can be used to derive
the finite-size scaling of expectation values. For this task, it
is convenient to combine the scaling transformation with a
renormalization of the system size N, such that overall the
relevant vertex remains unchanged. Using Eq. (66) we find
that the appropriate transformation is
N — N = % (68)
With this modification, the theory including leading 1/N
corrections becomes scale invariant at the critical point.
Consider now, for example, the photonic fluctuations (xfl).
This object can be made scale invariant if multiplied by 1/N1/2,
indicating that
(n) ~ (xZ) ~ N2 (69)

2\l

Remarkably, the same scaling relation holds for the optical
parametric oscillator [48] but is here obtained in the framework
of the Dicke model. In fact, recent numerical calculations on
this model [49] suggested a different scaling relation (n) ~
N%, with o« = 0.41, in contrast to the present analysis.

To further supplement our analytical result, we now
consider the effects of next-to-leading-order corrections, stem-
ming from higher-order terms of the Holstein-Primakoff ex-
pansion. Their general form is g/N* fd t¢>*2k . For any k, the
most relevant term is the classical vertex g/N* i dt¢q¢1+2k.

Under the scaling transformation, this term is multiplieccll by
A1k This shows that all terms with k > 1 are irrelevant at a
tree level and cannot modify the above scaling relations.

Before proceeding, we briefly compare the present anal-
ysis with the zero-temperature equilibrium case. There, the
Keldysh component of the action would correspond to 4ix ||,
leading to the scaling transformation x,; — «/chl and x, —
\/qu. As a consequence, both classical and quantum vertices
scale in the same manner, and the latter cannot be disregarded.
To compute the finite size scaling of expectation values we
observe that

g 38
N /dt¢¢d>¢ - A N /dt¢>¢>¢>¢>. (70)

In order to preserve the scale invariance, we therefore need to
renormalize N by

,_N? N3
N_>N_k = (n) ~N'/°. (71)

This relation is known in the literature and has been shown to
be valid for the zero-temperature case, both analytically [50]
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and numerically [51]. As we explained, it does not hold for the
(nonequilibrium) thermal case presented here.

B. Diagrammatic calculations

We now use the Keldysh approach to explicitly compute
the photon occupation across the transition in the presence
of 1/N corrections. As discussed in the previous section, the
(bare) Keldysh and retarded propagators of the system are 4 x
4 matrices. In this language, quartic corrections correspond
to forth-order tensors of total size 4* = 256, which we will
denote as M. In our case the relevant corrections are [see
Eq. (41)]

% /w [(ag + a;)(be + by) + (by + b)) ac + a;)lbaby
+ (bqb:kl + b;bcl)(acl + ajl)(bcl + bjl)’ (72)

and the tensor M contains 16 identical entries, M; s, =
g/(4N).

The leading-order 1/N corrections can be computed us-
ing standard diagrammatic techniques. When constructing
one-loop diagrams one needs to remember that a vertex
connects fields at equal time. Because any field ¢ satisfies
(bq (1) (1)) = 0 and G*(0) = (¢, (1)¢a(1)) = 0, to obtain a
nonvanishing loop one needs to connect two classical edges
of the vertex. Thus, one-loop corrections renormalize only the
retarded and advance Green’s function, as shown in Fig. 5(d).
The analytic expression of the self energy is

SRw)y=iM ®/dw’gl((a)’), (73)

where the operator “®” indicates the tensorial product in-
cluding all allowed permutations of the indices. The dressed
Green’s functions should be computed in a self-consistent
manner. The resummation over all one-loop irreducible di-
agrams leads to the Dyson equation

G%(w) = =GR (@) DX (w)[GR ()], (74)

[GR @) =GR+ ZR@)GR1™. (75

Here G® and DX are explicitly given in Eq. (48). The resulting
predictions for the photon occupation are shown by circles in
Fig. 6.

C. Effective low-frequency Langevin approach
and mapping to thermal ensemble

In this section we derive a simple description of the
photon-only action (49), focusing on the x = (a 4+ a*)/+/2wy
quadrature, by mapping its Keldysh action to a stochastic
equation. Using the basic theorems of thermodynamics, we
will then convert it into an effective equilibrium free energy
and obtain an analytic expression for the number of photons
at the critical point.

We first consider the N — oo limit where (as we already
saw in Sec. II B using the Heisenberg-Langevin approach),
the Langevin equation coincides with the equation of motion
of a classical particle in a harmonic confinement coupled
to an equilibrium bath at finite temperature. Using the
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FIG. 6. (Color online) (Left) Photon occupation in the vicinity
of the Dicke transition. The circles (o) correspond to the one-loop
resummation, obtained using the Keldysh diagrammatic technique
for N = 10 (blue), 40 (red). The dashed lines correspond to the
effective equilibrium theory, Eq. (84), derived from the Langevin
equation. The crosses (4) correspond to the Monte Carlo solution
of the original master equation. The solid curve corresponds to the
mean-field solution, Eq. (14), valid in thermodynamic limit N — oo.
(Right) Photon occupation at the critical point as function of the
system size. The circles (0) and crosses (+4) represent respectively
diagrammatic and Monte Carlo results. The dashed line corresponds
to the effective equilibrium theory (85). Numerical parameters are
w;, =2.0,wy = 1.0, « = 1.0, giving g. = 1.0.

Keldysh formalism and starting from Eq. (49), we replace
a = yJwy/2(x +ip) and a* = \/wy/2(x — ip) and integrate-

out the p component to obtain

Sir =

0 GA -1 )
/[xd(—a))xq(—a))] < B [ xx(a))] ) (x [(CO)) ’
? [GX ()] DE@w) ) \x@)

(76)
where
2 2 2
DX (0) = 2i Km’
@ (77)
[GE@)]" = b
i det[GY ()]’

and the determinant of G¥ ,() is given by Eq. (54).

As is well known, any quadratic Keldysh action is equiv-
alent to a linear Langevin equation. Starting from a generic
quadratic action (76) one introduces a Hubbard-Stratonovich
“noise” field f(w) to obtain

Sup = f 2{[GR ()] xa(@) — f(@)}x,(~)

_ [0 /@)

DK (@) (78)

[This action is equivalent to Eq. (76), as can be explicitly shown
by performing the Gaussian integral over f(w), and using
GR(w) = GA(—w)—see Refs. [20,21] for more details.] Inside
the Keldysh partition function Z¥ = [ D{x,; x.; fle'S, the
integration over x, then takes the form of a § function with
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argument

[GF ()] ' xa(@) = f(w). (79)

The remaining last part of the action (78) involves only f(w)
and can be thought of as the statistical weight of a Gaussian
random variable with correlations

(f(@)f(@) = =i DS (@)8(@ + ). (80)

Equation (79) then becomes a stochastic equation of motion for
the bosonic field x(w) = x(w)/ V2, identical to the Langevin
equation (6) obtained in Sec. II B.

We now include nonlinearities for the photon dynamics
arising from a finite number of atoms N. Our starting point is
the low-frequency limit of Eq. (79), Qikw + a®)x(w) = f(w),
where « is defined in Eq. (8). To this equation we add the most
relevant nonlinear term in the from of a frequency independent
cubic term:

kd, + a2)x(t) + B3x3(0) = f(@). (81)

This equation defines the dynamical critical theory of an Ising
transition with no conserved quantities, the so-called Model A,
for n = 1 degrees of freedom and d = 0 dimensions [35]. The
frequency B can be determined from the microscopic theory
by demanding the effective Langevin description to reproduce
the same saddle-point as the original action Eq. (40). Using
x = (a + a*)// 2wy, Egs. (8) and (44) we obtain

—a2 2w0(g2 — g?) \ 2(/{2 n a)(z))z
Vi e ey

(82)

As expected, the parameter 8 vanishes in the thermodynamic
limit N — oo, where the mean-field linearized description
(79) becomes exact.

The stationary state dictated by the Langevin equation (81)
is equivalent to an equilibrium system with free energy

F(x) = a®x* + 1875 (83)

Here we recall that « is defined in Eq. (8) and vanishes at
the transition, while 8 is defined in Eq. (82) and captures the
1/N corrections. Steady-state expectation values are computed
through the thermal average

[ dxx2e=F)/ T

2 —_—_—m
(.X' ) - fdxe*F(X)/TclT :

In particular, the photon number is

K2
2(n) +1= 20)0(1 + —2>(x2)

wy

_, | 2 fdxxze—F(X)/Teff %
= <% +w_(2) [dxe FO/Ta (84)

where in the first identity we used the mean-field relation
(p*) = (x*)k?*/w]. At the critical point & = 0 and the integral
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is easily evaluated:

_ K*\ | Teir T(3/4)

3 (k2 + wp)w, T(3/4)
ol o T4

(85)

Here I'(3/4)/ T'(1/4) ~ 0.338 is the ratio of two I" functions.

To evaluate the precision of the Keldysh and Langevin
methods, we compare their predictions with the numerical
solution of the master equation associated with the Dicke
model (1) with cavity loss (4). Specifically, we apply the Monte
Carlo wave-function MCWF) method [52], as implemented in
the open-source C++ QED library [53]. (Specific parameters:
number of trajectories Ny,; = 10, time step dt = 1, number
of time steps T = 400). The resulting curves are shown in
Fig. 5. We emphasize that no fitting parameters were used
when comparing the different methods. As expected, the
numerical solution is closer to the predictions of the Keldysh
nonequilibrium diagrammatic technique than to the low-
frequency thermal effective theory. Remarkably, the difference
between these two approaches is minimal at the transition, in
agreement with our identification of the transition as driven by
equilibrium thermal fluctuations.

VI. KELDYSH APPROACH FOR ATOM OBSERVABLES

We now analyze the single-atom observables of the open
Dicke model using a method which is valid for arbitrary values
of the number of atoms, N. To this end, we represent each of
the N atoms by a real field variable ¢,, with the index ¢
ranging over all the atoms £ = 1,...,N. Our method relies
on generalizing each ¢, to have M components, ¢, with a =
1,...,M, and then taking the large-M limit; even though we
are interested in the M = 1 case, the large-M limit is expected
to properly describe the physics of models with long-range
interactions [12,54]. Although we will mainly consider the
large-N limit in the present section in the interest of comparing
with previous results, it is important to note that the present
method does not require the large-N limit and is valid for
general values of N. Also, in the interests of simplicity,
we will not write out the a index and directly present the
large-M approximation in the context of the physical M = 1
case.

This single-atom representation of the Ising spins allows
us to treat the qualitative effects of atom dissipative dephasing
within a simplified “friction model” for ¢,, which we explain
below. This process couples directly to the local Ising degrees
of freedom of the single atoms. The same is true for disorder
due to spatial variations of the qubit-photon couplings [12]. In
such cases, one cannot employ the single large-N Holstein-
Primakoff representation of the Dicke model.

We proceed by introducing into the path integral
N Lagrange multipliers A,, corresponding to a suitable
Fourier representation of the § function [12,55], 5(¢z2 -1 =

[dx exp™@=1_ On the closed time contour, this amounts to
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adding the following expression to the action:

-1
2w,

N
PR G ROES]

! =1
—he—[¢7 (1) — 1]} (86)

Moving to the “classical” and “quantum” notation and adding
the bare action of the atoms we obtain

1 o -1 ¢cl,€(a))
o /w ; (fet.e(—)pg.e(—)) Gy, ( b (w))

1 N
T [Z g0, (87)

=1

Syt =

Spp =

—hqt

. @ — A + Eﬁl(w)
Gop =\ R
@~ — Acle + E(b.((m)

—Aqe + I (@)
Note that \/A., can be associated with the excitation energy
of the Ising spins and is to be determined self-consistently. The

atom self-energies E};’ ?/ K(w) will be explained below.
Finally, we have for the atom-cavity interaction:

N
Spa = / > §{¢+,z(1)[a+(1) +ai ()]
f =1

—¢—(®)la_(t) +a* )]} (88)
The Keldysh action for the full Dicke model (1) then becomes
Sla,¢,X] = Sq + Spg.0. + Sga; (89)

with the various terms given by Eqs. (22), (87), and (88).

We model local, single-atom damping in a simple effective
way which is consistent with symmetry properties of our
real-valued Ising oscillators ¢. The atoms are subject to
decay into photon modes outside the cavity and possible
other damping mechanisms like s-wave scattering with other
momentum modes, trap loss, or finite-size dephasing [56]. As
aresult some fraction of the atoms leave the two-density mode
Hilbert space which maps to the Dicke model; others may be
spontaneously scattered back in. Representing the atoms by
a complex field ®*, ®, we subsume the above processes into
Markovian decay of the atoms with the self-energies

T4 =—iy, Z§. =+iy, 5 =2iy, (90)
with y being an effective single-atom decay rate. Our effective
real-valued Ising field in Eq. (87) may be viewed as the
real component of the originally complex boson ®g/(7) =

\/g [¢q/c1(t) + idg/ci(?)]. Integrating out the ¢ component,

M w) = —iyw, TRw)=+iyo,
¢ ¢ o1)
w® + 7/2 + a)g

X w) =i
¢(w) y 20,

Note that this simple model for dissipative dephasing couples
to the o, projection of the atomic states and does not specify
the states of the o, projection of the spins. We emphasize,
however, that the form of the dissipative self-energies is
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dictated by the combination of low-frequency expansion and
the real-valued nature of the Ising field ¢. In particular, a
frequency-independent term is ruled out for ¥ and XR. The
above results for Markovian baths should be compared with
the results for atoms in equilibrium,

Eq’?’EQ(a)) = —iew, EE,EQ(w) = +tiew, ©2)
K . w
E¢’EQ(w) = 2iew coth 57 |

where one also lets € — 0 at the end of the calculation.
We here analyze the Dicke model in terms of the atomic
degrees of freedom alone. One can exactly integrate out the
photons from the action (89). This is conveniently done by
going to a coordinate representation of the photons, aqci(t) =
\/% [xgc1(?) +ipq/a(?)], and first performing the integration

over pyc and subsequently over xq.. We obtain, with Sgg »
given by Eq. (87), the atom-only action,

S[p. A1 = Spp + Spp.2- (93)

1 N2
Spp.e2 = _5/ Z %[¢cl,l(_w)¢q,f(_w)]

@0 m=1

0 *@) (un@)
) (oR(w> oK(w)>(¢q,m(w)>’ oY

A 1 ]
Sy, A] = w—q+82 (UR(O)lﬁCIWq + EUK(O)Wj) + %/ (ln {A

Zz
g @,
4 1q(ZHO0) = Aq) + 23

— Aqlo RO + X0y}

Taking N — oo, we now extract the phase diagram, response

and correlation functions, and the value of the order parameter
using a saddle-point approximation. This can be obtained
by requiring the derivatives with respect to A, and v, to be
zero, and then substituting Aq = 0, Aq = A, ¥q =0, Yo = .
The derivative with respect to A4 constrains—by construction
Eq. (86)—the frequency integral of the Keldysh Green’s
function to be equal to unity:

oS dw
— =0 = | —iGE, (w) =1, 98
g = (¢7) / 27_[[ ¢¢(0)) (98)
with
—0.X¥w)
Gyp(@) = 2 A — 2 R
Z[a) — A+ E¢(a))] [a) — A+ E¢(a))]
2.2
8w 2
—2m8(@) 5 [oR(O)] v2. (99)
The saddle-point condition for the order parameter yields
0S g'w, a*(0)
— =0 11— -—— | =0. 100
70 = w[ > (100)
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where the matrix entries are
—2600

R _ A *
o) =l = o

95)

Our analysis of the above theory will rely on the approxi-
mation of substituting the N Lagrange multipliers by a single
effective field Agc1.¢ — Aq/q- This “spherical” approximation
for the Lagrange multiplier becomes exact in the limit of a
large number of internal spin components M — oo. It can be
shown that the critical behavior is not qualitatively modified
for any finite value of M including the Ising case M =1 of
the present paper [54].

The above method is valid for arbitrary values of N, and we
will describe the general-N solution below in Sec. VI E. How-
ever, first we present a method which efficiently treats the N —
oo limit. We decouple Eq. (94) with a Hubbard-Stratonovich
field Y¢(w) <> ¢¢(w) and integrate out the ¢ field. We assume
¥ to be time independent and spatially uniform v(w) —
¥/(2m)d, 0, and the resulting Keldysh partition function

7K = / Dy D) exp <i%8[¢,k]>, (96)

obtains a prefactor of the number N of atoms in the exponent
multiplying the action

a[Z5 @)= + [0° = 2a + ZR@)][0” — ha + T@)]})

{[Z50) = 2q]le RO Y5 + 22a0 R 0)Yglo R O) e + o (0)¥]

To determine the position of the Dicke transition, we need to
compute the saddle-point value of A,; = A in the normal and
in the superradiant phases and equate the two values. In the
normal (N) phase A is determined by Eqgs. (98) and (99) with

Y =0:

Y2+ a)f
Note that naively taking y — 0 does not reproduce the
equilibrium value for Ay; cf. also Sec. VIC. In the
ferromagnetic (FM) phase the order parameter acquires a

finite expectation value v % 0 and, to fulfill Eq. (100), we
require the argument of the square bracket to be zero:

AN

(101)

ApM = -, (102)

where we have used Eq. (95) for oR(0). At the phase
boundaries both Egs. (101) and (102) must hold, leading to

gcz\/(yz-l-a)g)(,cz_’_wé)‘

3wow,

(103)
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Therefore, the spontaneous emission weakens the effective
photon-atom coupling and shifts the Dicke transition to large
values of the coupling. This effect can be understood in terms
of the atom’s depolarization, leading to a reduction of the
effective number of atoms contributing to the superradiant
transition.

Equations (98) and (100) determine the value of ferromag-
netic order parameter i as well. When approaching the phase
transition from above (g > g.), ¥ vanishes as

13(g + g
1//: %\Mg_gm

Compared with a closed system at equilibrium, Eq. (108),
the order parameter for this open Markovian system vanishes
with enhanced amplitude but with the same mean-field—like
square-root exponent.

(104)

A. Atom spectral response function

The single-atom retarded and advanced Green’s function
are determined by the derivative of Eq. (97) with respect to A
and reads

R _ A *_ @;
Goo(@) = [Gyy(@)] = 201428 @] (105)
from which follows the spectral response function
Apg(@) = —2ImG () (106)

as the expected frequency-resolved signal from the atoms
after local, time-modulated density perturbations. Figure 7
displays the characteristic Lorentzian shape of the spectral
response function peaked at /A, broadened by single-atom
decay ~y. The single-atom response is smooth across the
transition. This is not to be confused with the roton-type mode
softening observed by Mottl et al. [56] that pertains to the
collective atomic density excitations for a finite number of
atoms.

B. Atom correlation function

The atom correlation function is given by the Keldysh
Greens function (99),

Cop(w) = iG§¢(w),

where G§¢ is defined in Eq. (99) and is exhibited in Fig. 7.
Even before the onset of the superradiance peaks (black and
blue-dashed arrows) for g > g., the correlation function has
finite weight at @ = 0. This is the nonequilibrium signature
of the dissipative dephasing of the pumped atoms due to
coupling to the vacuum outside the cavity (a continuum of
modes with characteristic frequencies orders of magnitudes
lower than the optical photons the pumped atoms emit when
they spontaneously decay and absorb).

(107)

C. Comparison with closed system at equilibrium

Note that taking «k — 0 and y — 0 in Eq. (103) does
not reproduce the equilibrium value for a closed system.
This is due to noncommuting limits of making the Markov
approximation and performing the integral to fulfill the sum
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FIG. 7. (Color online) Atomic spectral response function 4y, (@)
and atomic correlation function Cyy(w) in the normal phase (g < g,
green, dashed) and in the superradiant phase (g = 1.2g., black, solid).
Other parameters used are wy = w, = 1, y =« = 0.2 (leading to
g ~ 0.6). The arrow illustrates the §-function contributions from
Eq. (99) in the superradiant phase.

rule (98). To obtain ng one needs to use the equilibrium bath
self-energies (33) and (92) from the start of the calculation and
obtains the equilibrium analogs of Egs. (103) and (104):

1
Y= —VE s

1
EQ _ /
8 = 5/ W0,
2 NG

(108)

We note that both dissipative channels, cavity photon loss,
and atomic dissipative dephasing shift the critical value of the
coupling. The amplitude with which the ferromagnetic order
parameter vanishes is also different.

Note that in a model for “one-way” spontaneous emission
coupling to ot and o~ starting from a fully polarized
atomic state as assumed in Sec. II A, one would recover
the equilibrium limit for y — 0. As explained above, our
dissipative dephasing model for spontaneous emission couples
to o and thereby assumes a mixed state of the atoms (similar
to a many-body paramagnet).

D. Atom distribution function and low-frequency
effective temperature

We now execute the procedure of Sec. III D to calculate the
effective temperature of the atoms. With the atom Green’s
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FIG. 8. Distribution function Fy4(w) for the same numerical
parameters as Fig. 7. The expression for the distribution function
(110) is independent of the atom-photon coupling g.

functions and the simple model for atom decay presented
above, one finds

Fooele@ __ Cw@ _ o4yiterl
P Agp(@) T GR () — Gy () 20. o
(109)

leading to the effective temperature

2 2

+
e =Y T (110)

4w,

which is independent of the coupling strength to the photons
(cf. also Fig. 8). For y < w;, the effective temperature is
set by the recoil energy of the atoms Er = w,/2. Within our
model, Td‘fff also does not depend on the cavity loss rate «,
contrary to what one obtains for the model of Ref. [13]. In
our case, the reason for this is the careful treatment of the
thermodynamic limit N — oo limit leading to Egs. (93) and
(97). This limit ensures that the only photon-induced self-
energies for the atoms occur for zero-frequency quantities [the
weight of 6(w) in Eq. (99)].
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Aoo(w)
(=)

-1.0 -0.5 0.0 0.5 1.0

FIG. 9. (Color online) Finite-atom-number signatures in the
single-atom local spectral response function. Numerical parameters
used are g = 0.4g., x =y = 0.2. Line coding is N =2 for the
black curve, N =3 for the blue-dashed curve, N =4 for the
purple-dashed-dotted curve, N =5 for the red-dashed curve, and
N = 6 for the orange-dashed curve. The second peak at w = 0.4 for
the black-solid curve is pushed to higher energies until, for N 2> 6,
only the dominant peak at w ~ 0.25 remains.

E. General-N solution for spectral response function

The results presented above refer to the N — oo limit.
However, as we noted earlier, this limit is not really necessary,
and the methods of this section can produce general-N results
relying only on the M — oo limit.

We now compute finite-size-N corrections to the single-
atom spectral response function, thereby underlining the
strength of Keldysh path integrals to perform systematic
approximation schemes. It should be noted that, in contrast
to the photons’ correlations computed in the previous section,
the single-atom correlation functions do not diverge at the
transition and do not need to be regularized by the number
N of atoms. Thus, for typical cavity QED experiments where
the number of atoms is of the order of 10° to 10°, deviations
fromthe N — oo limit will not be observed in the single-atom
observables. Nevertheless, the few-body regime might become
interesting in future applications.

To study the finite-size effects, we write Eq. (93) as a RAK
matrix of N x N matrices:

(1)27 A(J)
il 0 RS, — 1820 @) \ [ pan(@) .
/Z (Pa.c(—0)g(—0) 0’ A+ E5(@) 1,2 R | K 1,2 K Pgm@) )’ (1
@ g m=1 —Om — 38707 (0)  FXg(@)dm — 53870 (w) q.m

where we have not rescaled the coupling g by N and used
the saddle-point values for the other variables. The bottom-
left element of the N x N matrix inverse gives ng, (w), from
which follows the spectral response function [see Eq. (28)].
To invert this matrix we note that all its diagonal and off-
diagonal elements are separately equal to each other. Using
this property, we obtain that the local response function is

GR() 1 1 w;
w) = _ — _—
¢ N) w?—A+iyow

1 w;
+—— T (12
N w* - A +iyw—3Nw.g*cX(w)

We observe from this expression that, as N — oo, only the
first term survives, shown in Fig. 7. At finite N an additional
mode appears in the single-atom spectrum, which vanishes as
N becomes large, as shown in Fig. 9. The presence of two
modes, the atomic and photonic branch, also emerges from an
analysis in terms of collective polaritonic variables [11].

VII. CONCLUSION

In this paper, we presented a path-integral approach for
the nonequilibrium steady states of driven quantum systems
coupled to Markovian baths, such as ultracold atoms in optical
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cavities. In the past, these systems have more often been
described using a master-equation formalism. We believe
that our Keldysh approach allows an easier comparison
with other equilibrium and nonequilibrium (classical and
quantum) systems. While some of the results presented here
are actually different, and not just known results rephrased
in a new approach, the full utility of our approach will
become clear when computing thermodynamics and critical
properties of large open systems with spatially fluctuating
degrees of freedom such as disorder [12,14]. In these correlated
quantum many-body situations, master-equation approaches
are typically limited to a relatively small number of atoms
and a recipe to compute disorder-averaged quantities does not
seem to exist.

We first applied our formalism to the cavity vacuum
(Sec. III) and subsequently added atomic qubits interacting
with the cavity through a Dicke interaction and computed
the key observables for both the photons (Secs. IV and V)
and atoms (Sec. VI). The key points of our analysis are the
following:

(1) The fluctuation-dissipation relation of a single cavity
coupled to a Markovian bath in the rotating frame, Eq. (37),
differs from the thermal-equilibrium case. In the former case
the bath contains both positive and negative frequency, while
in the latter it can contain only positive frequency, leading to
a different symmetry with respect to w — —w.

(2) Nevertheless, in the presence of a drive, the low-
frequency distribution functions of the photons and atoms
are thermal-like and diverge as ~1/w, allowing the definition
of a low-frequency effective temperature (LET). The LET
of the photons, Eq. (63), and of the atoms, Eq. (110), are
however different, highlighting the nonequilibrium nature of
the problem.

(3) At higher frequencies, the distribution functions dis-
play nonequilibrium and quantum behaviors. For example, the
photon distribution contains a gapped mode, Eq. (58), whose
quantum fluctuations remain identical to the zero-temperature
case throughout the transition.

(4) The thermal-like divergence of the distribution func-
tions determines the critical properties of the “superradiant”
phase transition. In particular, the photon number diverges
as 1/|g — g¢| for N — oo and scales as N'/? for g = g.
Both results coincide with the equilibrium behavior of a
Landau-Ginzburg model at finite temperature, Eq. (83), and
differ from the well-studied zero-temperature case (where one
obtains 1/|g — g.|'/? and N'/3).

(5) Dissipative dephasing processes involving single atoms
can also be studied using nonperturbative techniques. As long
as the symmetries of the original model are preserved, a Dicke
transition is still expected, but its position may be strongly
renormalized even for small decay rates, Eq. (103), due to the
depolarization of the atomic ensemble.

(6) Within the nonlinear-sigma-model approach (Sec. VI),
we can obtain the spectral properties of the single atoms for
general finite values of N across the phase transition in the
dissipative Dicke model.

In the future, it will be interesting to apply our approach to
dissipative quantum glasses coupled to Markovian (and other)
baths such as potentially achievable in multimode optical
cavities [12—14] or circuit QED [57]. It would also be desirable
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to obtain a more general classification of conditions under
which quantum phase transitions of closed systems are turned
into thermal phase transitions by dissipation—and perhaps to
find counterexamples by engineered dissipation along the lines
of Refs. [39,40,58].
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APPENDIX A: SELF-ENERGY OF OPEN CAVITY
IN ROTATING FRAME

In this appendix, we discuss how the coherent drive with
a frequency scale w), that exceeds all other frequency scales,
justifies the form of the Markovian dissipative action (21),
which in particular displays frequency-independent terms
only (delta-function correlated in time), and neglects memory
effects.

Our starting point is the Hamiltonian of a single boson a,
coupled to a continuum of vacuum fields v, via

H, = wcaTa + Za)kl//glﬂk + gk(afwk + awg).
k

(AL)

Here g is the coupling constant between the cavity boson and
the external vacuum, and we neglected counter-propagating
terms of the form a“ﬁ,ﬁ . Equation (A1) is quadratic in v,
allowing us to analytically integrate-out the vacuum fields and
obtain a cavity-only action of the form (22). If we assume
that the vacuum fields are kept at an equilibrium temperature
Text = 300 K, the corresponding entries are

[GR)] ' = 0w —w. — 8w +iK(w),
(A2)

DX = 2iK(a))coth< d )
ZText

Here §w corresponds to the Lamb shift and can be absorbed
in a finite renormalization of w.. The function K(w) =
> g,%|8(a) — wy) is the spectral density of the vacuum.

The inverse Green’s functions (A2) describe the cavity
mode in the laboratory frame. In practice, it is often more
convenient to move to a frame rotating with a constant
frequency, in our case corresponding to the pump frequency
wp. In this frame, the photons are described by Eq. (A2)
with @ — w, + w. We apply the equivalent of the Wigner-
Weisskopf approximation, by Taylor expanding the inverse
Green’s function in small o to zero order. This approximation
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is justified by the energy-scale separation discussed in the text.
We obtain

[GR)] ™' =0 —w. — 80— w, +iK(w)),
(A3)

DX = 2iK(a),,)coth( i >
2Texe

The factor coth[w, /(2Tex)] plays the role of the 2n + 1 factor
appearing in the finite-temperature extension of the master
equation (2). To be precise, the two expressions coincide only
for w. = w,. For most experiments the pump frequency is
anyway much higher than the external temperature and we
can approximate coth[(w,/(27T¢)] = 1. Under this approxi-
mation, Eq. (A3) becomes equivalent to Egs. (25) and (26)
with

wy =, +8w—w,, k=K(,). (A4)

[GE ] '@ = ([Gha] @) = g

DX = 2idiag(x,«,0,0).

Here the 8-vector § Vg(w) is defined in the analogous way to
Vs(w) of Eq. (46) and

N0 T (B3)
P —4g
g2

_ 4
Sar. = ﬁgbo(ao +ad) ~ —do, (B4)
We note that the principal change to the spectral response
and correlation function in the superradiant phase

Aaa"‘ (w) = Azﬁa,ria't (w), (BS)

Caat (@) = Csaai (@) + lao] 800, (BO)
is the §-function peak at w = 0 in the correlation function due
to coherent photons (“photon condensate”).

APPENDIX C: DAMPED DYNAMICS NEAR
PHASE TRANSITION

We argue based on a systematic low-frequency expansion
of the inverse retarded Green’s function that the overdamped
dynamics observed in the vicinity of the phase transition is
generic for systems where a phase transition is driven by a
competition within the Hamiltonian sector, while dissipative
dynamics acts as a “spectator.” To see this, we (i) write the
most general form of the inverse retarded Green’s function

[GEL] (@) = ( Pl (1)

o(w) )
o*(—w) p(-w))’
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APPENDIX B: PHOTON-ONLY ACTION
IN SUPERRADIANT PHASE

In the superradiant (SR) phase, the field a (b) is given
by the sum of a time-independent component ag (by) and a
fluctuating term. The action governing the fluctuating terms
can be obtained from Eq. (40) by substituting a — ag + da
(b — by + 8b). At N — oo, we end up with the quadratic
action

1 0 G4, (o
Ssr = E/SVJ@)( o [ 4*“,]( ( )>8vs<w),
® [Giu] (@ Dia
(BD)
with the Green’s functions
0 -8 -8
—w — wy — IK —g —g
—g w—w;, — 28w, —dw ,
- —dw, —w— w, — 28w,
(B2)

and (ii) use that the phase transition is governed by low-
frequency behavior and an expansion in powers of the
frequency is appropriate,

plw) =—v+zw, o) =—pu+yo, (C2)

with complex coefficients and a low-frequency spectrum

_ im[z*v—y ] £ /(2P—lyP)e? — Amlz*y — y*u])?
(12l = 1y '

(OF2

(C3)

Without dynamic renormalization effects, z =1 and all
other frequency coefficients are zero, so they will be
generically much smaller than one (more precisely,
[Im[z][, |Re[y]], Im[y]| < 1), and in particular |z|> > |y|>.
(In the large-N open Dicke model, they are exactly zero.) A
mass gap, i.e., the scale that characterizes the action at zero
frequency, provides a measure of the distance from the phase
transition and reads

@ =detGX J(w=0) =P - |u?>0 (C4)

(the last inequality must hold for a stable physical system).
Approaching the phase transition, this gap shrinks to zero
such that the frequencies must become purely imaginary as
a generic feature of a phase transition in the presence of
dissipation. Indeed, in a situation where the phase transition
is driven by a competition within the Hamiltonian sector of
the problem by a quantity g, the dominant g dependence is
contained in oez(g) (more precisely, Re[v], Re[u]), while the
dissipative scales (Im[v], Im[x]) do not strongly depend on
g and remain essentially at their bare, finite values even at
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the transition point. (In the open Dicke model, only the real
parts are modified, while the imaginary parts exactly remain
at their bare values.) In such a situation, as a(g — g.) — 0,
we may expand the square root in Eq. (C3) in o, identifying
that parameter as the distance from the phase transition.

APPENDIX D: 1/w DIVERGENCE IN MARKOV
DISTRIBUTION FUNCTIONS

We here show that the 1/w pole in the photon distribution
function at low frequency, and the associated low-frequency
effective temperature (LET), is indeed a generic feature of
Markovian nonequilibrium systems.

To this end, we consider the low-frequency regime, where
in the spirit of a systematic derivative expansion the inverse
retarded Green’s function of the photon takes the form

[G*]™! = (w+iv)o, — H, H=v1+ uo, + w0,
(D1)

where vy, w1 (v2, up) denote the real (imaginary) part of
v, u. We set z =1,y =0, which in principle contribute
at O(w), and anticipate that this omission will not alter

PHYSICAL REVIEW A 87, 023831 (2013)

the qualitative results. The Hermitian part H represents
Hamiltonian dynamics, the anti-Hermitian ~i o, represents the
decay. In a derivative expansion, the most general form of the
Keldysh component is

DX = 2i(k11 + Kkr0,). (D2)

Solving the fluctuation-dissipation relation, we obtain

K1 1|k K21
F(w) = —o0, — — | —(110x + p20y) + ——1+ K20y |.
1%) w | V2 1%)

(D3)

Crucially, this confirms the 1/w divergence behavior of
the distribution function. Allowing for a more general form
of [Gg]™! by including a finite imaginary part of z and
a finite y, results only in subleading corrections to the
frequency expansion and preserves lim,,_,o[w F(w)] — const.
Clearly, adding frequency-dependent terms to DX only leads
to subleading corrections in F. Therefore, the 1/w pole at low
frequency and the associated scale generated in this regime,
the LET, is a generic feature of Markovian nonequilibrium
systems.
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