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Phase-measurement sensitivity beyond the standard quantum limit in an interferometer consisting
of a parametric amplifier and a beam splitter
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We analyze a nonconventional interferometer that is formed with a parametric amplifier and a beam splitter
for beam splitting and recombination. Because the outputs from a parametric amplifier are entangled and their
quantum noise is correlated, the employment of the beam splitter will superimpose the two quantum fields and
the destructive interference will lead to the subtraction of the quantum noise and to noise reduction in the output
of the interferometer and hence an improvement of the signal-to-noise ratio (SNR) beyond the standard quantum
limit or the shot noise limit. Furthermore, the injection of a squeezed state into the idler port of the parametric
amplifier will lead to further improvement of the SNR. We will discuss the possibility of reaching the Heisenberg
limit in such an interferometer. We find that the injection of a coherent state will degrade the performance in
reaching the Heisenberg limit, whereas a squeezed state injection can improve it by a factor of 2 at best.
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I. INTRODUCTION

Optical interferometry [1] is an important method in
precision measurement as the interference fringe is sensitive
to phase shift of each arm. The fundamental technique of
an optical interferometer is to split a light source into two
arms by using an “element” and then recombine them with
another element. So far, the basic elements in a traditional
optical interferometer such as a Mach-Zehnder interferometer
[2,3] are the beam splitters [4]. The sensitivity of these
interferometers is limited by the vacuum quantum noise
injected from the unused port [5]. Thus, it is natural that
research efforts are mostly focused on finding better light
sources such as squeezed states [5–7] for reducing the quantum
noise in the interferometer. Such an approach has been applied
to the Laser Interferometer Gravitational-Wave Observatory
(LIGO) [8].

On the other hand, a nontraditional interferometer can
be formed by replacing the linear beam splitters with some
nonlinear elements. Such a nonlinear interferometer was first
proposed by Yurke et al. [9] and the nonlinear elements there
are four-wave mixers or parameter amplifiers. Because of the
nature of an evolution operator as compared to a linear beam
splitter, such an interferometer is often dubbed an SU(1,1)
interferometer from a theoretician’s point of view. But since
nonlinear processes are involved in the beam splitting and
recombination, we will call it a nonlinear interferometer. More
nonlinear interferometers were proposed [10,11] with various
types of unitary transformation serving as the beam splitting
and recombination elements. The first nonlinear interferometer
was realized in experiment in 2002 when Leibfried et al. [12]
simulated the action of nth-order nonlinear optical beam
splitters in a trapped ion system. But the quantum number
is small as the efficiency exponentially decreases with the
number. Recently, a new theoretical scheme was presented
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by Plick et al. [13] who proposed to inject a strong coherent
beam to “boost” the photon number, which circumvents the
low photon number problem. The experimental realization of
such a nonlinear interferometer was reported by Jing et al.
[14]. In this interferometer, the two elements are parametric
amplifiers which increase the signal by amplification. Soon
after this, Ou [15] presented a full quantum analysis of
such kind of nonlinear interferometer and demonstrated the
significant improvement of signal-to-noise ratio (SNR) beyond
the standard quantum limit or the shot noise limit.

However, most of the nonlinear interferometer schemes
mentioned above involve the same nonlinear process as the
two elements for both beam splitting and recombination in
the interferometer. In principle, these two elements can be
different processes. In this paper, we study a nonlinear interfer-
ometer in which one of the elements is a parametric amplifier
(PA) and the other is a beam splitter (BS). Because they are
different, the order is important: We study both the “PA + BS”
scheme and its reverse scheme of “BS + PA.” What motivated
our study is the fact that in the SU(1,1) interferometer scheme
with two parametric amplifiers, quantum entanglement in the
first PA plays an important role in canceling the amplified
noise, while the amplification in the second PA leads to signal
enhancement and ultimately to SNR improvement. So in this
paper, we want to separate the roles of the two PAs. In the
first scheme of PA + BS, we find that there is an improvement
in SNR, which comes as a result of noise reduction of the
interferometer because the quantum noise of the outputs of the
parametric amplifier is entangled and destructive interference
at the beam splitter leads to the quantum noise cancellation.
Further improvement is possible with the injection of squeezed
states into the idler mode of the parametric amplifier. In the
reverse scheme of BS + PA, however, we find that although
the signal is amplified, the noise is also amplified, resulting in
no SNR improvement as compared to a linear interferometer.

The paper is organized as follows: In Sec. II, we first discuss
in detail the scheme of PA + BS and consider the case when the
idler mode of the PA is either vacuum or a squeezed state. We
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will discuss how the Heisenberg limit can be approached. Next
in Sec. III, we discuss the scheme of BS + PA. We conclude
in Sec. IV with a discussion.

II. THE SCHEME OF PA + BS

Nonlinear interferometers involving parametric amplifiers
are depicted in Fig. 1, where (a) is the well-known SU(1,1)
interferometer, (b) is the scheme of PA + BS, and (c) is its
reverse of BS + PA. We first consider the scheme of PA +
BS as shown in Fig. 1(b), where the first element to split an
incoming coherent state is a PA and the beam recombining
element is a beam splitter. The beam splitting effect of a PA
can be seen in the input-output relations of the PA [16]

Â = Gâin + gb̂†in, B̂ = Gb̂in + gâ†
in, (1)

where we assume G and g are all positive and G2 − g2 = 1.
With a coherent state |α〉 input at port âin and vacuum at
port b̂in, the intensities at the outputs of the PA are simply
G2|α|2 + g2 and g2|α|2 + g2, respectively. If the amplitude
gain G is much larger than one, we have G ≈ g � 1 and the
outputs are nearly equal to each other. Furthermore, the two
output fields are phase correlated so that the beam splitting is
coherent.

To form an interferometer, we make the field B̂ subject to a
phase shift ϕ before we combine the fields Â and B̂ with a BS.
The field intensity sensing this phase shift is Ips ≡ 〈B̂†B̂〉 =

FIG. 1. (Color online) Schematic diagram for (a) an SU(1,1)
nonlinear interferometer with two parametric amplifiers (PA);
(b) an interferometer with a PA as the beam splitting element and
a beam splitter (BS) as the beam recombination element; and (c)
reversed order of PA and BS from (b).

g2|α|2 + g2. The input-output relations of the BS are

âout =
√

T Â +
√

RB̂eiϕ, b̂out =
√

T Beiϕ −
√

RÂ. (2)

Combining Eqs. (1) and (2), we obtain the input-output
relations of the interferometer as

âout =
√

T Gâin +
√

Rgeiϕâ†
in +

√
T gb̂†in +

√
RGeiϕb̂in,

b̂out =
√

T Geiϕb̂in −
√

Rgb̂†in +
√

T geiϕâ†
in −

√
RGâin.

(3)

These are the operator relations. We will calculate the the
fringe and noise of the interferometer for various input states
at âin,b̂in.

A. Vacuum input at the idler mode of the PA

For a coherent state |α〉 input at âin and vacuum at b̂in, we
find the output intensity as

〈b̂†outb̂out〉 = g2(1 + |α|2) + (R − 2
√

T RGg cos ϕ)|α|2
= [g2 + (g2 + R)|α|2](1 − V cos ϕ)

≈ Ips(1 − V cos ϕ) for g2 � R, (4)

which shows an interference fringe with a visibility of

V ≡ 2Gg
√

T R|α|2
g2 + (g2 + R)|α|2 ≈ 2Gg

√
T R

g2 + R
(5)

for |α| � 1. The visibility will reach 100% when R =
g2/(G2 + g2) for large α. Here Ips ≡ 〈B̂†B̂〉 = g2(1 + |α|2) ≈
g2|α|2 is the phase-sensing intensity.

Next, we examine the quantum noise in the output of
the interferometer. As is well known, quantum noise is best
measured by homodyne detection where the quadrature-phase
amplitudes are the physical quantities. For the output port b̂out,
we have

X̂bout ≡ b̂out + b̂
†
out =

√
T GX̂bin (ϕ) −

√
RgX̂bin

+
√

T gX̂ain (−ϕ) −
√

RGX̂ain , (6)

where X̂bin (ϕ) = eiϕb̂in + e− iϕ b̂
†
in, X̂bin = b̂in + b̂

†
in,

X̂ain (−ϕ) = e−iϕ âin + eiϕâ
†
in, and X̂ain = âin + â

†
in. For a co-

herent state |α〉 with α = i|α| at âin and vacuum at b̂in, we have〈
X̂2

bout

〉 = T G2
〈
X̂2

bin
(ϕ)

〉 + Rg2
〈
X̂2

bin

〉 − √
T RGg

〈
X̂bin (ϕ)X̂bin

+ X̂binX̂bin (ϕ)
〉 + T g2

〈
X̂2

ain
(−ϕ)

〉 + RG2
〈
X̂2

ain

〉
−

√
T RGg

〈
X̂ain (−ϕ)X̂ain + X̂ainX̂ain (−ϕ)

〉
= G2 + g2 − 4

√
T RGg + 8

√
RT Gg sin2(ϕ/2)

+4T g2 sin2 ϕ|α|2. (7)

The interferometer usually works at the dark fringe with
ϕ ∼ 0. So with a small phase shift δ(	 1) for ϕ and a strong
coherent state injection (|α|2 � 1), we have〈

X̂2
bout

〉 ≈ G2 + g2 − 4
√

RT Gg + 4T g2δ2|α|2
= 〈

X̂2
bout

〉
N

+ 4T δ2Ips (8)

with the noise part 〈X̂2
bout

〉N ≡ G2 + g2 − 4
√

RT Gg and the
phase-sensing intensity Ips ≈ g2|α|2 for |α| � 1. Hence the
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SNR for measuring a small phase shift of δ is

Rnl = 4T δ2Ips

G2 + g2 − 4
√

RT Gg
. (9)

For a given gain of the PA, we find the SNR has a maximum
value of

Rnlmax = 4δ2Ips(G
2 + g2) (10)

when T = Tmax = (G2 + g2)2/(8G2g2 + 1). Under this con-
dition, the output noise becomes〈

X̂2
bout

〉
N

= G2 + g2

8G2g2 + 1
≈ 1

2(G2 + g2)
(11)

for G � 1. This noise level is reduced below the vacuum noise
level by 2(G2 + g2).

Compared to a traditional linear interferometer, which has
a SNR of Rl = 2δ2Ips [15], we have a SNR improvement by

Rnlmax

Rl

= 2(G2 + g2). (12)

This improvement factor is the same as the noise reduction
factor in Eq. (11), indicating that the improvement is all from
noise reduction. It is interesting to compare this result with
that from the scheme of PA + PA [the SU(1,1) interferometer].
From Ref. [15], we find the SNR improvement for PA + PA is
2G2, which is about two times (when G ∼ g) smaller than that
in Eq. (12). This difference is a result of a different mechanism
for the SNR improvement: For the scheme of PA + PA, the
SNR improvement is due to the signal increase, whereas here
for PA + BS, the improvement is from noise reduction.

For G � 1, we have G ≈ g and when the SNR Rnl = 1,
we reach the minimum measurable phase shift

δm =
√

1

4Ips(G2 + g2)
≈

√
1

8IpsG2
= δSQL

2G
, (13)

where δSQL ≡ 1/
√

2Ips is the standard quantum limit or the
shot noise limit of phase measurement that can be achieved in
a traditional linear interferometer. So our scheme of PA + BS
improves upon the SQL by a factor of 2G.

B. Squeezed state at the idler mode of the PA

As we can see, the improvement in the SNR in the phase
measurement in the previous part is due to quantum noise
reduction. On the other hand, the input to the unused idler
mode (b̂in) of the PA is in vacuum in our previous calculation.
So, can we reduce the noise further by placing b̂in in a squeezed
state? We will investigate it next. In this case, the input port
âin is in a coherent state |α〉 while the input port b̂in is in a
squeezed vacuum state, i.e.,

ξ †b̂inξ = b̂in cosh r − b̂†ine
2iθ sinh r,

(14)
ξ †b̂†inξ = b̂†in cosh r − b̂ine

−2iθ sinh r,

where ξ is the squeezing operator so that the input state
is ξ |vac〉 and r is the squeezing parameter [17]. Setting
θ = 0, we find straightforwardly the output intensity of the
interferometer as〈

b̂
s†
outb̂

s
out

〉 = g2 + (T G2 + Rg2)(sinh2 r + |α|2)

− 4
√

T RGg cos ϕ |α|2 , (15)

and the quadrature-phase amplitude noise as〈(
X̂s

bout

)2〉 = T G2[sinh2 r + cosh2 r − 2 sinh r cosh

× r(1 − 2 sin2 ϕ)] + T g2 + 4T g2|α|2 sin2 ϕ

+RG2 − 2
√

RT Gg
(

1 − 2 sin2 ϕ

2

)
+ Rg2e−2r

− 2
√

T RGg

(
1 − 2 sin2 ϕ

2

)
e−2r . (16)

With a small phase shift δ (δ 	 1) for ϕ and the approximation
of strong coherent state injection, that is, |α| � er ,1, we have〈(

X̂s
bout

)2〉 = (
√

T G −
√

Rg)2e−2r + (
√

T g −
√

RG)2

+ 4T g2 |α|2 δ2. (17)

This leads to the SNR for phase measurement as

Rs
nl = 4T g2|α|2δ2

(
√

T G − √
Rg)2e−2r + (

√
T g − √

RG)2
. (18)

For a fixed G and r , we find that when

T = Tmax = (G2er + g2e−r )2

4G2g2 cosh2 r + (G2er + g2e−r )2
, (19)

Rs
nl reaches the maximum value:

Rs
nlmax

= 4g2|α|2δ2(G2e2r + g2) ≈ 4Ipsδ
2(G2e2r + g2)

≈ 4Ipsδ
2G2e2r for er � 1, (20)

where Ips ≈ g2|α|2 for |α| � er ,1. Comparing to Eq. (10), we
find that the squeezed state can improve the SNR further by
about e2r , similar to the scheme of PA + PA. With Rs

nlmax
= 1,

we obtain the minimum measurable phase shift

δm =
√

1

4Ips(G2e2r + g2)
≈ δSQL√

2Ger
for r � 1. (21)

For a strong squeezing, we cannot make the approximation
of |α| � er . So the intensity of the phase-sensing field is

I s
ps = 〈

B̂†B̂
〉 = G2 sinh2 r + g2(1 + |α|2) ≈ G2 sinh2 r

+ g2 |α|2 (|α|2,er � 1), (22)

which we will set as a constant. With |α|2 ,er � 1, Eq. (18) is
changed to

Rs ′
nl = 4T (g2|α|2 + G2 sinh r cosh r)δ2

(
√

T G − √
Rg)2e−2r + (

√
T g − √

RG)2
. (23)

The above expression is maximum when T takes the value in
Eq. (19) and the optimized value is

Rs ′
nlmax

= 4(g2|α|2+G2 sinh r cosh r)G2e2r δ2 ≈ 4Ipsδ
2G2e2r .

(24)

Notice that the above expression is exactly the same as Eq. (20)
but without the approximation of |α|2 � er . With Rs ′

nlmax
set to

1, we obtain the minimum measurable phase shift as

δ′
m =

√
1

4IpsG2e2r
. (25)
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C. Approaching the Heisenberg limit

From Eq. (25), it seems that we can improve the sensitivity
indefinitely as we increase the squeezing parameter. However,
when er is large so that G2e2r ≈ 4G2 sinh2 r � g2|α|2, we
have G2e2r ≈ 4Ips and Eq. (25) becomes

δ′
m ≈ 1

4Ips
, (26)

which is the Heisenberg limit. So, with strong squeezing,
we can approach the ultimate limit of phase-measurement
sensitivity.

In practice, however, it is difficult to obtain a large
squeezing. So can we still approach the Heisenberg limit
without squeezed state injection? From Eq. (13) we find that
although the sensitivity in the PA + BS scheme is better than
the standard quantum limit, it is still scaled as 1/

√
Ips for

a fixed G of the PA. However, if we fix the strength of the
injected coherent state, that is, the quantity α with |α|2 � 1
and change Ips by G of the PA, Eq. (13) is changed to

δm =
√

1

4Ips(G2 + g2)
≈

√
1

8Ipsg2
for g � 1

= |α|
2
√

2Ips

, (27)

where we replace g2 with Ips/|α|2. For large Ips, it scales as
1/Ips for fixed α but with a large coefficient |α|(�1).

If |α| ∼ 1, we need to keep those terms that were otherwise
dropped in Eq. (8). The phase-sensing intensity is then

Ips = g2(1 + |α|2) (28)

and Eq. (8) is changed to〈
X̂2

bout

〉 = G2 + g2 − 4
√

T RGg + (2
√

T RGg + 4T g2|α|2)δ2.

(29)

The SNR for phase measurement is then

Rnl = (2
√

T RGg + 4T g2|α|2)δ2

G2 + g2 − 4
√

T RGg
. (30)

The above expression, though it looks simple, has a very
complicated formula at optimum value for T . Before we go to
the general case, let us look at a simple case.

In the PA + PA scheme, the Heisenberg limit is reached
without the coherent state injection [9]. So, let us consider the
same situation here.

When all the inputs to the parametric amplifier are in
vacuum, we have

〈b̂†outb̂out〉 = g2 = Ips. (31)

So there is no interference in the output intensity. This is
because the two output fields (A and B) from the PA have
phase anticorrelation, that is, ϕA + ϕB = const. and ϕA − ϕB

is completely random. On the other hand, the phase anticor-
relation can be revealed in higher-order measurement such as
homodyne measurement of quadrature-phase amplitudes. In
this case, Eq. (30) gives〈

X̂2
bout

〉 ≈ G2 + g2 − 4
√

T RGg + 2
√

T RGgδ2. (32)

Hence the SNR is

Rnl = 2
√

T RGgδ2

G2 + g2 − 4
√

T RGg
. (33)

When T = Tmax = 1/2, we have the maximum Rnl:

Rnl = Ggδ2(G + g)2 = √
Ips(Ips + 1)δ2(

√
Ips + 1 + √

Ips)
2

≈ 4δ2I 2
ps for Ips � 1. (34)

Thus, the minimum measurable phase shift is

δm = 1

2Ips
. (35)

This is the Heisenberg limit. Because there is no coherent state
injection to boost the phase-sensing intensity Ips, this scheme
encounters the same problem of low Ips as the scheme of
PA + PA without a coherent state input.

It is interesting to compare the results in Eqs. (26) and (35).
Equation (26) is obtained when the squeezing parameter is
so large that er � |α|2, or the coherent state can be dropped.
This corresponds to the situation when there is no coherent
state input but squeezed state input at the input port of the PA.
So injection of a squeezed state in the unused port will further
improve the sensitivity by a factor of 2 as compared to vacuum
input.

The two extreme cases of |α|2 � 1 and |α|2 	 1 both
approach the Heisenberg limit at large g for the PA, although
they have quite different proportional coefficients. Next, we
go back to Eqs. (28) and (30) to look at the case with a fixed
intermediate value of |α|2 ∼ 1. We first need to optimize T for
a maximum Rnl. The formula for Tmax is quite complicated.
But in the limit of g2 � 1 or Ips � 1, we have

Tmax ≈ 1

2
+ |α|2

8g4(1 + 2|α|2)
. (36)

The maximum SNR is then

Rnlmax ≈ (Gg + 2g2|α|2)(G + g)2δ2 ≈ 4(1 + 2|α|2)δ2I 2
ps

(1 + |α|2)2

(37)

for Ips � 1. Setting Rnlmax = 1, we obtain

δm = η

2Ips
(38)

with

η =
√

(1 + |α|2)2

1 + 2|α|2 . (39)

Equation (38) recovers Eqs. (27) and (35) for |α|2 � 1 and
	1, respectively.

Notice that η in Eq. (39) has a minimum value of 1
for |α|2 = 0. This indicates that a coherent state boost in
the nonlinear interferometer does not help in approaching
the Heisenberg limit. We always require the gain g � 1 for
Ips � 1 to approach the Heisenberg limit.

For arbitrary Ips, we obtain δm by setting Rnl = 1 in Eq. (30)
after optimizing T . In Fig. 2, we plot δm so obtained versus Ips

for various values of |α|2. Notice that when Ips ∼ 1, we have
a 1/

√
Ips dependence, although all are below the standard
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FIG. 2. (Color online) The minimum measurable phase δm as a
function of phase-sensing intensity Ips in log-log scale for various
values of coherent state injection: |α|2 = 0,5,20,100. The standard
quantum limit of δSQL = 1/

√
2Ips is also shown. The dotted line has

a slope of −1, whereas the slope of the dashed line is −1/2.

quantum limit or shot noise limit of δSQL = 1/
√

2Ips. It is
interesting to note that although coherent state injection can
boost the phase-sensing intensity, Fig. 2 shows that it will
always degrade the sensitivity for phase measurement.

III. THE SCHEME OF BS + PA

Now for completeness, let us consider the case when the
PA and the BS are reversed in order, that is, the scheme of
BS + PA as shown in Fig. 1(c). As before, we will have
a coherent state input at one input port and vacuum in the
other port of the BS. The input-output relations of BS and
PA are

Â =
√

T âin −
√

Rb̂in, B̂ =
√

T b̂in +
√

Râin,
(40)

âout = GÂ + gB̂†e−iϕ, b̂out = GB̂eiϕ + gÂ†.

The total input-output relations can be expressed as

âout = G
√

T âin + g
√

Re−iϕ â†
in − G

√
Rb̂in + g

√
T b̂†ine

−iϕ,

b̂out = G
√

T eiϕb̂in − g
√

Rb̂†in + G
√

Râine
iϕ + g

√
T â†

in.

(41)

For a coherent state |α〉 input at âin and vacuum at b̂in, the
output intensity is

〈b̂†outb̂out〉 = 2Ips(G
2R + g2T − 2Gg

√
RT cos ϕ) + g2,

(42)

where Ips ≡ 〈B̂†B̂〉 = |α|2/2. For strong coherent state input
|α|2 � 1, we have

〈b̂†outb̂out〉 ≈ 2(G2R + g2T )Ips(1 − V cos ϕ), (43)

with the visibility as V = 2Gg
√

RT /(G2R + g2T ), which is
100% when T = G2/(G2 + g2), and Eq. (43) becomes

〈b̂†outb̂out〉 = 4G2g2Ips

G2 + g2
(1 − V cos ϕ). (44)

So, the fringe size is increased by a factor of 2G2g2/(G2 +
g2) ≈ 2G2 for large G, similar to the scheme of PA + PA.

Now let us look at the output noise. The quadrature-phase
amplitude of the output of the interferometer is

X̂bout = G
√

T X̂bin (ϕ) − g
√

RX̂bin + G
√

RX̂ain (ϕ) + g
√

T X̂ain .

(45)

For the given input states, we have〈
X̂2

bout

〉 = G2 + g2 + 4G2R|α|2 sin2 ϕ. (46)

With a small phase shift δ for ϕ, we can get〈
X̂2

bout

〉 ≈ G2 + g2 + 4G2R|α|2δ2 = G2 + g2 + 8G2RIpsδ
2.

(47)

So, the output noise is G2 + g2 ≈ 2G2 for large G. Hence the
SNR is

Rnl = 8G2RIpsδ
2

G2 + g2
. (48)

Then we have

Rnl

Rl

= 4G2R

G2 + g2
≈ 2R ∼ 1 for large G, (49)

where Rl = 2δ2Ips. With Rnl = 1, we obtain the minimum
measurable phase shift as

δm =
√

G2 + g2

8G2RIps
≈

√
1

4RIps
for large G. (50)

This result is the same as that for a linear interferometer. Notice
that output noise is increased by a factor of 2G2 as compared
to the vacuum noise level. So, even though the interference
fringe is increased by a factor of 2G2, the quantum noise
is also increased by a similar amount compared to a linear
interferometer, leading to no increase in the SNR, as shown in
Eq. (49). So, there is no advantage in the scheme of BS + PA
as compared to a linear interferometer.

The amplified noise in the output of the interferometer
is because the two fields from the beam splitter are not
correlated and their noise will be amplified independently
when fed to the two ports of the amplified. On the other
hand, in the scheme of PA + PA, the input fields to the
second amplifier are correlated quantum mechanically so that
their noise can be canceled when superimposed at the second
amplifier.

IV. CONCLUSION AND DISCUSSION

In summary, we investigated two schemes of nonlinear
interferometers involving a PA and a BS with vacuum
and squeezed state input at the unused port. We found
that similar to the SU(1,1) interferometer with a coherent
state boost [PA + PA scheme in Fig. 1(a)], the scheme of
PA + BS [Fig. 1(b)] can also beat the standard quantum
limit of phase-measurement sensitivity by a similar amount.
But the reversed scheme of BS + PA [Fig. 1(c)] works at
the SQL without any advantage over a traditional linear
interferometer. The employment of the squeezed state in the
unused port of the PA can increase the SNR and the sensitivity
further.
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The Heisenberg limit of 1/Ips dependence can be reached
when the gain of the PA is large with or without a coherent
state boost. However, a coherent state injection will always
decrease the sensitivity. On the other hand, a squeezed state
input instead of the coherent state will improve the sensitivity
by a factor of 2 at best.

It should be noted that the scheme of PA + BS requires
the two outputs of the PA be frequency degenerate. Other-
wise, a linear frequency converter [18] has to be used to

replace the BS in order to mix the two fields of different
frequencies [19].
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