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High- Q plasmonic and dielectric modes in a metal-coated whispering-gallery microcavity
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This paper investigates the confinement and quality (Q) factors of the dielectric mode, exterior surface
plasmonic mode, and interior surface plasmonic mode in a metal-nanolayer-coated silica microtoroid. It is found
that the confinement of these modes relies mainly on the real part of the coating-metal permittivity, and a smaller
negative real part produces a lower effective potential barrier which plays distinct roles in these three types of
modes. For the exterior plasmonic mode, a lower potential leads to a better confinement and thus lower radiation
losses, while for the interior plasmonic mode and the dielectric mode, a higher potential can play a very positive
role in suppressing the radiation losses. The metal absorption loss, as expected, is directly related to the imaginary
part of the metal permittivity and the energy fraction of the mode in the metal layer, and the latter depends on
the confinement or, namely, the effective potential barrier induced by the metal nanolayer. We also compare the
plasmonic modes in the coated microcavity and the dielectric modes in the uncoated microcavity at different cavity
sizes. An interesting finding is that when the cavity is small enough, which is highly desirable for compact photonic
devices, the Q factors of the plasmonic modes even exceed significantly that of the uncoated dielectric modes.
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I. INTRODUCTION

Surface plasmon polaritons (SPPs) have attracted much
attention recently due to their great potential in highly concen-
trating and channeling light in subwavelength structures [1–3].
The strongly localized optical fields in these plasmonic devices
are of importance in the emerging field of nanophotonics
[4], such as surface-enhanced Raman spectroscopy [5–7],
surface-enhanced fluorescence [8,9], and optical chemical or
biological sensors [10–15]. Over the past few years, plasmonic
resonators [16–19] have been demonstrated to play an impor-
tant role in miniaturized photonic circuit and further enhanced
light-matter interaction with specific applications towards
light sources and ultrasensitive biosensors at nanoscale. So
far, various plasmonic resonators with different geometrical
designs have been reported, including periodic optical Bragg
mirrors [18,20–24], annular nanoresonators [25], the metallic
nanowire Fabry-Perot (FP) resonator [16], the sandwiched
FP-type nanocavity [17], the metallic fin FP resonator [26], the
metallic torus-dielectric-metallic flat surface resonator [27],
the silver disk-dielectric disk-silver disk resonator [28], and
the ring-type V-groove microresonator [29,30]. Unfortunately,
their quality (Q) factors are typically smaller than 100 in both
visible and near-infrared wavelengths [16–19], which are far
below the theoretical values limited by the intrinsic loss of
metal at room temperature.

Recently, Min et al. demonstrated experimentally a plas-
monic microcavity fabricated by coating the surface of a
high-Q silica microdisk [31,32] with a thin layer of sil-
ver [33]. With the form of whispering-gallery modes, the
experimental Q factors of plasmonic modes exceed 1000
in the near infrared at room temperature, which are close
to the theoretical metal-loss-limited Q factors. Nevertheless,
the plasmonic modes studied in Ref. [33] are located in the
interior surface of the metal layer, and are not easy to interact
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with the surrounding medium. Against this backdrop, Xiao
et al. proposed a kind of whispering-gallery plasmonic modes
which are highly concentrated on the exterior surface of a
metal-coated microtoroid [34]. This exterior surface mode
possesses high-Q factors comparable to that of the interior
mode at room temperature. However, more studies on the
exterior and interior plasmonic modes are in urgent need.
For example, their confinement mechanisms deserve to be
further revealed, and the Q factors need an improvement. In
this paper, we provide systematic study on the physics behind
the Q factors of the dielectric and plasmonic modes supported
by a metal-coated microtoroid.

The paper is organized as follows. Section II depicts
the model and studies the mode dispersion of the dielectric
and plasmonic modes in a metal-coated whispering-gallery
microtoroid resonator. Section III shows that the real and
imaginary parts of the relative permittivity of the coating
metal play different roles in the Q factors of the dielectric,
interior plasmonic, and exterior plasmonic modes. On one
hand, with a given real part, the Q factor increases rapidly
when the imaginary part gets smaller. On the other hand, for
a given imaginary part, the Q factors of the three kinds of
modes change distinctly with the real part because of different
confinement mechanisms. In Sec. IV, we focus on the impact
of the operation wavelength on the Q factors of the plasmonic
modes. Section V compares the plasmonic and the uncoated
dielectric modes at different cavity sizes. A counterintuitive
finding is that when the cavity radius approaches only several
micrometers, which is highly desirable for compact photonic
devices, the Q factors of the plasmonic modes even exceed
significantly that of the uncoated dielectric modes. Finally,
Sec. VI provides a short conclusion and a brief discussion.

II. MODEL

The geometry of the present microresonator system is
depicted in Fig. 1, similar to Ref. [34]. A silica microtoroid
[35], with permittivity εsilica = n2

silica and the major (minor)
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FIG. 1. (Color online) Side view of the proposed system. A core
silica microtoroid (shown in gray) on a silicon wafer (shown in blue)
is coated by a nanolayer of metal (shown in yellow). R1 and R2 are the
major and minor radii of the silica toroid, and t denotes the coating
thickness of metal. R2 and t are fixed at 1 μm and 100 nm throughout
the paper.

radius R1 (R2), is coated by a thin layer of metal with
permittivity ε, e.g., silver. For some applications such as
optical sensing, the coated microtoroid may be embedded
in a surrounding material with permittivity εsurr. Throughout
this paper, the term permittivity denotes the dimensionless
relative permittivity. In experiment, the silica microtoroid on
a silicon wafer can be prepared by standard photolithography
and etchings followed by a CO2 laser-assisted reflow process
described in Ref. [36]. The silver coating can be deposited on
the template silica microtoroid using a sputtering technique.
Feasible experimental data for the major and minor radii of
the microtoroid are around 5–100 and 1–5 μm, respectively.
To better expose the plasmonic modes, throughout this paper,
R2 is fixed at 1 μm. The coating thickness of metal t

is chosen to be 100 nm for two reasons. First, this thickness is
quite easy to prepare experimentally. Second, this thickness is
beneficial for the independent excitation of either the exterior
or interior plasmonic mode, and so favorable for our study of
the confinement mechanisms of the modes. The surrounding
material is supposed to be water.

Generally, whispering-gallery modes supported by this kind
of rotational-symmetric microstructure can be identified by
three mode parameters in addition to their transverse electric
(TE) or transverse magnetic (TM) polarization: the radial mode
number n, the angular mode number l, and the azimuthal mode
number m. As the fundamental modes possess best properties,
e.g., the largest Q factor and the smallest mode volume V , we
focus on the fundamental modes, i.e., n = 1, m = l.

To analyze quantitatively the mode confinement mechanism
of the aforementioned system, we study the mode dispersion
of the three kinds of fundamental modes: the dielectric
eigenmodes, interior plasmonic eigenmodes, and exterior
plasmonic eigenmodes. A full-vectorial finite element (FEM)
[37,38] analysis is performed by taking into account the
material dispersion of silver [39] while neglecting that of
silica [40] and water [41,42]. Details of the FEM simulation
can be found in the Appendix. Figure 2 plots the real part
of the eigenfrequencies f as a function of the azimuthal
mode number m. The vacuum light line and silica light line
are defined by f = mc/(2πRb) and f = mc/(2πnsilicaRb),
respectively, where c is the vacuum light speed, and Rb =
R1 + R2 + t stands for the total boundary radius of the coated
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FIG. 2. (Color online) Numerically simulated cavity mode dis-
persion diagrams for fundamental dielectric mode, interior plasmonic
mode, and exterior plasmonic mode. The major radius of the
silver-coated silica microtoroid R1 = 10 μm. The upper and lower
black dashed lines correspond to the vacuum and silica light lines,
respectively. Insets show magnetic energy-density profiles in the
transverse plane using a false-color map for these three kinds of
cavity modes.

microtoroid. As pointed out by Ref. [33], the eigenmodes of
the coated microcavity can be classified into two distinctive
categories. One is the optical dielectric mode with the strongest
field located in the silica ring (in this paper, we only consider
the TM-polarized mode unless specified), which results from
the dielectric waveguide channel; the other belongs to surface-
plasmonic mode confined at the metal-dielectric interface. The
main difference compared to Ref. [33] is that not only the
metal-silica interface but also the metal-water interface support
well-localized plasmonic modes, which is studied in Ref. [34].

III. EFFECT OF THE METAL PERMITTIVITY
ON THE Q FACTORS

We now analyze the Q factors of plasmonic and dielectric
modes in this kind of whispering-gallery microcavity. In
Refs. [33,34], authors studied the Q factors of either the
interior or exterior plasmonic whispering gallery modes when
the coated metal was silver. Nevertheless, the role of the
permittivity of the metal has not been revealed completely
although it is well known that the imaginary part describes
the absorption loss of metal. In particular, it remains unclear
whether there is a set of optimal coating parameters for
achieving higher-Q factors compared to that in Refs. [33,34].
With the technique of metamaterial [43], it is possible to
synthesize materials with permittivity unattainable in nature.
In this section, instead of a certain kind of metal, we assume
a generalized permittivity of the coating metal denoted by
ε = Re[ε] + i Im[ε], which allows for exploring the underly-
ing physics. Throughout this section, R1 is set as 10 μm, and
the wavelength of interest is 680 nm.
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FIG. 3. (Color online) Numerically simulated Q factors depend-
ing on Re[ε] in the case of Im[ε] = 0 for the interior plasmonic
modes, the exterior plasmonic modes, and the dielectric modes.

A. Purely real permittivity of the coating metal

For simplicity, we first study the special case of a purely real
permittivity, i.e., Im[ε] = 0, which provides the convenience
to reveal the role of Re[ε]. In this case, the Q factor is attributed
to the radiation loss since the metal absorption has been totally
removed. The numerically simulated Q factors for the three
types of fundamental modes depending on Re[ε] are shown
in Fig. 3. On one hand, it can be found that, with a smaller
negative real part, the Q factors of the dielectric mode and
exterior plasmonic mode decrease and increase monotonically,
respectively. Specifically, when | Re[ε]| < 12, the Q factor
of the exterior plasmonic mode even exceeds that of the
dielectric mode. On the other hand, the Q factor of the interior
counterpart decreases first and then increases, and it is much
higher than that of the other two kinds of modes.

To explain the two points described above, we employ the
effective potential approach [44]. By making an analogy of the
Helmholtz equation to the radial Schrödinger equation (two
dimensional), the effective radial potential of the whispering-
gallery mode can be expressed by

Veff(r) = k2[1 − ε(r)] + l2

r2
, (1)

where k = 2π/λ is the vacuum wave number, ε(r) is the
material permittivity at the radial position r , and l is the az-
imuthal mode number. The first term k2[1 − ε(r)] describes the
permittivity discontinuity at the interfaces, and the second term
l2/r2 is the centrifugal potential. The interior and exterior plas-
monic modes propagate along the metal-silica and metal-water
interfaces, respectively. Unlike the pure dielectric whispering-
gallery microcavity, the large negative value of Re[ε] of the
coating metal forms a high potential barrier inside the res-
onator. Figure 4 plots the unitary effective potential Veff(r)/k2

for the exterior plasmonic modes at different Re[ε]. The poten-
tial barriers for the interior plasmonic and dielectric modes are
similar and not shown here. For all these three kinds of modes,
the potential barrier turns lower with the decrease of | Re[ε]|.
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FIG. 4. (Color online) Effective potential for the exterior plas-
monic modes when the pure real permittivities of coating metal are
−6, −20, and −30, respectively. Here, the major radius of the toroid
is 10 μm, and the resonant wavelength is in the 680-nm band.

The dependence of Q factor on Re[ε] for these three kinds
of modes can be explained physically as follows. First, for the
exterior plasmonic mode confined at the metal-surrounding
dielectric surface, when | Re[ε]| is smaller, the potential barrier
becomes lower as shown in Fig. 4. As a result, more mode
energies can tunnel into the metal nanolayer, which produces
a larger kinetic momentum of light for the mode. Therefore,
the photons are more difficult to escape from the cavity
due to the large photon momentum mismatch between the
cavity mode and the free surrounding medium mode. In other
words, a higher-Q factor related to the radiation loss can be
expected for a smaller | Re[ε]| of the metal (mechanism I).
Second, for the dielectric mode distributed in the silica core,
as | Re[ε]| becomes smaller, a lower potential barrier increases
the radiation loss of the mode and reduces the Q factor
(mechanism II). Finally, it is more complicated for the interior
plasmonic mode. This mode propagates along the metal-silica
interface. On one hand, a lower potential barrier resulting
from a smaller | Re[ε]| induces an increased radiation loss
(mechanism II), similar to that occurred in the pure dielectric
mode. On the other hand, the interior plasmonic mode turns
to tunnel into the metal nanolayer when the potential barrier
is low, which produces a large kinetic momentum of light and
is beneficial for suppressing the radiation loss (mechanism I),
similar to the effect in exterior plasmonic mode. Therefore,
there is a balance of these two mechanisms.

The above analysis can be verified numerically. We plot the
effective mode indices defined by neff = mc/(2πf Rb) for the
three types of fundamental modes, as shown in Fig. 5(a). It can
be seen that the indices of the interior and exterior plasmonic
modes increase slowly by decreasing | Re[ε]| from 40, but
speed up rapidly when | Re[ε]| is small, while the index of
the dielectric mode is smaller than that of plasmonic modes
and remains almost unchanged. For instance, the indices
approach 1.75 and 1.58 when Re[ε] = −6 for the interior and
exterior modes, respectively. These can also be demonstrated
in Fig. 5(b) where the magnetic energy-density profiles of
modes are shown for Re[ε] = −6 and −30. It is found that
the coating metal with a smaller | Re[ε]| (e.g., Re[ε] = −6)
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FIG. 5. (Color online) (a) Effective mode indices for the three
kinds of modes depending on the purely real permittivity ε of the
coating metal (Im[ε] ≡ 0). (b) The upper and bottom panels show the
magnetic energy-density profiles of the modes for ε = −30 and −6,
respectively.

shows much better confinement for the plasmonic modes,
while there is not much difference for the dielectric mode.
Note that the mode index describes the kinetic momentum of
light for the corresponding mode. Thus, we have the following
points. (i) For the exterior plasmonic mode, the Q factor
keeps increasing because the mode index rises when | Re[ε]|
decreases, and this increase accelerates when | Re[ε]| is small,
governed by mechanism I. (ii) For the dielectric mode, the Q

factor decreases monotonically by decreasing | Re[ε]| because
mechanism II is dominant in this process. (iii) For the interior
plasmonic mode, the Q factor shows an initial decrease when
Re[ε] is from −40 to −16 since mechanism II dominates, while
it exhibits an increase from −16 to −4 because mechanism I
plays a more important role due to the rapidly enhanced mode
index.

B. Complex permittivity of the coating metal

We now go on to explore the effect of the imaginary part
of the coating-metal permittivity. When Im[ε] �= 0, the total
Q factor Qtotal consists of two contributions: Qrad resulting
from the radiation loss studied in the last section and Qabs

induced by intrinsic metal absorption, which is expressed by
Q−1

total = Q−1
abs + Q−1

rad. Figures 6(a)–6(c) plot Qtotal of the three
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FIG. 6. (Color online) Q factors of the exterior plasmonic mode
(a), the interior plasmonic mode (b), and the dielectric mode (c) for
different Im[ε] of −0.001, −0.01, −0.1, −1, and −10.

types of fundamental modes for different metal permittivities.
From these results, we can find the following points.

(i) It is straightforward that for a given real part of
permittivity, a smaller imaginary part Im[ε] predicts a larger
Qtotal since Im[ε] describes the metal absorption. For example,
Qtotal of the exterior plasmonic mode can approach 105

when Im[ε] = −0.001, and it falls to 104 and 103 when
Im[ε] = −0.01 and −0.1, respectively.

(ii) For the exterior plasmonic mode and the small imag-
inary part such as Im[ε] = −0.001, −0.01, and −0.1, Qtotal

increases first and then decreases when the negative real part
Re[ε] changes from −40 to −4, as shown in Fig. 6(a). This is
because during this entire process the radiation loss decreases
(studied in Fig. 3) while the metal absorption loss increases due
to more and more mode energies tunneled in the coating-metal
nanolayer. In more details, the radiation loss is dominant when
| Re[ε]| remains large enough such as | Re[ε]| > 20, and the
Q factor is radiation limited, which can be demonstrated by
the fact that Qtotal has no such difference for Im[ε] = −0.001,
−0.01, and −0.1, while the metal absorption plays a more
significant role when | Re[ε]| < 20, and the Q factor is
absorption limited in this case. Thus, there is an optimal Re[ε]
for achieving the highest Qtotal for Im[ε] = −0.001, −0.01,
and −0.1. When the imaginary part is large, e.g., Im[ε] = −10,
however, Qtotal decreases monotonically because the metal
absorption remains dominant when Re[ε] ranges from −40 to
−4.
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(iii) For the interior plasmonic mode, unlike the phenomena
in Fig. 3, the total Q factor keeps degrading when Re[ε] ranges
from −40 to −4, with the imaginary part ranging from −0.001
to −10, as shown in Fig. 6(b). This is because the metal
absorption is dominant for all these cases and this absorption
increases when Re[ε] changes from −40 to −4.

(iv) For the dielectric mode, both the radiation loss and the
metal absorption loss increase when | Re[ε]| decreases. As a
result, the total Q factor degrades monotonically, as shown in
Fig. 6(c).

Some typical noble metals fall within the simulated permit-
tivity range. For example, at the wavelength of 680 nm, the
permittivity of the most popular experimental coating metal
silver is around ε = −20.099 − 0.233i, the permittivity of
gold is around ε = −14.16 − 1.069i, and that of copper is
about ε = −14.10 − 1.65i [39]. From the results above, we
can infer that for the exterior plasmonic mode at 680 nm,
the maximum Q factor is around 1000 for the case of silver
coating, while only about 200 for the case of gold coating
when R1 = 10 μm, R2 = 1 μm, and t = 100 nm.

IV. Q FACTORS OF THE PLASMONIC MODES AT
DIFFERENT WAVELENGTHS

From the results in Sec. III, we know that (i) the radiation
losses of the modes depend dominantly on Re[ε] of the coating
metal; (ii) the absorption losses rely on both the real and
imaginary parts because the metal absorption ability is directly
described by the latter, and the mode energy fraction in the
coating-metal nanolayer is significantly related to the former.
In this section, considering the coating metal of silver, we
further study the Q factors of the fundamental exterior and
interior plasmonic modes at different wavelengths. In this
simulation, R1 = 10 μm, and the material dispersion of silver
is also taken into account.

FIG. 7. (Color online) Numerically simulated radiation-related,
absorption-related, and total Q factors Qrad, Qabs, and Qtotal depend-
ing on the wavelength, for the fundamental exterior plasmonic mode.
The major radius of the toroid is 10 μm.

A. Fundamental exterior plasmonic mode

We investigate the fundamental exterior plasmonic mode
first with the radiation-related, absorption-related, and total Q

factors shown in Fig. 7. It can be found that Qrad degrades
quickly from several millions to hundreds, while Qabs in-
creases monotonically from tens to hundreds, when the wave-
length λ shifts from 500 to 1600 nm. As a result, Qtotal is limited
by the absorption loss at the short-wavelength band, while it
depends mainly on the radiation loss at the longer wavelength.

First, the potential barrier at longer-wavelength band is
much higher, as demonstrated in Fig. 8(a) where the potential
barrier height at 1200 nm is more than four times higher than
that at 600 nm. As the exterior plasmonic mode is distributed
out of the cavity body, the mode photon is hard to tunnel
into the metal nanolayer for a high potential barrier. This is
demonstrated in Fig. 8(b) where the mode energy fraction in
the metal nanolayer decreases rapidly from 25% to 2.5% when
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FIG. 8. (Color online) (a) Normalized effective potential Veff/k2

for the fundamental exterior plasmonic mode of a silver-coated
microtoroid in water. The solid, dashed, and dotted lines are the
effective potentials for λ = 1200, 900, and 600 nm. The dashed-
dotted line shows the normalized photon energy k2. (b) The mode
energy percentage in the metal nanolayer for the exterior plasmonic
mode.
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FIG. 9. (Color online) Effective mode indices for fundamental
exterior and interior plasmonic modes in the silver-coated silica
microtoroid. The three insets from top to bottom correspond to the
mode profiles of the pure interior plasmonic mode, pure exterior
plasmonic mode, and the asymmetric coupled mode. The mode
indices meet each other at 1060 nm.

the wavelength moves from 500 to 1600 nm. The little energy
tunneling into the metal nanolayer causes a small kinetic
momentum of light, as shown in Fig. 9 where the effective
mode index decreases rapidly at longer wavelength and
approaches the refraction index of the surrounding medium.
Therefore, photons tend to escape from the cavity due to
the small momentum mismatching, and the Qrad at short
wavelength can be several-orders-of-magnitude higher than
that at the long wavelength. This analysis is actually similar to
that of Fig. 3 (red curve).

Second, as stated in the last paragraph, the mode energy
fraction in the metal nanolayer decreases when the resonance
moves to longer wavelength, resulting from the higher and
higher potential barrier in this process. Thus, it is not surprising
that we can expect a higher Qabs at longer wavelength, by also
noting the smaller imaginary part of the metal permittivity in
this case.

Finally, due to the tradeoff between Qrad and Qabs, Qtotal

of the fundamental exterior plasmonic mode reaches its maxi-
mum at a certain wavelength. On the condition of R1 = 10 μm,
the highest Qtotal approaches 1000 at the optimal wavelength
of ∼680 nm. This optimal wavelength will blue-shift for a
smaller-sized microcavity (by decreasing R1).

In addition, we note that at the wavelength of 1060 nm
in Fig. 7, both Qrad and Qabs have unusual change. This
is because of the mode coupling between the fundamental
exterior and interior plasmonic modes. The coupling produces
two new eigenmodes: symmetric mode and asymmetric mode.
For instance, the bottom inset in Fig. 9 shows the mode profile
of the asymmetric mode due to the coupling. This kind of
coupling occurs under the conditions of frequency resonance
and phase matching. For the frequency resonance, it can be
seen in Fig. 2 where the exterior and interior plasmonic modes
have almost the same frequency around the mode number
m ∼ 85, i.e., λ ∼ 1060 nm. For the phase-matching condition,

Fig. 9 shows that the mode indices of the two kinds of modes
vary with the wavelength. It can be found that the mode indices
meet each other just at λ ∼ 1060 nm.

B. Fundamental interior plasmonic mode

We now turn to study the fundamental interior plasmonic
mode at different wavelengths. For this, Fig. 10(a) presents
Qrad, Qabs, and Qtotal. Different from the fundamental exterior
plasmonic modes, Qtotal of the interior mode depends mainly
on the absorption originating from the coating metal, and the
radiation loss plays a minor role except at 1060 nm where the
mode coupling occurs. The high potential barrier resulting
from the large negative real part of the metal permittivity
prevents the photon from tunneling to the outside.

The Qrad also exhibits a decrease and then an increase
when the wavelength red-shifts. This can be explained similar
to Fig. 3 (black curve). On one hand, a higher potential barrier
at the longer wavelength leads to a reduced radiation loss.
On the other hand, when the potential barrier is higher, the
interior plasmonic mode is more difficult to tunnel into the
metal nanolayer, as demonstrated in both Fig. 10(b) describing
the energy fraction in metal and Fig. 9 studying the effective
mode index. In this case, a small kinetic momentum of light
boosts the radiation loss. Nevertheless, the Qrad can reduce to
several thousands in the 1060-nm band, which is also resulted

FIG. 10. (Color online) (a) Numerically simulated Qrad, Qabs, and
Qtotal depending on wavelength ranging from 500 to 1600 nm, for the
fundamental interior plasmonic mode. The major radius of the toroid
is 10 μm. (b) The energy fraction of the mode in the metal nanolayer.
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from the mode coupling since the coupled exterior mode has
a large radiation loss at this wavelength.

V. PLASMONIC MODES AND UNCOATED DIELECTRIC
MODES AT DIFFERENT CAVITY SIZES

In this section, we probe into the effect of the cavity size
on the mode Q factor since the effective potential depends
partly on the cavity size. In Fig. 11, we plot Qtotal of the
exterior and interior plasmonic modes in the 680-nm band
depending on R1 of the cavity. It can be seen that both Q factors
increase monotonically due to the reduced radiation loss when
the microcavity expands. For instance, the Q factors of the
exterior and interior modes are only 280 and 770 at R1 = 3 μm,
while they improve to about 950 and 980 at R1 = 10 μm,
respectively. Moreover, this increase saturates when the cavity
is large enough because the Q factors are metal-absorption-
limited in this case. In addition, when R1 exceeds 12 μm,
we find that Qtotal of the exterior plasmonic mode is even
slightly better than that of the interior mode. For example,
Qtotal reaches 1050 for the exterior mode, while it is about
1000 for the interior mode. This is attributed to the smaller
metal absorption loss of the exterior mode.

One may argue that the Q factors of the plasmonic modes
are much lower than that of a pure dielectric mode in the
absence of the coating nanolayer. This is right when the
cavity is large. However, when the cavity is small, desirable
for compact photonic devices, both the interior and exterior
plasmonic modes stand out their potential. To illustrate this,
Fig. 11 also plots Qtotal of the pure dielectric TE and TM
polarized modes without metal coating in the same wavelength
band. Remarkably, when the cavity is small enough, Qtotal

of the plasmonic modes exceed that of the pure dielectric
mode. For instance, when R1 = 3μm, Qtotal reaches 280 for
the exterior plasmonic mode and 780 for the interior plasmonic

FIG. 11. (Color online) Total Q factors Qtotal for the fundamental
interior and exterior plasmonic modes of a silver-coated silica
microtoroid depending on the major radius R1, in the 680-nm band.
For comparison, the total Q factors of the pure dielectric TE and
TM polarized modes without the metal coating are also plotted in the
same wavelength band.

mode, while it is less than 80 for the pure dielectric mode
without the metal-coating nanolayer. The potential reason for
this phenomenon is that for a cavity with extremely small
radius, Q of the cavity mode is mainly determined by the
radiation loss, even for the interior or exterior plasmonic modes
with large metal absorption. Meanwhile, metal also provides
compact field confinement for these plasmonic modes, which
can partly reduce the leakage of mode and is beneficial for
stable circulation of light inside the mode volume.

VI. DISCUSSION AND CONCLUSION

We have investigated the confinement mechanisms and the
resulting Q factors of the dielectric mode, exterior plasmonic
mode, and interior plasmonic mode in a metal-coated silica
microtoroid cavity. With the effective potential approach,
we show that a larger negative value of real part of the
coating-metal permittivity produces a higher potential barrier
inside the resonator for all these modes, but results in different
effects for them. For the exterior plasmonic mode, the lower
effective potential barrier leads to better mode confinement.
This is because in this case more mode energies can tunnel
into the metal nanolayer. For the dielectric mode distributed
in the silica core, however, a lower potential barrier causes a
higher radiation loss of the mode and reduces the Q factor. For
the interior plasmonic mode, on one hand, a lower potential
barrier induces an increased radiation loss, similar to what
occurred in the dielectric mode. On the other hand, the interior
plasmonic mode turns to tunnel into the metal nanolayer when
the potential barrier is low, which is helpful for suppressing
the radiation, similar to the effect in exterior plasmonic mode.

The absorption loss is the other important decay pathway
of the mode, which depends directly on the imaginary part of
the metal permittivity and the energy fraction in the metal
nanolayer. Importantly, this energy fraction relies on the
mode confinement governed by the effective potential barrier
of the metal nanolayer. As an example, we investigate the
Q factors of the plasmonic modes at different wavelengths
by considering the coating metal of silver. Moreover, we
compare the plasmonic modes in the coated microcavity and
the dielectric modes in the uncoated microcavity at different
cavity sizes. An intriguing phenomenon is that the Q factors of
the plasmonic modes exceed significantly that of the uncoated
dielectric modes, when the cavity is small enough which is
highly desirable for compact photonic devices.
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APPENDIX

As the microtoroid structure we studied is axisymmetric,
we can study the optical properties of such a cavity structure in
cylindrical coordinates {r,φ,z}. Generally, the electromagnetic
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field can be expressed by

�(r,φ,z) =
+∞∑

m=−∞
Cm�m(r,z)eimφ−iωt ,

where m is the angular momentum (azimuthal mode number),
ω is the frequency, �m(r,z) denotes the field profile at the
cross section and Cm is the coefficient. For a given m,
the corresponding eigenmodes should satisfy the character
equation

∇2
r,z�m(r,z) − m2�m(r,z) + ε

(ω

c

)2
�m(r,z) = 0,

with ε the relative permittivity. The eigenfrequency and mode
profile can be solved by applying the boundary conditions to
this equation.

Since there is no analytical solution to the toroid-shaped
boundary, we solve the partial differential equation (PDE)
numerically by finite-element method (FEM) with a com-
mercial available software (“weak form, boundary” module in
COMSOL MULTIPHYSICS 3.5A). More details of the “weak form”
of axisymmetric Maxwell equations can be found in [38].

Usually, the imperfect boundary conditions of a finite domain
will introduce errors to the simulations. For example, outgoing
light waves may be reflected at the domain boundary. Thus,
we introduce the perfect matched layers (PML) outside the
calculation regions to improve the simulation accuracy.

By solving the eigenmodes for a given m, we can get
the eigenfrequency ωm and the corresponding electric and
magnetic field patterns [�m(r,z)] of the whispering-gallery
modes at the cross section of this metal-coated microtoroid.

The Q factor of whispering-gallery modes can be computed
through Q = | Re(ωm)/2 Im(ωm)|. The energy fraction in
metal is defined as η = Wmetal/Wtotal, where

Wmetal/total =
∫∫

metal/total
2πr

× Re

{
d[ε(r)ω]

dω
|E(r)|2 + μ0|H (r)|2

}
dr dz

denotes the electromagnetic energy in metal and the whole
area, with the electric and magnetic fields E(r) and H (r), and
the permeability of vacuum μ0. All these quantities can be
obtained through the postprocessing procedure.
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