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Directional emission of single photons from small atomic samples
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We provide a formalism to describe deterministic emission of single photons with tailored spatial and temporal
profiles from a regular array of multilevel atoms. We assume that a single collective excitation is initially shared
by all the atoms in a metastable atomic state and that this state is coupled by a classical laser field to an
optically excited state which rapidly decays to the ground atomic state. Our model accounts for the different
field polarization components via reabsorption and emission of light by the Zeeman manifold of optically excited
states.
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I. INTRODUCTION

Single photons may serve as flying qubits to communicate
between registers of stationary, material qubits in quantum
computing architectures [1], and they may be applied in proto-
cols for quantum cryptography. In these protocols transmission
losses over long distances can be counteracted by the transfer
of the light-state qubits to quantum repeaters for purification
and entanglement distillation [2]. Candidates for stationary
qubits that can effectively interact with single photons are
optically thick ensembles of atoms [3–8], rare-earth ions in
crystals [9–12], vibrational excitations in diamond crystals
[13], and systems with fewer particles using optical cavities
to increase the interaction with the photon field [14–18]. The
systems mentioned can provide a deterministic coupling of
the material system to a suitably tailored spatial and temporal
photon wave packet. There are also a number of probabilistic
protocols, where measurement processes herald the successful
generation of nonclassical excitations of either the photon field
or the medium [19–21]. In this article we utilize the fact
that an ensemble of just a few hundred atoms may interact
strongly with a single mode of light with a specifically chosen
mode function. We identify this mode function by calculating
the emitted field from the atomic ensemble, prepared in a
collectively excited state. By a time-reversal argument, the
complex conjugate of this emitted field may be injected on a
ground-state atomic ensemble and will then be fully absorbed
at a definite instant of time [22,23]. We discuss the possibility
of shaping the temporal profile of the emitted photon and,
in particular, the creation of time-symmetric photon wave
packets, as such packets can then be emitted by one ensemble
and absorbed by another one in a fully deterministic manner.
We focus on samples of a few hundred atoms, distributed over a
few-micrometer spatial extent. In such ensembles, the Rydberg
blockade interaction may be used to establish singly excited
states and, subsequently, single-photon states [8,24–29], while
photonic qubits, collectively absorbed by the atoms, may
be manipulated by Rydberg state mediated quantum gate
operations [22,30,31].

The collective interaction of light with ensembles of
absorbers and scatterers has been an active field of study
since the early days of electromagnetism, while collective
phenomena in spontaneous emission received wide attention

with the pioneering work on Dicke superradiance from
population inverted samples [32]. Early studies of collective
emission from ensembles with few excitations [33–37] (see
also Ref. [38], and references therein) have been followed by a
recent flourishing of analyses [22,39–46], which apply a Born-
Markov approximation and eliminate the field degrees of free-
dom to obtain coupled equations for the atomic excited-state
amplitudes. Approximate solutions to these equations may be
derived, e.g., with the assumption of a scalar description of the
field; for only a few hundred atoms, they may also be solved
directly on a computer.

In this article we generalize the previous analyses to account
for the full vector character of the quantized radiation field.
We establish coupled equations for excited-state amplitudes
on a suitable set of atomic Zeeman sublevels, emitting and
reabsorbing the different polarization components of the field,
and we solve the equations numerically to identify the full
temporal, spatial, and polarization contents of the emitted light.

In Sec. II we derive the coupled atomic equations under the
Born-Markov approximation. In Sec. III, we present numerical
results for the photon modes emitted by samples of atoms with
different spatial geometries. In Sec. IV, we describe the use
of a coupling laser field to control the temporal shape of the
emitted photon wave packet, and in Sec. V, we present a brief
conclusion and outlook of the work.

II. DIPOLE-DIPOLE INTERACTION

We want to describe the experimental situation where a
collection of N atoms can be prepared in a single ground
state g and where a suitable, symmetric excitation mechanism
allows the preparation of a state

|ψ〉 =
N∑

j=1

aj |g1g2 . . . ,fj , . . . gN 〉 (1)

with a single atom transferred to the metastable state f ;
see Fig. 1. The Rydberg blockade mechanism may restrict
the system to a single excitation [27–29], but in the present
article we shall assume the state in Eq. (1) as the starting
point for our analysis and pay no further attention to its
exact preparation mechanism. We assume that N atoms are
located at the positions �rj (j = 1, . . . ,N), and with plane-wave
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FIG. 1. (Color online) Atoms with three excited substates, e−1,
e0, and e+1, a ground state g, and a long-lived state f are arranged
in a regular lattice. State f is coupled to state e+1 by a classical
laser field. The excited states decay to the ground state, emitting
a photon with σ−, π , and σ+ polarized photons, respectively. The
direction of the emission is determined by the wave number of the
atomic g-f coherence and the wave number of the out-coupling field,
�kem = −�kgf − �kL.

excitation laser fields, the amplitudes have equal magnitude
and phases, exp(i�kgf · �rj ), given by the phase of the fields
at the atomic locations. For convenience we will incorporate
the phase of the out-coupling field with wave number �kL

in the definition of the atomic excited-state amplitudes,
aj = 1√

N
exp[i(�kgf + �kL) · �rj ]. This allows us to describe the

interaction between the atoms and the outcoupling laser with a
real Rabi frequency �L. State f , sketched in Fig. 1, may indeed
represent a long-lived Rydberg state or a long-lived low-lying
atomic state reached by a Raman process via a Rydberg state.

To release a photon from the system, we use a classical laser
field with the Rabi frequency �L to drive the atomic f -state
amplitude into an optically excited state e, with a strong dipole
coupling to the ground state g. The system now acts as an
antenna array for dipole radiation on the e-g transition, and
this is the cause of the desired directionality of the emitted
light. As indicated in Fig. 1, the initially populated states may
be extremal Zeeman sublevels with well-defined polarization
selection rules, and the photon emitted on the e-g transition
may be σ+ polarized with respect to the atomic quantization
axis. This field, however, may be reabsorbed by another atom
located in an arbitrary direction from the emitter, and here,
the expansion of the field on polarization components permits
excitation with selection rules �m = 0,±1. To describe the
many-atom emission, we thus have to consider other ground
and excited Zeeman sublevels than the ones initially populated.

A closed transition in an alkali-metal atom, such as the
52S1/2 |F = 2,mF = +2〉 transition to 52P3/2 |F = 3,mF =
+3〉 in 87Rb, is a suitable candidate for the |g〉 to |e+1〉
transition depicted in Fig. 1. The collective enhancement of
decay towards state |g〉 initially populated by all but one of the

atoms and the initial feeding of the extremal Zeeman level limit
the amount of the population transferred to other ground states
and motivate the restriction of our model to a single ground
state g, the metastable state f , and three excited states, e0, e±1,
depicted with the thick solid lines in Fig. 1. The dipole coupling
strength between g and the three excited states depend on the
specific hyperfine states of the different alkali atoms, and for
simplicity, we assume identical couplings, which corresponds
to the case of a J = 0 − J = 1 optical transition. Alternatively,
one could use a closed transition 1S0 to 1P1 in bosonic
isotopes of alkaline-earth-metal (e.g., Sr) or rare-earth (e.g.,
Yb) atoms. This level configuration is the simplest realistic
model that allows us to take the polarization of the emitted
and reabsorbed light as well as the resulting dipole-dipole
interactions between the atoms into account. In the following
we will use the shorthand notation |fj 〉 ≡ |g1g2 · · · fj · · · gN 〉
for singly excited states of the atomic ensemble and similar
notation for |eν〉, with ν = 0, ± 1.

In the dipole approximation the interaction of atoms with
photons is described by a Hamiltonian [34]:

Ĥ = Ĥ0 + Ĥint, (2)

where

Ĥ0 =
∑

�k

∑
λ

h̄ωka
+
�kλ

a�kλ +
N∑

j=1

1∑
ν=−1

h̄ω0

∣∣eν
j

〉〈
eν
j

∣∣

+
N∑

j=0

h̄ωfg|fj 〉〈fj | (3)

is the atom-field Hamiltonian and the interaction part is

Ĥint = ĤL + ĤV . (4)

The semiclassical coupling to the initial long-lived state is

ĤL =
N∑

j=1

h̄
�L

2

[(�σ j

f e · �εL

)
e−iωLt + (�σ j

ef · �εL

)
eiωLt

]
, (5)

where �εL is the polarization direction of the coupling field with
the optical frequency ωL and �σ j

f e = d̂f e|fj 〉〈e+1
j |. We further

assume the direction of the dipole moment for this transition
d̂f e to be parallel to �εL, so that the transfer of amplitude
happens exclusively to the state |e+1〉.

The coupling of the atomic dipole between |g〉 and |e〉 to
the quantized radiation field modes is described by

ĤV = −i

N∑
j=1

∑
�k

∑
λ

h̄gk

[(�σ j
eg · �ε�kλ

)
a�kλe

i�k·�rj

− (�σ j
ge · �ε�kλ

)
a+

�kλ
e−i�k·�rj

]
. (6)

Here, the atomic dipole operator is defined as �σ j
ge =∑1

ν=−1 d̂
j
gν |g〉〈eν

j |, where d̂
j
gν is the unit vector in the direction

of the corresponding dipole moment for the |g〉-|eν〉 transition.
a�kλ is the annihilation operator of a vacuum electromagnetic
field mode �k with the polarization λ in the direction �ε�kλ. The
atom-field coupling strength is gk = deg( ωk

2ε0h̄V
)1/2, with dipole

moment deg , quantization volume V , and ωk = ck.
We henceforth ignore spontaneous emission on the e-f

transition. This may, on the one hand, be chosen as a transition
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with a weaker dipole moment, and on the other hand, it does not
experience the collective enhancement that we shall observe
on the e-g transition.

We expand the time-dependent solution of the Schrödinger
equation for N atoms and the field as a superposition of Fock
states with a single atomic or photonic excitation:

|ψ(t)〉 =
N∑

j=1

aj (t)e−iωfgt |fj 〉|0〉 +
N∑

j=1

+1∑
ν=−1

βν
j (t)e−iω0t

∣∣eν
j

〉|0〉

+
∑

�k

∑
λ

e�kλ(t)e−iωkt |g〉|1�k,λ〉, (7)

where |g〉 represents the state with all atoms in the ground
state.

Note that we use the rotating-wave approximation (RWA)
in Eq. (5) because we treat this transition semiclassically. In
the quantized atom-light interaction described by Eq. (6), the
direct application of RWA considerably simplifies the equa-
tions, but as it neglects virtual photon contributions, it leads to
a wrong dipole-dipole interaction term in the final equation.
For the case of two-level atoms, however, it was observed
[29,36] that the virtual photon contribution to the atom-atom
interaction terms can be correctly recovered by handling the
sum over wave-number field modes in Eq. (7) in spherical
coordinates and by extending the radial integral over modes
artificially to include negative photon frequencies ω = ck < 0.
A generalization of this analysis to the case of multilevel atoms
interacting with a quantized vector field, which will be pre-
sented elsewhere [47], allows us to apply the same procedure in
our treatment of the quantized atom-light interaction in Eq. (6).

Substitution of Eq. (7) with the initial condition e�kλ(0) =
0 into the Schrödinger equation with the Hamiltonian from
Eq. (2) yields the formal solution

e�qσ (t) =
N∑

j=1

+1∑
ν=−1

gqe
−i �q· �rj

(
d̂j

gν · �ε�qσ

) ∫ t

0
dτβν

j (τ )e−i(ω0−ωq )τ .

(8)

Using the Markovian approximation [33] the atomic coef-
ficient βν

j (τ ) can be approximated by βν
j (t) in Eq. (8) and

taken outside the integral. This allows us to substitute the
photon amplitudes by expressions involving only atomic state
amplitudes, which thus obey a closed set of equations:

ȧl = �L

2i
ei(ωf e−ωL)tβ+1

l , (9)

β̇
η

l = �L

2i
e−i(ωf e−ωL)t δη,1al −

(
�

2
− i�Lamb

)
β

η

l

− �

2

N∑
j=1

1∑
ν=−1

(1 − δl,j )
(
d̂ l

ηg · ←→
F l,j · d̂j

gν

)
βν

j . (10)

Here � is the single-atom decay rate from |e〉 to |g〉, and
�Lamb is the single-atom Lamb shift. This term contains an
infinite integral, where a suitable cutoff should be applied to
yield a finite physical value [48]. After this procedure, this
shift is absorbed into the definition (the measured value) of
the energy of the atomic state |e〉 in Eq. (7). The second-rank

tensor
←→
F l,j = ←→

f (k0Rl,j ) − i
←→
g (k0Rl,j ) with

←→
f (kR) = 3

2
(
←→
I − R̂R̂)

sin(kR)

kR

+ 3

2
(
←→
I − 3R̂R̂)

(
cos(kR)

(kR)2
− sin(kR)

(kR)3

)
, (11)

←→
g (kR) = 3

2
(
←→
I − R̂R̂)

cos(kR)

kR

− 3

2
(
←→
I − 3R̂R̂)

(
sin(kR)

(kR)2
+ cos(kR)

(kR)3

)
, (12)

k0 = ω0/c. and �Rl,j = �rl − �rj accounts for the field-mediated

interaction between atoms l and j . Here,
←→
I is the unity tensor,

and R̂R̂ is the projection onto the direction given by �R [33].
Equations (9) and (10) account for the zero-photon sub-

space component of the total wave function of the atoms and
the quantized field,

|�0(t)〉 =
N∑

j=1

aj (t)|fj 〉 +
N∑

j=1

+1∑
ν=−1

βν
j (t)

∣∣eν
j

〉
, (13)

and this state component is described by an effective non-
Hermitian Hamiltonian

Ĥ eff = Ĥ eff
0 + Ĥ eff

L + Ĥ eff
dd , (14)

with

Ĥ eff
0 = −ih̄

(
�

2
− i�Lamb

) N∑
l=1

+1∑
η=−1

∣∣eη

l

〉〈
e
η

l

∣∣ (15)

describing individual single-atom effects,

Ĥ eff
L = −h̄�L

2

N∑
l=1

ei(ωf e−ωL)t |fl〉〈e+1
l | + H.c. (16)

giving the coupling from the long-lived state f , and

Ĥ eff
dd = ih̄

�

2

N∑
j,l = 1

+1∑
ν,η = −1

(1 − δl,j )

×(
d̂ l

ηg · ←→
F l,j · d̂j

gν

)∣∣eη

j

〉〈
eν
j

∣∣ (17)

expressing collective dispersive and dissipative effects
between the atoms in the ensemble.

In the rest of this paper we are interested in the spatial and
temporal emission profiles. The ←→

g part of
←→
F defines the

Hermitian part of Ĥ eff
dd , i.e., the coherent exchange of excitation

between the atoms. The
←→
f part conversely defines the

anti-Hermitian part corresponding to the decay by the emission
of light and thus the population of the one-photon quantum-
state component. If the Hermitian part is diagonalized,
delocalized orthogonal eigenmodes with collectively
“Lamb-shifted” energies are obtained. If the anti-Hermitian
part is diagonalized, delocalized orthogonal independently
decaying modes are obtained. Some of these modes have
a decay time longer than � (i.e., they are Dicke subradiant
modes [32]), and some decay faster than � (i.e., they are Dicke
superradiant modes; see Refs. [22,39], and references therein).
The Hermitian and the anti-Hermitian parts do not commute,
and hence the eigenmodes of the full Hamiltonian Ĥ eff , which

023821-3



MIROSHNYCHENKO, POULSEN, AND MØLMER PHYSICAL REVIEW A 87, 023821 (2013)

95 96 97 98 99 100 101
0

1

2

3

4

R (units of c/Γ)

I (
a.

u.
)

 

 

FIG. 2. (Color online) A snapshot of the total intensity emitted
by a cloud of 14 × 14 × 10 (blue) and 3 × 3 × 10 (green) atoms
with the lattice spacing d = 0.25λ0 and a single atom (red) using a
square out-coupling pulse indicated by the dotted line. The larger
atomic ensembles experience the faster decay and the sharpest
emission peaks. Parameters used for this simulation are �L = 8.2�,
a vanishing single atom detuning of the the �L light field, and a
coupling pulse length tw = 0.2�−1.

provide the time-dependent atomic state as a single sum of
complex exponentially weighted vectors, are not orthogonal.
This will result in coupling between different decay channels
and a quantum beatlike behavior for the decay modes [43].
The blue line in Fig. 2 shows a snapshot of emitted intensity
integrated over all directions at different distances from a
cloud of 14 × 14 × 10 atoms excited from the levels |fj 〉 to
the levels |e+1

j 〉 by a square �L pulse. The dotted line in Fig. 2
indicates the timing of the out-coupling square pulse. The
initial emission rate is faster than the single-atom emission rate
� presented by the red (medium gray) line. Additionally, we
see a modulation of the emitted intensity due to the coupling of
the different nonorthogonal decay modes. With the reduction
of the cloud size, the coupling between the decay modes
becomes weaker, but the superradiance behavior remains
pronounced, as shown by the green (light gray) line in Fig. 2
for the array of only 3 × 3 × 10 atoms. For comparison, we
show [red (medium gray) curve] also the emission by a single
atom.

III. SPATIAL PHOTON MODES

The eigenmode expansion of Eqs. (9) and (10) for the
atomic excitation amplitudes formally yields a solution for
each individual atomic excited-state amplitude as a sum
of exponential functions of time with complex arguments.
Once the atomic evolution is determined, the light emission
is given by the integrals in Eq. (8). We note that for the
relevant time scales, which are longer than the ensemble
excited-state lifetime, these integrals involve only decaying
exponential functions, and they may, in practice, be extended
to infinity. This allows us to determine the (far) field eigenmode
expansion coefficients as algebraic expressions involving the
mode expansion coefficients divided by the sum of the complex
eigenvalues and the frequency difference appearing explicitly
in Eq. (8). This means that we can readily determine the
field amplitudes on any chosen set of field modes after
diagonalization of the atomic problem, at a cost that depends

only on the number of atoms, and calculations with even
thousands of atoms are realistic.

The probability to detect a photon at a position �r at time
instance t , which is much later than L/c, where L is the linear
sample length, is given by [49]

Iε (�r,t) = 〈ψ(t)|E(−)
ε (�r)E(+)

ε (�r)|ψ(t)〉. (18)

Here ε is the handedness of the photon, i.e., its circular
polarization along the line connecting the atomic ensemble and
the detector at position �r . The positive frequency component
of the desired polarization is given by E(+)

ε (�r) = [�ε · �E(+)(�r)],
with [34]

�E(+) (�r) = i
∑

�q

∑
σ

εq �ε�q,σ a�q,σ ei �q·�r (19)

and εq = ( h̄ωq

2ε0V
)1/2. See Appendix A for the full derivation

of Iε .
In this section we assume that the atomic system is initially

prepared in a so-called timed Dicke state,

aj (0) = 1√
N

e−i�rj ·�kgf , βν
j (0) = 0. (20)

This state is coupled to |e+1〉 by switching on the laser field
described by the Rabi frequency �L, and we first study the
case where this coupling field is kept constant. In order to
avoid resonant coupling to individual modes of Eq. (17), we
assume as well that the �L field detuning from the single-atom
resonance |f 〉 − |e+1〉 is larger than the Rabi frequency �L;
see Sec. IV for further discussion.

We first consider a sample of 3 × 3 × 8 atoms arranged in
a lattice along the x, y, and z directions, respectively, with
the lattice period d � λ0/2. This case would correspond to
trapping alkali atoms on the ω0 transition in a red-detuned
lattice.

The calculated emission of a single photon from this atomic
sample is presented in Fig. 3. Figure 3(a) shows the intensity
of the field, integrated over directions, at different distances
from the atomic sample, i.e., I = ∑

ε

∫
d�r2Iε(�r,t). The field

propagates at the speed of light, and this snapshot of the
intensity distribution with distance reflects how the state |f 〉
population has gradually decayed via the optically excited
states since the coupling field was switched on. The most
prominent feature is the overall exponentially decaying shape,
but Fig. 3(a) also shows residual oscillation behavior. This
modulation comes from off-resonant Rabi oscillations between
states |fj 〉 and |e+1

j 〉. Figures 3(b) and 3(c) show the spatial
intensity distribution I�,ε = r2Iε(�r,t), indicated by different
colors, for the same parameters as in Fig. 3(a). Figure 3(b)
shows the intensity distribution for the polarization of the
emitted light, which is expected to be dominant for the level
scheme by the dipole selection rule. We observe that most of
the light is emitted in a narrow forward peak. Figure 3(c) shows
that in the backward direction, a small component (note the
different color scale) is emitted with the opposite polarization,
again in agreement with the atomic dipole selection rule.
To quantify the angular distribution of the emitted light,
Figs. 3(d) and 3(e) show polar plots of the intensity of the
left-handed and right-handed light components at the distance
R = 199c/�.
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FIG. 3. (Color online) Emission of a single photon from a small atomic sample of 3 × 3 × 8 atoms arranged in a lattice with the spacing
d = 0.60λ0. (a) Integrated intensity I = ∑

ε

∫
d�r2Iε(�r,t) as a function of the distance from the atomic sample (solid line) and the out-coupling

pulse shape (dotted line). (b) Spatial distribution of intensity of left-handed polarized light I�,l = r2Il(�r,t) for a given time t = 200λ0/c. The
spatial coordinates are given in units of c/�. (c) Same as (b), but for the opposite handedness of the light (right handed). The intensity scale is
given in the same arbitrary units in (b) and (c). (d) Polar plot of the angular intensity distributions of light at R = 199c/� corresponding to (b)
at the moment of the maximum intensity. More than 95% of the intensity is emitted in the positive z direction within a cone with a half opening
angle �θ = 0.33 rad. (e) The corresponding intensity distribution for the right-handed polarization. The same intensity units are applied for
the two polarizations in (d) and (e) (note the values differ by an order of magnitude). The parameters used for this simulation are �L = 2�,
and the single-atom detuning of the �L field is 10�.

The directionality of the emitted light as a function
of the lattice spacing was analytically studied by Porras
and Cirac [42] for the case of two-level atoms. In this
model the radiative pattern can be factorized into two parts:
(1) collective scalar field radiative effects and (2) a dipole
radiative pattern of individual atoms. Our calculations indicate
that reabsorption effects and the inclusion of multiple excited
states become important for the case of strongly coupled atoms
with atomic spacings d ≈ 0.25λ0 and for the case of frustrated
emission even with large atomic spacings (see Appendix B).
In these cases atomic reabsorption of photons with a resulting
redistribution of angular momentum does not justify a simple
factorization in terms of a collective scalar and the dipole
emission pattern.

Our calculations also show that for the case of forward
emission for atoms with larger separations, the role of levels
|e0

j 〉 and |e−1
j 〉 in the photon reabsorption effects is negligible.

The directionality of emission in this case depends on the

lattice spacing and can be understood as the interference of
Bragg scattering contributions. For a critical spacing of d =
λ0/2 or an integer multiple of λ0/2, the photon is mainly
emitted in the forward and backward directions with equal
probability; see Figs. 4(a) and 4(e). With an increased value
of d this symmetry is broken, and the forward emission peak
becomes dominant; see Figs. 4(b)–4(d) and 4(f). Due to the
diffraction-like effects the directionality of the emitted light
improves with the increase of the array size. Figures 4(c),
4(g), and 4(h) show the angular distribution of emitted light for
lattices with the same spacing, but with an increasing number
of atoms. This analysis confirms the observations made in
Ref. [42].

In this section we have studied the collective emission
of single photons, and we have analyzed the details of
their directional distribution and their associated polarization
properties. We have identified regimes where the full Zeeman
manifold of the atomic excited state is important for photon
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FIG. 4. (Color online) Polar plot of emitted light for a lattice of 3 × 3 × 8 atoms for the cases (a) d = 0.50λ0 (�θ = 0.38 rad),
(b) d = 0.53λ0 (�θ = 0.36 rad), (c) d = 0.60λ0 (�θ = 0.33 rad), (d) d = 0.90λ0 (�θ = 0.22 rad), (e) d = 1.00λ0 (�θ = 0.20 rad), and
(f) d = 1.10λ0 (�θ = 0.18 rad). The total angular distribution for lattices (g) 6 × 6 × 8 (�θ = 0.21 rad) and (h) 8 × 8 × 8 (�θ = 0.18 rad)
with d = 0.60λ0. The coupling laser parameters are the same as in Fig. 3.

reabsorption effects and regimes where it can be neglected. In
the next section we turn to the temporal shape of the emitted
light pulses and to the experimental means to control the light
mode of the emitted photon.

IV. TEMPORAL PHOTON MODES

The angular emission patterns shown in the previous section
were all calculated assuming a constant intensity of the laser
which drives the f ↔ e transition. This leads to a highly
asymmetric temporal profile of the emitted light, shown in
Fig. 3(a). By controlling the temporal profile of the coupling
�L(t) one can control the temporal shape of the emitted
light, and this can be used to transfer the atomic excitation
from state |f 〉 to, e.g., a temporary symmetric emitted photon
wave packet. Such a wave packet can be reabsorbed in a
second atomic ensemble if one employs the time-reversed
control field. Therefore we may imagine a collection of
atomic ensembles as quantum repeater stations, where photon
pulses are absorbed and reemitted, possibly after suitable
entanglement distillation and state purification [2,12].

To design appropriate out-coupling laser fields, we start
with a system prepared in states |fj 〉 described by Eq. (20)
with a vanishing coupling �L. By gradually increasing the
coupling strength we transfer the population to states |e+1

j 〉,
which decay to the ground state by the emission of light.
The intensity of the emitted light is given by the population
of excited state |e+1

j 〉, and our goal is thus to control this
population.

Due to the complexity of the nonorthogonal eigenmodes
of the coupling Hamiltonian, we follow the approach in
Sec. III and focus here on the conceptually easiest strategy,
which is an adiabatic out-coupling. By introducing a detuning

δ = ωf e − ωL and βν
l = β̃ν

l e−iδt we can rewrite Eqs. (9)
and (10):

ȧl = �L

2i
β̃+1

l , (21)

˙̃β+1
l = �L

2i
al + i (δ + �Lamb) β̃+1

l − �

2
β̃+1

l

− �

2

N∑
j=1,j �=l

(
d̂ l

+1,g · ←→
F l,j · d̂

j

g,+1

)
β̃+1

j . (22)

Since state |fj 〉 is coupled by a strong field �L to |e+1
j 〉,

whereas substates |e−1
j 〉 and |e0

j 〉 are only coupled by virtual

photon processes to state |e+1
j 〉, we have neglected the

populations of the |e−1
j 〉 and |e0

j 〉 substates. This approximation
is justified for directed forward emission, as we have discussed
in the previous section. Assuming further that the detuning δ

is much larger than the Rabi frequency �L, the single-atom
decay rate �, and the Lamb shifts, we adiabatically eliminate
state β̃+1

l :

β̃+1
l =

(
�L

2δ
− i

�

2δ

�L

2δ

)
al

− i
�

2δ

N∑
j=1,j �=l

(
d̂ l

+1,g · ←→
F l,j · d̂

j

g,+1

)
β̃+1

j . (23)

We can see directly that the leading term of β̃+1
l is of the order

O(�L

δ
) since al is of the order of 1. Therefore the population

of state |e+1
l 〉 is always much smaller than unity and quickly

decays to the ground state. Hence the intensity of the emitted
light is approximately given by the population of state |e+1

l 〉.
Substituting Eq. (23) into Eq. (21) and neglecting terms of
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order higher than O(�3

δ2 ), we arrive at a closed set of equations
for the a coefficients:

ȧl = −i�lightal − �′

2
al − �′

2

N∑
j=1,j �=l

(
d̂ l

+1,g · ←→
F l,j · d̂

j

g,+1

)
aj ,

(24)

with the light shift �light = �2
L

4δ
and the effective decay rate

�′ = �
�2

L

4δ2 of the metastable state |fl〉.
Similar to Eq. (22), the first line of this equation describes

the dynamics of an isolated atom. The second line, which de-
pends on the geometry, is the contribution from the interactions
with all other atoms of the sample via virtual photon exchange
processes. Since the collective contributions both in Eq. (22)
and in Eq. (24) have the same form and the temporal evolution
of the population β̃+1

l follows al as

β̃+1
l = �L

2δ
al, (25)

up to order O(�L

δ
), we conclude that the spatiotemporal

mode function occupied by the emitted photon has the same
structure, up to a radial scaling factor, as in the case studied in
Sec. III.

In order to tailor the temporal dynamics of the emitted
light, we now allow temporal modulation of the control field
�L(t) = �L0f (t), with 0 � f (t) � 1, for all times. With this
notation Eq. (24) becomes

1

f (t)2

dal(t)

dt
= −i

�2
L0

4δ
al(t) − �

2

�2
L0

4δ2
al(t)

−�

2

�2
L0

4δ2

N∑
j=1,j �=l

(
d̂ l

+1,g · ←→
F l,j · d̂

j

g,+1

)
aj (t).

(26)

In contrast to the resonant out-coupling case described by
Vasilev et al. [50], in our adiabatic out-coupling case there is
no general analytic solution of this equation. Nevertheless, we
can find a connection between the solution a0

l (t) of Eq. (26)
with a constant �L, i.e., f = 1, and the solution al(t) for an

arbitrary f (t). Defining

τ (t) =
∫ t

0
f (t ′)2dt ′, (27)

we observe that

bl(τ (t)) = al(t) (28)

obeys the equation

dbl(τ )

dτ
= −i

�2
L0

4δ
bl(τ ) − �

2

�2
L0

4δ2
bl(τ )

− �

2

�2
L0

4δ2

N∑
j=1,j �=l

(
d̂ l

+1,g · ←→
F l,j · d̂

j

g,+1

)
bj (τ ). (29)

Since this equation is identical to Eq. (26) for constant f , we
directly obtain its formal solution bl(τ ) = a0

l (τ ), and hence,
the general solution to Eq. (26) reads

al(t) = a0
l (τ (t)). (30)

That means the time evolution of al(t) can be advanced or
retarded with respect to a0

l (t) by choosing the appropriate
function f (t) in Eq. (27).

To calculate the temporal pulse shape f (t) leading to any
desired output intensity I (t), we observe that the number of
photons emitted under constant amplitude driving is related to
the population in the initial atomic state,

n0(t) ≡
∫ t

0
dt ′I 0(t ′) = 1 −

N∑
l=1

∣∣a0
l (t)

∣∣2
, (31)

while the corresponding number of photons in the desired field
is

n(t) ≡
∫ t

0
dt ′I (t ′) = 1 −

N∑
l=1

|al(t)|2. (32)

Equation (30) implies the equation for τ (t):

n(t) = n0(τ (t)). (33)

Figure 5(a) shows the emitted intensities (thick dashed
blue curve) obtained with a constant out-coupling amplitude
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FIG. 5. (Color online) Temporal shaping of the photon emission from an atomic array of 3 × 3 × 8 atoms with d = 0.60λ0. (a) Output
intensity (thick blue dashed line) using a constant pulse (thin red dashed line) with �L0 = 10.5� and δ = 120�. With a specially designed
out-coupling pulse with peak Rabi frequency �L0 = 42.0� and the temporal shape f (t) (thin red solid line), we obtain a Gaussian temporal
shape at R = 260c/� of the emitted light intensity (thick blue solid line). (b) Integrated intensities n0(t) (dashed line) and n(t) (thick solid
curve) and a graphical solution (red arrows) of the equation n(t) = n0(τ (t)). (c) Out-coupling of a double-peaked pulse (thick blue line) using
�L0 = 38.85� and f (t) (thin red line).
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(thin dashed red curve) and a Gaussian pulse with 1/e width
15�−1 at R = 260c/� (thick solid blue curve) obtained with
the calculated amplitude f (t) (thin solid red curve), respec-
tively. The corresponding integrated intensities are shown in
Fig. 5(b), which also illustrates the numerical procedure to
solve (33) and establish the correspondence between the values
τ (t) and t , as indicated by the red arrows. By numerically
differentiating the function τ (t) and using Eq. (27) we directly
obtain the temporal profile of the out-coupling pulse f (t)
leading to the desired I (t). This function is shown as a thin
solid red curve in Fig. 5(a); the spikes are due to precision
errors in the calculation of the derivative of τ (t). We insert
this out-coupling pulse into our simulation of the full coupled
equations, and we calculate the resulting emitted intensity
which is, indeed, the result, presented as the thick solid blue
line in Fig. 5(a). To demonstrate our ability to couple out
arbitrary pulse shapes, we aim in Fig. 5(c) at a double-peaked
pulse with equal heights at R = 160c/� and R = 260c/�.
The corresponding profile of f (t) is shown as a thin red line
in Fig. 5(c), and again, the thick solid blue curve shows the
outcome of the simulation of the full set of coupled atomic
equations.

We presented here a recipe for photon shaping starting from
a constant amplitude control pulse. Using this as a reference,
it is possible to relate the outcome of different control pulses
by a suitable parametrization of the time argument and to use
the above method with experimentally measured intensities.
While we assumed a varying amplitude but a constant phase
of the control field �L(t) to produce more complicated
single-photon wave packets, it may be worthwhile to study
also complex-valued f (t).

V. CONCLUSION

We studied correlated spontaneous emission from small
arrays of atoms. Our atomic model is the simplest general-
ization of a two-level atom, which allows us to fully account
for polarization effects. Numerically solving the equations of
motion, we demonstrated the possibility of deterministically
generating single photons with a well-defined spatial emission
profile, which can be controlled by the geometry of the array.
Moreover, we established a method to shape the temporal
dependence of the photon wave packets at will. In particular,
the method allows us to prepare time-symmetric wave packets,
which may be sent from one atomic ensemble and absorbed
by another with manageable time-reversed control fields
on the two ensembles, thus considerably simplifying the
experimental procedures needed for application in quantum
communication networks.

The results of this work pave the way towards an experi-
mental realization of quantum repeaters based on cold neutral
atoms. Each node may be a sample of cold alkali, alkaline-
earth, or rare-earth atoms arranged in a three-dimensional
array. Such arrays, e.g., with rubidium, strontium, or ytterbium
atoms, can now be routinely created using standing waves of
counterpropagating laser beams. The typical spacings in these
arrays range from half the optical wavelength and upwards for
red-detuned traps, and they readily satisfy the requirements
for directional emission even for small atomic samples. At the
same time in such samples the maximum distance between any

two atoms may be kept smaller than the Rydberg blockade
radius, allowing us to initialize the system with exactly one
excitation. The buffer |f 〉 state might directly be the Rydberg
state, which has a lifetime three orders of magnitude longer
than the |e+1〉 state, or it may be one of the states of the
ground-state manifold [42].

Finally, we also studied the atomic emission dynamics in
the case where the emission is frustrated, i.e., when the phase-
matching condition favors emission in directions forbidden
by the dipole emission pattern and in the case of denser
systems with d < λ/2. In both cases the Zeeman sublevels
of the excited state contribute to the subradiant modes. The
experimental realization of conditions to observe these effects
will require arrays of alkaline-earth or rare-earth atoms in blue-
or red-detuned optical lattices.
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APPENDIX A

We derive the explicit dependence of Iε(�r,t) on the atomic
part β of the wave function. We rewrite first Eq. (18) as [49]

Iε = 〈ψ |E(−)
ε |g〉|0〉〈0|〈g|E(+)

ε |ψ〉. (A1)

The photon “wave function” is

|�ε〉 = 〈0|〈g|〈0|E(+)
ε (�r) |ψ(t)〉

= i
∑

�k

∑
λ

εk(�ε · �ε�k,λ)e�k,λe
i(�k·�r−ωkt), (A2)

with e�k,λ from Eq. (8).
As the second step, we simplify this expression. The

summation over polarizations is performed using a recipe from
the Appendix of Smith et al. [51]:

|�ε〉 = i
∑

�k

N∑
j=1

1∑
ν=−1

[�ε · (
←→
I − k̂k̂) · d̂j

gν

]

× εkgke
i(�k· �Rj −ωkt)

∫ t

0
dτβν

j (τ )e−i(ω0−ωk)τ , (A3)

with �Rj = �r − �rj . After replacing the summation over the
wave vectors

∑
�k by an integral V

(2πc)3

∫ ∞
0 dωkω

2
k

∫
d�(k), we

get

|�ε〉 = i

N∑
j=1

1∑
ν=−1

V

(2πc)3

∫ ∞

0
dωkω

2
kεkgke

−iωkt

×
∫ t

0
dτβν

j (τ )e−i(ω0−ωk)τ

×
∫

d�(k)
[�ε · (

←→
I − k̂k̂) · d̂

j

jν

]
ei�k· �Rj . (A4)
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The angular integration can already be performed at this step
[51], resulting in

|�ε〉 = i

N∑
j=1

1∑
ν=−1

V

(2πc)3

∫ ∞

0
dωkω

2
kεkgke

−iωkt

×
∫ t

0
dτβν

j (τ )e−i(ω0−ωk )τ 4π
[�ε · ←→

ζ (kRj ) · d̂
j

jν

]
,

(A5)

with
←→
ζ (kR) = (

←→
I − R̂R̂) sin(kR)

kR
+ O( 1

(kR)2 ) [51]. Therefore

the photon intensity up to the order of O((kR)−2), with r � rj ,
is

|�ε〉 =
N∑

j=1

1∑
ν=−1

Bν
r̂,j

1

Rj

∫ t

0
dτβν

j (τ )e−ick0τ

×
∫ ∞

0
dkk2[eikRj +ick(τ−t) − e−ikRj +ick(τ−t)], (A6)

where we have introduced Bν
r̂,j = 1

4πε0

c
2π

deg[�ε · (
←→
I −

R̂j R̂j ) · d̂
j
gν]. Since during the emission the value of k is

peaked around the atomic resonance k0 where the last time
integral is relevant, we can replace k2 with k2

0 and extend the
lower integral limit to −∞ [49], i.e., the Weisskopf-Wigner
approximation. Using the definition of the δ function δ(t) =

1
2π

∫ ∞
−∞ dkeikt , Eq. (A6) becomes

|�ε〉 =
N∑

j=1

1∑
ν=−1

Bν
r̂,j

2π

c

k2
0

Rj

×
[ ∫ t

0
dτβν

j (τ )e−ick0τ δ

(
t − Rj

c
− τ

)

−
∫ t

0
dτβν

j (τ )e−ick0τ δ

(
t + Rj

c
− τ

) ]
. (A7)

Since the last integral with the δ function is always zero, we
arrive at

|�ε〉 =
N∑

j=1

1∑
ν=−1

degk
2
0

4πε0Rj

βν
j

(
t − Rj

c

)
e
−ick0

(
t− Rj

c

)

× [�ε · (
←→
I − R̂j R̂j ) · d̂j

gν

]
. (A8)

Finally, we arrive at the desired explicit dependence of the
photon intensity on the atomic part β:

Iε(�r,t) = 〈�ε |�ε〉

= d2
egk

4
0

(4πε0r)2

N∑
j,j ′=1

1∑
ν,σ=−1

βν
j

(
t − r

c

)[
βσ

j ′

(
t − r

c

)]∗

× eik0[r̂·(�rj −�rj ′ )][�ε · (
←→
I − R̂j R̂j ) · d̂j

gν

]
× [�ε · (

←→
I − R̂j ′R̂j ′ ) · d̂j ′

σg

]
, (A9)

where we have used Rj ≈ r for β and in the denominator but
kept the significant term Rj = r − (r̂ · �rj ) in the exponents.

This equation allows a very transparent physical interpre-
tation for the case of many noninteracting atoms. We suppose
states |fj 〉 are fully mapped onto the corresponding |e+1

j 〉, i.e.,
aj = 0 in Eq. (7). Therefore the atomic evolution is described
by

β+1
j (t) = 1√

N
e−i�kem·�rj e− �

2 t , β0
j (t) = 0, (A10)

and

β−1
j (t) = 0,

which is the solution of Eq. (10) for k0Rl,j � 1, i.e., vanishing

coupling
←→
F l,j . The wave vector �kem is defined in Fig. 1. The

80 85 90 95 100 105

2

6

10

14

18

R (units of c/Γ)
I (

a.
u.

)

100
-100

0
x

100

-100
0

y

100

-100
0

y
100

-100
0

x

100

-100

0

z

200

100

-100

0

z

200

(c)

(b)

(a)

FIG. 6. (Color online) Frustrated emission from a sample of 6 ×
6 × 12 atoms with the lattice spacing d = 0.60λ0. (a) A snapshot of
the angularly integrated intensity of the emitted light after excitation
with a short pulse (red dashed line) with the same parameters as in
Fig. 2. The case where all |e−1〉, |e0〉, and |e+1〉 levels are included
is shown with the blue (dark gray) curve, and the case restricted
to a single excited state |e0〉 is shown with the green (light gray)
curve. Angular distribution at R = 96.6c/� (b) for the case of the
full manifold of the excited state and (c) for the case restricted to |e0〉.
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corresponding emitted intensity is then

Iε (�r,t) = d2
egk

4
0

(4πε0r)2N
e−�(t− r

c
)

N∑
j=1

Cε
j,j + d2

egk
4
0

(4πε0r)2N

× e−�(t− r
c

)
N∑

j=1

N∑
j ′=1

(1 − δj,j ′ )Cε
j,j ′e

i(k0 r̂−�kem)·(�rj −�rj ′ ),

(A11)

with

Cε
j,j ′ = [�ε · (

←→
I − R̂j R̂j ) · d̂

j

g,+1

][�ε · (
←→
I − R̂j ′R̂j ′) · d̂

j ′
+1,g

]
.

(A12)

Equation (A12) can be further simplified using R̂j R̂j =
r̂ r̂[1 + O( rj

r
)] and assuming that all dipoles are polarized

in the same direction, i.e., d̂
j

g,+1 = d̂g,+1. In this case the
function Cε

j,j has an interpretation as the angular dependence
of the dipole emission pattern for a given helicity ε expressed
in a tensor form. In particular, if we introduce a spherical
coordinate system along the d̂g,0 direction and sum over
all polarizations, we arrive at the well-known dipole pattern
angular dependence 1

2 (1 + cos2 θ ) for a dipole emitting on the
|e+1〉 → |g〉 transition.

Correspondingly, in the direction r̂ = �kem

k0
we have

Iε (�r,t) ≈ N2 × d2
egk

4
0

N (4πε0r)2
e−�(t− r

c
)Cε

j,j , (A13)

while for all other directions r̂ �= �kem

k0
the exponents in

Eq. (A11) average out and give

Iε (�r,t) ≈ 1 × d2
egk

4
0

N (4πε0r)2
e−�(t− r

c
)Cε

j,j , (A14)

i.e., 1/N2 reduced emission intensity. This is the well-known
mechanism of directed emission from an atomic sample. Note

as well that in this example, and in the more general case of
spin-polarized two-level atoms, i.e., no coupling of ν = +1
states to the other ν = 0,−1 states, the single-atom dipole
emission pattern factorizes out in the intensity formula (A9),
as was pointed out by Porras and Cirac [42]. Nevertheless,
this is not true in the general case considered here due to
coupling of the ν = 0,−1 levels to the level ν = +1 via virtual
photons [47].

APPENDIX B

We consider here the emission by an array of 6 × 6 ×
12 atoms with the spacing d = 0.60λ0. The atoms are initially
prepared in the timed Dicke superposition state of the |f 〉
levels [Eq. (20)] as in all previous examples. This state favors
emission in the z direction, but the storage level |f 〉 is now
coupled to the short-lived state |e0〉. This state can directly
decay to the ground state with the emission of a π -polarized
photon, relative to the z axis; see Fig. 1. Since the angular
emission pattern of this transition has zero intensity in the
z direction, which is the preferred emission direction of this
atomic sample, we obtain a conflict between the preferred
and the allowed emissions. An example of the resulting
frustrated emission is presented in Fig. 6. Here we plot a
snapshot of the integrated intensity emitted by the atomic
array out-coupled by a short pulse �L (dashed red line) with
the same parameters as in Fig. 2. The blue (dark gray) curve
corresponds to the case with all |e−1〉, |e0〉, and |e+1〉 levels
included, whereas the green (light gray) curve corresponds
to the manifold restricted to the |e0〉 state. Figures 6(b)
and 6(c) show the polar plots of the emitted radiation at
R = 96.6c/� for the two cases. The qualitatively different
behavior in these two cases demonstrates the importance of
the inclusion of the full manifold of the states. This difference
stems from the reabsorption of virtual photons with different
polarizations.

[1] S. Olmschenk, D. Hayes, D. N. Matsukevich, P. Maunz, D. L.
Moehring, and C. Monroe, Int. J. Quantum Inf. 8, 337 (2010).

[2] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Nature
(London) 414, 413 (2001).

[3] L. Hau, S. Harris, Z. Dutton, and C. Behroozi, Nature (London)
397, 594 (1999).

[4] A. Kuzmich, K. Mølmer, and E. S. Polzik, Phys. Rev. Lett. 79,
4782 (1997).

[5] K. Hammerer, A. S. Sørensen, and E. Polzik, Rev. Mod. Phys.
82, 1041 (2010).

[6] U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch,
N. Davidson, S. Kuhr, and I. Bloch, Phys. Rev. Lett. 103, 033003
(2009).

[7] A. T. Black, J. K. Thompson, and V. Vuletic, Phys. Rev. Lett.
95, 133601 (2005).

[8] Y. O. Dudin and A. Kuzmich, Science 336, 887 (2012).
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