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Computational ghost imaging versus imaging laser radar for three-dimensional imaging
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Ghost imaging has been receiving increasing interest for possible use as a remote-sensing system. There has
been little comparison, however, between ghost imaging and the imaging laser radars with which it would be
competing. Toward that end, this paper presents a performance comparison between a pulsed, computational
ghost imager and a pulsed, floodlight-illumination imaging laser radar. Both are considered for range-resolving
(three-dimensional) imaging of a collection of rough-surfaced objects at standoff ranges in the presence of
atmospheric turbulence. Their spatial resolutions and signal-to-noise ratios are evaluated as functions of the
system parameters, and these results are used to assess each system’s performance tradeoffs. Scenarios in which
a reflective ghost-imaging system has advantages over a laser radar are identified.
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I. INTRODUCTION

Ghost imaging is an active-imaging technique that uses
time-varying structured illumination to image a target without
spatially resolving measurements of the light beam that
interacts with the target. Traditionally, a beam splitter is
used to create two perfectly correlated beams, the signal and
reference, such that the signal interacts with the target and
is then measured by a single-pixel bucket detector, while
the reference is directly measured by a spatially resolving
detector [1]. As the illumination pattern is varied, the two
measurements are correlated until the spatial structure of the
target is determined. Neither measurement alone is sufficient
to produce the image; it is their cross correlation that holds the
desired target information, i.e., the ghost image.

The first ghost-imaging experiment relied on entangled
photon pairs, obtained from spontaneous parametric down-
conversion, for its signal and reference fields, so it was believed
that the ghost image was a uniquely quantum feature [2],
namely, nonlocal two-photon interference. Later, ghost imag-
ing was performed with classical pseudothermal light [3,4],
and a controversy arose as to whether these experiments could
be explained by the intensity correlation between classical
signal and reference fields or only by nonlocal two-photon
interference. Subsequent Gaussian-state analysis provided a
unified treatment of down-converter and pseudothermal ghost
imaging, showing that the stronger-than-classical correlation
of entangled photons yielded better contrast and near-field
resolution [1,5,6], and that the quantum and semiclassical
treatments of the pseudothermal imager gave quantitatively
identical performance predictions. More recently, the intensity
cross correlation versus nonlocal two-photon interference
controversy for understanding pseudothermal ghost imaging
has been ended through analysis demonstrating that these two
explanations can coexist [7].

Once pseudothermal ghost imaging is considered in the
framework of structured-illumination imaging, it becomes
possible to dispense with a physically realized reference field.
In particular, deterministic modulation of a laser beam with a
spatial light modulator (SLM) can provide the signal field
used for target interrogation, while the on-target intensity
pattern needed for the reference field can then be calculated
via diffraction theory [8]. The extension of ghost imaging

to this computational framework has opened the door for
a variety of applications, including demonstration of ghost
imaging with phase-sensitive classical light [9], and image
reconstruction via compressed sensing, instead of correlation
[10]. Pseudothermal ghost imaging has been experimentally
done in reflection both in laboratory [11] and remote-sensing
scenarios [12]. Moreover, recent work analyzing reflective
ghost imaging indicates that computational reflective ghost
imaging is feasible for remote sensing [13], and computed
reference beams can be generated for all target ranges of
interest, so that computational ghost imaging has unlimited
depth of focus, unlike its pseudothermal counterpart. So
far, however, there has only been a cursory performance
comparison between computational ghost imaging and an
imaging laser radar for this application [14,15].

In this paper, we extend the analysis in Ref. [13] of a
continuous-wave reflective ghost imager to a pulsed, com-
putational ghost-imaging system that is capable of performing
three-dimensional (3D) imaging, and we compare its behavior
to that of a pulsed, floodlight-illumination, imaging laser
radar. We present results for their spatial resolutions and
signal-to-noise ratios (SNRs) when imaging rough-surfaced
targets that produce fully developed laser speckle and the
propagation to and from the targets is through atmospheric
turbulence. We also investigate the tradeoff between spatial
resolution and SNR as a function of detector and entrance-
pupil sizes. As reflective ghost-imaging systems are only
subject to spatial-resolution loss from turbulence in the source-
to-target path [13,16], whereas a floodlight-illumination laser
radar’s spatial resolution is only degraded by turbulence in
the target-to-receiver path, we consider arbitrary turbulence
distributions on all optical paths.

II. SOURCE, PROPAGATION, AND TARGETS

Figures 1(a) and 1(b) show the setups that we shall consider
for computational ghost imaging and laser radar, respectively.
In this section, we highlight the features that are common and
different in these systems. Their performance characteristics
will be treated in Secs. III (ghost imaging) and IV (laser
radar). For both imagers, a pulse-train waveform is emitted
by the source and propagates through atmospheric turbulence
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FIG. 1. (Color online) (a) Setup for 3D computational ghost
imaging in reflection. Pulsed laser light undergoes spatial light
modulation, propagation through atmospheric turbulence to and
from an extended range-spread target, and shot-noise-limited bucket
detection, producing an output ib(n,z) from the range-z return
associated with the nth transmitted pulse. Diffraction theory is used to
calculate I (ρ ′,n,z), the vacuum-propagation, target-region intensity
pattern at transverse coordinate ρ ′ and range z associated with the
nth transmitted spatial pattern. (b) Setup for 3D imaging laser radar.
Pulsed laser light illuminates the target region, in a floodlight manner,
through a turbulent optical path. The return light, collected after
propagation back to the radar through atmospheric turbulence, is
detected by a shot-noise-limited CCD array in an image plane,
resulting in an output ip(ρ ′

p,n,z) for the pixel at transverse coordinate
ρ ′

p and range z from the nth transmitted pulse.

to an extended, range-spread, rough-surfaced target. The light
reflected from the target propagates back through atmospheric
turbulence to the receiver, where it is photodetected. For the
ghost imager, each pulse has a different spatial pattern, whereas
the laser radar uses a constant, floodlight-illumination pattern
for all its pulses. The ghost imager employs a single-pixel
bucket detector, and forms its image by cross correlation
with a computed intensity-pattern reference. The laser radar,
however, employs a focusing lens and a CCD array to form
an image of the target region. To make a fair performance
comparison between these two systems, we will require that
their sources radiate the same average photon number per pulse
NT towards the target region. In the sections that follow, we
provide source, propagation, and target details that will serve
as the foundation for the performance analyses to come in
Secs. III and IV.

A. Source characterization

We will take the SLM output in Fig. 1(a) and the laser
output in Fig. 1(b) to be quasimonochromatic, classical scalar
waves with center frequency ω0 (wavelength λ0 = 2πc/ω0,
wave number k0 = ω0/c) and complex envelope Es(ρ,t) as
a function of transverse coordinate ρ in the transmitter’s exit
pupil and time t . We normalize Es(ρ,t) so that |Es(ρ,t)|2 is the

photon flux density emitted from ρ at time t . The pulse-train
waveforms for the ghost imager and the laser radar that we
will employ are

Es(ρ,t) =
√

NT

N−1∑
n=0

ξ (ρ,n)p(t − nTs), (1)

where N is the number of pulses to be used in forming the im-
age [17]; ξ (ρ,n) is the normalized [

∫
dρ |ξ (ρ,n)|2 = 1] spatial

mode of the nth pulse; p(t) is a normalized [
∫
dt |p(t)|2 = 1]

pulse shape that is time limited to |t | � Tp/2; and Ts > Tp

is the pulse-repetition interval. The pulse duration Tp, which
could be picoseconds to nanoseconds long, will be taken to be
much shorter than the coherence time Tc of the turbulence,
which is typically milliseconds long. The pulse-repetition
interval Ts will be long enough to preclude second-time-around
echoes from the farthest range of interest to masquerade as
returns from a closer range [18]. Also, Ts will be allowed to
exceed Tc.

The principal difference between the fields transmitted by
the ghost imager and the laser radar lies in their normalized
spatial modes ξ (ρ,n). For the ghost imager, these will be
modeled as a collection of independent, identically distributed,
zero-mean Gaussian random fields, indexed by the pulse
number n, that are completely characterized by the following
Gaussian Schell-model correlation functions [19]:

〈ξ (ρ1,n1)ξ (ρ2,n2)〉 = 0, (2)

〈ξ ∗(ρ1,n1)ξ (ρ2,n2)〉
= 2

πa2
0

e−(|ρ1|2+|ρ2|2)/a2
0 e−|ρ1−ρ2|2/2ρ2

0 δn1n2 . (3)

Here, a0 is the source’s intensity radius and ρ0 � a0 is its
spatial coherence length. The Gaussian Schell model is an
analytical convenience that captures the essential physics
of radiation from a partially coherent source. The reader
is cautioned, however, that the Gaussian statistics we have
assumed will not be valid until sufficient propagation away
from the SLM has occurred that the central limit theorem can
be applied to the superposition of the many phase-modulated
field elements from that modulator’s pixels. Inasmuch as we
will be taking propagation from a single SLM pixel to be in
its far-field regime, the Gaussian assumption will indeed be
applicable for the ghost imager’s target illumination.

The normalized spatial mode for the laser radar will
be deterministic, identical for all pulses, and given by the
collimated Gaussian beam

ξ (ρ,n) =
√

2

πw2
o

e−|ρ|2/w2
o , (4)

where wo is its beam waist. For a fair comparison with the ghost
imager, we shall set the laser radar’s beam waist wo equal
to the ghost imager’s ρo. By doing so, the average far-field
intensity pattern produced by the latter’s source spatial mode
will exactly match the far-field intensity pattern produced by
that of the former.
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B. Propagation through turbulence

Propagation of Es(ρ,t) from the ghost imager or the laser
radar to range z in the target region, and propagation of a
reflected field Er (ρ ′,t) from range z back to those sensors, will
be through atmospheric turbulence, whose behavior we will
characterize via the extended Huygens-Fresnel principle [20].
Labeling the path from the sources to the target region with S,
and the path leading to the detectors with D, we have that

Ez(ρ
′,t) =

∫
dρ Es(ρ,t − z/c)hS

z (ρ ′,ρ,t) (5)

and

Ed (ρ,t) =
∫

dρ Er (ρ ′,t − z/c)hD
z (ρ,ρ ′,t), (6)

where

hS
z (ρ ′,ρ,t) = k0e

ik0(z+|ρ ′−ρ|2/2z)eψS (ρ ′,ρ,t)

i2πz
(7)

and

hD
z (ρ,ρ ′,t) = k0e

ik0(z+|ρ−ρ ′|2/2z)eψD(ρ,ρ ′,t)

i2πz
(8)

specify the atmospheric propagation kernels at time t in
terms of the Fresnel-diffraction Green’s function and the
prevailing atmospheric fluctuations ψS(ρ ′,ρ,t) and ψD(ρ,ρ ′,t)
arising from Kolmogorov-spectrum turbulence distributed,
in general, nonuniformly along two paths. The real and
imaginary parts χS(ρ ′,ρ,t) and φS(ρ ′,ρ,t) of ψS(ρ ′,ρ,t)
are the log-amplitude and phase fluctuations imposed on
the field arriving z m downrange at time t and transverse
coordinate ρ ′ from a point source at transverse coordinate
ρ; there is a corresponding physical interpretation for the
real and imaginary parts χD(ρ,ρ ′,t) and φD(ρ,ρ ′,t) of
ψD(ρ,ρ ′,t).

The range-spread targets of interest will be assumed to lie
at ranges between zmin and zmax = zmin + �z from the two
imagers under consideration, where zmin satisfies the far-field
propagation conditions k0a0ρ0/2zmin � 1 and k0w

2
0/2zmin �

1, respectively, for the ghost imager’s correlation functions and
laser radar’s transmitter beams. As will be explained below,
in conjunction with our spatial-resolution analyses for the
ghost imager and the laser radar, we will not assume that
far-field propagation conditions automatically apply for the
ghost imager’s source diameter or the laser-radar receiver’s
entrance pupil diameter.

We will assume that the S and D paths are sufficiently
separated, by virtue of our imagers having different transmitter
exit optics and receiver entrance optics, that ψS(ρ ′,ρ,t) and
ψD(ρ,ρ ′,t) will be statistically independent. It then turns
out that turbulence will only enter in our spatial-resolution
calculations through the mutual coherence functions of
exp[ψS(ρ ′,ρ,t)] and exp[ψD(ρ,ρ ′,t)]. Given our assumption
of Kolmogorov-spectrum turbulence, the mutual coherence
functions we will need are as follows:

〈eψ∗
S (ρ ′

1,ρ1,t)eψS (ρ ′
2,ρ2,t)〉 = e−DS (ρ ′

1−ρ ′
2,ρ1−ρ2)/2 (9)

and

〈eψ∗
D(ρ1,ρ

′
1,t)eψD(ρ2,ρ

′
2,t)〉 = e−DD (ρ1−ρ2,ρ

′
1−ρ ′

2)/2, (10)

where

DS(ρ ′,ρ) = 2.91k2
0z

∫ 1

0
ds C2

n,S(sz)|ρ ′s + ρ(1 − s)| 5
3 (11)

and

DD(ρ,ρ ′) = 2.91k2
0z

∫ 1

0
ds C2

n,D(sz)|ρ(1 − s) + ρ ′s| 5
3 ,

(12)

with {C2
n,S(ζ ) : 0 � ζ � z} and {C2

n,D(ζ ) : 0 � ζ � z} being
the turbulence-strength profiles on the S and D paths from
the imagers’ location ζ = 0 to the target region at range z. In
order to obtain closed-form results, however, we shall replace
these 5

3 -law mutual coherence functions with their square-law
approximations, i.e., we will use Eqs. (9) and (10) with

DS(ρ ′,ρ) = |ρ ′|2W ′
S + ρ ′ · ρ(8/3 − W ′

S − WS) + |ρ|2WS

ρ2
S

(13)

and

DD(ρ,ρ ′) = |ρ|2WD + ρ · ρ ′(8/3 − WD − W ′
D) + |ρ ′|2W ′

D

ρ2
D

.

(14)

In these equations, {Wm,W ′
m}, for m = S,D, are path-

weighting terms, given by

Wm = 8

3

∫ 1

0
ds (1 − s)2C2

n,m(sz), (15)

W ′
m = 8

3

∫ 1

0
ds s2C2

n,m(sz) (16)

in terms of the normalized turbulence-strength profiles

C2
n,m(ζ ) = C2

n,m(ζ )∫ 1
0 ds C2

n,m(sz)
for m = S,D, (17)

and {ρS,ρD} are the spherical-wave turbulence coherence
lengths for the S and D paths for uniform turbulence
distributions with the same integrated strength as the actual
distribution

ρm =
(

1.09k2
0z

∫ 1

0
ds C2

n,m(sz)

)−3/5

for m = S,D. (18)

In our treatment of ghost imaging, we will assume that ρ0 �
ρS/

√
WS , as will typically be the case, but we will allow

ρS/
√

WS to be larger or smaller than a0. For the laser radar,
we have w0 = ρ0, so we can assume w0 � ρS/

√
WS , but we

will allow ρD/
√

WD to be larger or smaller than r, which is
the radar-receiver’s entrance pupil radius.

C. Target reflection

Spatially coherent, quasimonochromatic light reflected by
an opaque object whose surface is rough on the scale of the
illumination’s wavelength, as most real-world surfaces are,
yields speckles in the resulting far-field intensity profile [21].
The speckles are due to the superposition of randomly phase-
shifted reflections from surface facets possessing microscopic
wavelength-scale height variations with correlation lengths on
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the order of a wavelength. Averaged over the speckle behavior,
the rough surface is a quasi-Lambertian reflector that sends
light back into the hemisphere with some average intensity-
reflection coefficient. For both our computational ghost imager
and our laser radar, it is this intensity-reflection coefficient,
as a function of transverse coordinate and range, that is to
be imaged. In both cases, the speckle fluctuations present
a significant impairment to high-quality image formation.
Hence, we need to incorporate a statistical model for speckle,
relating the field illuminating an extended range-spread target
to the field returned to our sensors, into our analysis.

As suggested in Fig. 1, we will presume the target to
comprise a set of K quasiplanar, rough-surfaced objects
that are located at discrete ranges {zk : 1 � k � K} obeying
zmin � z1 < z2 < . . . < zK � zmax. Moreover, these objects
will be taken to have spatial extents, in transverse dimensions,
in excess of our sensors’ spatial-resolution capabilities. Then,
the field returned to either the ghost imager or the laser radar
is given by

Ed (ρ,t) =
K∑

k=1

∫
dρ ′ Tzk

(ρ ′)Ezk
(ρ ′,t − zk/c)hD

zk
(ρ,ρ ′,t),

(19)

where Ezk
(ρ ′,t), the target illumination at transverse coordi-

nate ρ ′, range zk , and time t , is obtained from Eq. (5) with
z = zk , and Tzk

(ρ ′) is the (random) field-reflection coefficient
for the target at range zk . Note that Eq. (19) assumes that the
reflector at a particular range does not occlude those that are
farther away from the sensors.

To complete our target-return model, we only need to supply
statistics for the {Tzk

(ρ ′)}. Following laser radar theory [22],
these will be taken to be statistically independent, zero-mean,
complex-valued Gaussian random processes characterized by
the autocorrelation function〈

T ∗
zk

(ρ ′
1)Tzk

(ρ ′
2)

〉 = λ2
0Tzk

(ρ ′
1)δ(ρ ′

1 − ρ ′
2), (20)

where Tzk
(ρ ′) is the average intensity-reflection coefficient

for the reflector at range zk . Strictly speaking, the Gaussian
statistics can not apply very close to the target, but, because of
the quasi-Lambertian nature of rough-surface reflections, the
central limit theorem will apply to Ed (ρ,t), so our assuming
that the {Tzk

(ρ ′)} have Gaussian statistics is indeed warranted.

III. COMPUTATIONAL GHOST IMAGER

A. Image formation

The computational ghost image for range z is formed by
cross correlating the computed intensity patterns {I (ρ ′,n,z) :
0 � n � N − 1} that would be produced from vacuum propa-
gation of the N transmitted spatial patterns {ξ (ρ,n) : 0 � n �
N − 1}, with the corresponding sequence of bucket-detector
outputs that have been matched filtered for range z, which we
denote {ib(n,z) : 0 � n � N − 1}. The {I (ρ ′,n,z)} are given
by

I (ρ ′,n,z) =
∣∣∣∣
∫

dρ ξ (ρ,n)
k0e

ik0|ρ ′−ρ|2/2z

i2πz

∣∣∣∣
2

. (21)

For convenience, we have omitted leading constants that would
appear if we used a physical reference; this scaling does
not affect our analysis. The matched-filtered photocurrents
{ib(n,z)} satisfy

ib(n,z) =
∫

dτ g(nTs + 2z/c − τ )

×
[
qη

∫
dρ A2

b(ρ)|Ed (ρ,τ )|2 + �ib(τ )

]
, (22)

where g(t) ≡ |p(−t)|2 is the matched filter (causality ignored)
for the transmitted pulse’s intensity; q is the electron charge; η

is the bucket detector’s quantum efficiency; Ab(ρ) = e−|ρ|2/r2
b

is the field-transmission pupil function for the bucket detector’s
photosensitive region [23]; and �ib(t) is the photocurrent
shot noise, which we have assumed to be entirely due to the
target return. (For a treatment of ghost imaging that includes
background light and its associated shot noise, see [15].)

The N -pulse ghost image for range z is

GN (ρ ′,z) = 1

N − 1

N−1∑
n=0

ĩb(n,z)�I (ρ ′,n,z), (23)

where, anticipating the need to approximate the dc block used
in continuous-wave pseudothermal ghost imaging to obtain a
high-contrast image [3], we have chosen to cross correlate

ĩb(n,z) ≡ ib(n,z) − 1

N

N−1∑
n=0

ib(n,z) (24)

with

�I (ρ ′,n,z) ≡ I (ρ ′,n,z) − 〈I (ρ ′,n,z)〉, (25)

for which the ensemble average needed in the second term
can be computed because we know the statistics of the spatial-
pattern sequence {ξ (ρ,n)} being applied to the SLM.

B. Spatial resolution

The computational ghost imager’s spatial resolution is
found from the ensemble average of Eq. (23). We will
focus our attention on the ranges at which there are target
components, i.e., z ∈ {zk : 1 � k � K}. Furthermore, we shall
assume that the ghost imager’s pulse duration is short enough
to resolve all these ranges; for our p(t) this is guaranteed if
cTp/2 < min1�k�K−1(zk+1 − zk). Thus, we need to evaluate
〈GN (ρ ′,zk)〉, which simplifies to

〈GN (ρ ′,zk)〉 = 〈ib(n,zk)I (ρ ′,n,zk)〉
− 〈ib(n,zk)〉〈I (ρ ′,n,zk)〉, (26)

for 1 � k � K , where we have employed the {ξ (ρ,n)} being
a sequence of statistically independent, identically distributed,
spatial patterns.

The mean values that appear in the preceding expres-
sion are easily computed. For the computed reference, we
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have

〈I (ρ ′,n,zk)〉 =
∫

dρ1

∫
dρ2 〈ξ ∗(ρ1,n)ξ (ρ2,n)〉

× k2
0e

−ik0[|ρ1|2−|ρ2|2−2ρ ′ ·(ρ1−ρ2)]/2zk

(2πzk)2

≈ 2

πa2
zk

e
−2|ρ ′|2/a2

zk , (27)

where azk
≡ λ0zk/πρ0 is the intensity radius of |Ezk

(ρ ′,t)|2,
and the approximation follows from our assumptions that
ρ0 � a0 and k0a0ρ0/2zk � 1. For the bucket detector, we find

〈ib(n,zk)〉 = qηNT

∫
dτ g(nTs + 2zk − τ )

×
∫

dρ A2
b(ρ)〈|Ed (ρ,τ )|2〉 (28)

≈ 2qηNT Ab

πa2
zk
T ′

pz2
k

∫
dρ ′ Tzk

(ρ ′)e−2|ρ ′|2/a2
zk , (29)

where ρ0 � min(a0,ρS/
√

WS) justifies the approximation,
Ab ≡ ∫

dρ A2
b(ρ) = πr2

b /2 is the area of the bucket detector’s
photosensitive region, and T ′

p ≡ 1/
∫
dt |p(t)|4 is the effective

duration of the matched filter’s response to |p(t)|2. The
exponential term appearing in Eq. (29) comes from the average
intensity pattern in the zk plane, as seen in Eq. (27). Going
forward, we shall assume that the target lies well within the
center of this average intensity pattern, which reduces Eq. (27)
to

〈I (ρ ′,n,zk)〉 ≈ 2

πa2
zk

(30)

on the range-zk target, and Eq. (29) to

〈ib(n,zk)〉 ≈ 2qηNT Ab

πa2
zk
T ′

pz2
k

∫
dρ Tzk

(ρ). (31)

To complete our evaluation of the average range-zk ghost
image 〈GN (ρ ′,zk)〉, we need to derive an expression for
〈ib(n,zk)I (ρ ′,n,zk)〉. Its derivation is more involved than what
sufficed above for 〈I (ρ ′,n,z)〉 and 〈ib(n,zk)〉, but, because
it parallels similar analysis from Ref. [13], we shall merely
describe the procedure and present the result. First, we
backpropagate the bucket-detector measurements to the z = 0
source plane. Next, we exploit the statistical independence
of the sequence of spatial patterns, the turbulence present
on the source-to-target and target-to-receiver paths, and the
target’s field-reflection coefficient. We then employ our far-
field propagation conditions, the correlation function of the
target’s field-reflection coefficient, and the mutual coherence
functions for the turbulence fluctuations incurred on the two
paths. Finally, to evaluate a fourth-order moment of the spatial
patterns ξ (ρ,n), we employ Gaussian moment factoring, and
thus express the fourth-order moment in terms of second-order
moments given in Eqs. (2) and (3). The average ghost image
term in Eq. (26) is then found to be

〈GN (ρ ′,zk)〉 = 4qηNT Abρ
2
zk

πa4
zk
T ′

pz2
k

∫
dρ Tzk

(ρ)
e
−|ρ ′−ρ|2/αρ2

zk

παρ2
zk

,

(32)

with ρzk
≡ λ0zk/πa0 being the range-zk coherence length

of the transmitted spatial patterns {ξ (ρ,n)}, and α ≡ 1 +
a2

0WS/2ρ2
S the resolution-degradation factor imposed by the

turbulence present in the source-to-range-zk path.
Equation (32) shows that the average computational ghost

image for the target component at range zk is Tzk
(ρ) convolved

with a Gaussian point-spread function (PSF) of width
√

α ρzk
.

In the absence of turbulence α = 1, so that we get the spatial
resolution previously found for single-range, continuous-wave
operation in Ref. [8], viz., the speckle coherence length. In
the presence of turbulence in the source-to-target path we
have α > 1, and our result coincides with that for single-
range, continuous-wave operation through turbulence given
in Ref. [13]. The key points to be gleaned from Eq. (32) are
as follows: (1) turbulence in the source-to-target path does not
significantly degrade spatial resolution until its spherical-wave
coherence length in the source plane ρS/

√
WS becomes

smaller than the source’s intensity radius a0; (2) the spatial
incoherence of the rough-surfaced target leads to turbulence in
the target-to-receiver path having no effect on the average
ghost image; (3) computational ghost imaging does not
suffer from the turbulence that a pseudothermal configuration
would were its propagation path through turbulent air; and
(4) our correlating ĩb(n,z) with �I (ρ ′,n,z) has eliminated
the background term from 〈GN (ρ ′,z)〉, which would have
limited image contrast had we instead correlated ib(n,z) with
I (ρ ′,n,z), resulting in a high-contrast image.

A final point to be made here concerns depth of focus and
coherence propagation. Our far-field assumption for the ghost
imager k0a0ρ0/2zk � 1 is an analytic tool that simplifies the
propagation of the ensemble-averaged correlation function in
Eq. (3) from the source to range zk . However, it does not imply
that specific field patterns can be calculated with a far-field
approximation, i.e., a spatial Fourier transform, so that the
intensity patterns at different ranges differ only by coordinate
and amplitude scaling. Because ρ0 � a0, there is a significant
region wherein k0a0ρ0/2zk � 1, but we are in the near field
of the source’s intensity diameter, viz., k0a

2
0/2zk � 1. In this

regime, it is important that the reference used to form the
range-zk ghost image be computed specifically for that range.
This is because computational ghost-image spatial resolution,
in the absence of turbulence, is known to degrade by a factor
of

√
1 + (δz/zk)2(k0a

2
0/4zk)2, where δz ≡ z − zk , when the

reference used was computed for range z instead of range
zk [8]. So, deep in the near field, a small range mismatch
|δz|/zk � 1 between the reference and the target can substan-
tially degrade the spatial resolution. The same degradation
applies to a pseudothermal ghost imager, in which a physical
reference arm is used, hence in that case a different reference
measurement must be made for each target range of interest if
the range spread exceeds that imager’s depth of focus.

C. Signal-to-noise ratio

We will now evaluate the ghost imager’s signal-to-noise
ratio, defined to be the ratio of GN (ρ ′,zk)’s squared mean to its
variance:

SNRGN
(ρ ′,zk) ≡ 〈GN (ρ ′,zk)〉2〈

G2
N (ρ ′,zk)

〉 − 〈GN (ρ ′,zk)〉2
. (33)
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To simplify the derivation, we make several additional assump-
tions. First, that the ghost imager resolves all significant detail
in the target, allowing us to use

∫
dρ Tzk

(ρ)e−|ρ ′−ρ|2/αρ2
zk ≈

παρ2
zk
Tzk

(ρ ′). With this assumption, the square of Eq. (32)
becomes

〈GN (ρ ′,zk)〉2 =
[

4qηNT Abρ
2
zk

πa4
zk
T ′

pz2
k

Tzk
(ρ ′)

]2

. (34)

This leaves the tedious task of finding 〈G2
N (ρ ′,zk)〉, which

involves eighth-order and sixth-order moments of the {ξ (ρ,n)};
propagation through turbulence to the target element at range
zk , including a fourth-moment evaluation for the incurred
turbulence fluctuations; target reflection, including a fourth-
moment evaluation for the field-reflection coefficient; prop-
agation back to the receiver, requiring another turbulence-
fluctuation fourth-moment evaluation; and photodetection,
with its accompanying shot noise and matched filtering. The
statistical independence of the sequence of spatial patterns,
the turbulence fluctuations on each path, and the target’s
field-reflection coefficient is a considerable help in completing
this evaluation. So too are the Gaussian distributions of the
{ξ (ρ,n)} and Tzk

(ρ ′), which permit high-order moments to be
found from the second moments we have presented earlier via
Gaussian moment factoring.

The most vexing difficulty in the calculation turns out to
come from the fourth moments of the turbulence fluctuations.
Here, we shall follow the lead provided in Ref. [13], where
the corresponding SNR for single-range, continuous-wave
operation was derived. Our work, however, will differ from
that in Ref. [13] in that it will account for pulsed operation
in which a single pulse’s duration Tp is much shorter than the
atmospheric coherence time, but NTs , the time duration of the
N -pulse sequence used to form the ghost image, will be taken
to span 1 � Nc � N atmospheric coherence times.

Following [13], we take the log-amplitude fluctuations to
be Gaussian distributed, and assume that the turbulence is of
weak-to-moderate strength, or sufficiently concentrated near
the target, that we can both ignore the coordinate dependence
of the turbulence at the transmitting and receiving planes, and
assume that the log-amplitude coherence length at the range-zk

target is larger than ρzk
. Under these conditions, the relevant

turbulence fourth moments for the source-to-target and target-
to-detector paths reduce to e4σ 2

S KS [(n−n′)Ts ] and e4σ 2
DKD [(n−n′)Ts ],

respectively, for the correlation between turbulence affecting
pulses n and n′. Here, for m = S,D, Km(τ ) is the log-
amplitude fluctuation’s normalized [Km(0) = 1] covariance
function, and

σ 2
m = 0.562 k

7/6
0

∫ zk

0
dz C2

n,m(z)

[
z(zk − z)

zk

]5/6

(35)

is its Rytov-approximation variance [24]. To account for
temporal averaging of the turbulence, we define

γ = 1

N

N−1∑
n=0

[
e4σ 2

S KS (nTs )+4σ 2
DKD(nTs ) − 1

]
. (36)

For N � 1 in the assumed weak-to-moderate turbulence, for
which σ 2

m � 0.1, we will have γ = (e4σ 2
S +4σ 2

D − 1)/N � 1
when the turbulence decorrelates pulse-to-pulse on both paths,

so that KS(nTs) = KD(nTs) = δn0. On the other hand, when
the turbulence is frozen across all N pulses, so that KD(nTs) =
KS(nTs) = 1 for all n of interest, we get γ ’s other asymptote
γ = e4σ 2

S +4σ 2
D − 1. Finally, to simplify the analysis, we will

assume the transmitter pulse is flat topped, viz., p(t) = 1/
√

Tp

for −Tp/2 � t � Tp/2 [25].
The preceding tools can now be employed to show that

SNRGN
(ρ ′,zk) = T 2

zk
(ρ ′)

�2S + �2R + �2D + �2F
, (37)

with the terms that appear in the noise denominator being

�2S = A′
zk

(1 + β−1)

πρ2
zk
N

e4(σ 2
S +σ 2

D), (38)

�2R = T 2
zk

(ρ ′)
1 + 2γ (1 + β)

1 + 2β
, (39)

�2D = Azk
a2

zk
z2
k

2AbπηNT Nρ4
zk

, (40)

�2F = A2
zk

(
e4(σ 2

S +σ 2
D ) − 1 − γ

)
π2Nρ4

zk

, (41)

where Azk
≡ ∫

dρ Tzk
(ρ) and A′

zk
≡ ∫

dρ T 2
zk

(ρ) are two mea-
sures of the target’s area, and β ≡ r2

b /a2
0 measures the bucket

detector’s area relative to the source’s intensity area.
These noise terms account for the following phenomena.

The �2S term is the noise contribution from the source-
produced on-target speckle patterns. That it decreases in-
versely with the number of pulses N used to form the ghost
image is indicative of the need to use many different illumi-
nation patterns to form a ghost image. This noise term grows
linearly with the ∝A′

zk
/πρ2

zk
number of spatial-resolution cells

on the target, and is exacerbated by the presence of turbulence,
i.e., σ 2

S + σ 2
D > 0.

The �2R term in the noise denominator arises from the
random fading that results from the rough-surface target
reflection combined with the effects of atmospheric turbulence.
When NTs spans Nc � 1 turbulence coherence times, we get
γ → 0, indicating that the turbulence contribution to this noise
term vanishes. However, because we have not allowed our
rough-surfaced target to decorrelate over this measurement
interval, its contribution to this noise term can only be reduced
by aperture averaging, i.e., by increasing the bucket detector’s
area so as to capture and average an increasing collection
of uncorrelated target speckles. The �2D noise term is the
bucket detector’s shot-noise contribution, which is inversely
proportional to the average number of detected target-return
photons. For fixed optics and a given target, this term is
only decreased by increasing the average transmitted photon
number per pulse NT or the number of pulses N used to form
the ghost image.

The preceding noise terms were present, albeit with
somewhat different scaling factors, in the SNR expression
for continuous-wave ghost imaging [13], but the �2F noise-
denominator term in Eq. (37) is a heretofore unencountered
consequence of time-varying turbulence during the measure-
ment interval. When the turbulence is frozen across all N

pulses, this term disappears, but when the turbulence changes
during the measurement it creates randomness in the on-target
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illumination patterns that changes from pulse to pulse. This
new randomness is suppressed by increasing the number
of pulses used to form the ghost image. To appreciate the
impact of this new term, consider the worst-case scenario in
which the turbulence decorrelates pulse-to-pulse, the new term
dominates the noise denominator, and N is to be chosen to
achieve a desired SNR while still under the sway of this term.
Here, we find that the necessary N value is proportional to the
square of the number of spatial-resolution cells on the target. In
contrast, were there no time variation to the turbulence, so that
the fourth noise term vanished, then N would only need to be
proportional to the number of on-target spatial-resolution cells
to achieve the desired SNR when the first and/or third noise
terms dominate the second. Because increasing N with Ts fixed
increases the image acquisition time, the fourth noise term can
have a significant adverse impact on that acquisition time.

Having described the various noise contributions to the
ghost-image SNR, let us conclude this section by highlighting
two physically important asymptotic forms of Eq. (37). When
the number of pulses increases without bound, the ghost-image
SNR reaches a finite limit, called the saturation SNR, which
is given by

SNRGN ,sat(ρ
′,zk) = 1 + 2β. (42)

Note that it is due solely to the time-independent target speckle
[26], and is independent of the target’s range and reflectivity,
although the NT and N values needed to reach the saturation
regime do depend on Tzk

(ρ ′). This saturation SNR can only be
increased by increasing β, which means either increasing the
size of the bucket detector or decreasing the size of the source,
with the latter entailing a degradation of the ghost imager’s
spatial-resolution capability.

When the average number of detected target-return photons
is so low that shot noise dominates all other fluctuations in the
ghost image, we get the shot-noise-limited SNR

SNRGN ,shot(ρ
′,zk) = 2πηNT NAbρ

4
zk
T 2

zk
(ρ ′)

Azk
a2

zk
z2
k

. (43)

Unlike the case for its saturation signal-to-noise ratio, the ghost
imager’s shot-noise-limited SNR does depend on the target’s
range and reflectivity.

IV. LASER RADAR

A. Image formation

The Np-pixel laser radar image for range z is formed
from the pixelwise outputs {ip(ρ ′

p,n,z) : 1 � p � Np,0 �
n � N − 1} of a CCD, on which the target-reflected light has
been focused by a lens, that have been matched filtered for
range z. These photocurrents take the form

ip(ρ ′
p,n,z) =

∫
dτ g(nTs + 2z/c − τ )

×
[
qη

∫
dρ ′

i A2
p(ρ ′

i)|Ep(ρ ′
i ,τ )|2 + �ip(τ )

]
,

(44)

where Ap(ρ ′
i) is the real-valued field-transmission pupil func-

tion defining the photosensitive region of the pth image-plane
pixel, which we take to be centered at ρ ′

i = −ρ ′
p to compensate

for image inversion; Ep(ρ ′
i ,τ ) is the complex envelope of the

light impinging on the CCD plane at point ρ ′
i and time τ ; and

�ip(τ ) is the photocurrent shot noise for pixel p.
In practice, the lens’ focal length will cast a minified image

on the CCD, but, for convenience, we will assume it is chosen
to realize 1:1 imaging for range z, which is taken to be the
center of the range interval of interest. It follows that

Ep(ρ ′,t) =
∫

dρ A(ρ)Ed (ρ,t)

× e−ik0|ρ|2/z
k0e

ik0(z+|ρ ′−ρ|2/2z)

i2πz

, (45)

where A(ρ) is the lens’ real-valued field-transmission pupil
function, Ed (ρ,t) is the pupil-plane target-return field given by
Eq. (19), and we have neglected an unimportant absolute phase
factor as well as the propagation delay within the radar receiver.
To facilitate analytic comparison with the ghost imager, we will
take the lens’ pupil function to be A(ρ) ≡ exp(−|ρ|2/r2

 ).
The laser radar then produces its range-z image by pixelwise
averaging the photocurrents from the N pulses,

LN (ρ ′
p,z) = 1

N

N−1∑
n=0

ip(ρ ′
p,n,z). (46)

Before turning to our spatial-resolution analysis, there is an
important point to make about depth of focus (cf. the discussion
at the end of Sec. III B about this issue for the ghost imager).
When k0r

2
 /2z � 1 for all target ranges of interest, the laser

radar can be focused at infinity with no loss of spatial resolution
at any of those ranges. However, when k0r

2
 /2z � 1 for target

ranges of interest, then the radar receiver must operate within
the depth of focus for the range to be imaged in order to prevent
loss of spatial resolution. The rest of our treatment of the
laser radar will assume that the far-field condition k0r

2
 /2z � 1

holds, so that all target ranges of interest will be in focus, but
this need not always be the case in operational scenarios of
interest.

B. Spatial resolution

The laser radar’s spatial resolution is found from its average
image, just as was done for the ghost imager. As we did in
Sec. III B, we will only consider ranges {zk : 1 � k � K} that
contain target components, and take the pulse duration Tp to
be short enough to resolve them. We then get

〈LN (ρ ′
p,zk)〉 = qη

∫
dτ g(nTs + 2zk/c − τ )

×
∫

dρ ′ A2
p(ρ ′

i)〈|Ep(ρ ′
i ,τ )|2〉. (47)

Backpropagating Ep(ρ ′,τ ) to the source using Eqs. (45), (19),
and (5), evaluating the resulting source and target second
moments that appear, and then performing all integrations but
those over the target and image planes, we obtain

〈LN (ρ ′
p,zk)〉 = 2qηNT A

πz2
kw

2
zk
T ′

p

∫
dρ ′ Tzk

(ρ ′)e−2|ρ ′|2/w2
zk

×
∫

dρ ′
i A2

p(ρ ′
i)

e
−|ρ ′+ρ ′

i |2/α′ρ ′2
zk

πα′ρ ′2
zk

. (48)
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In this expression, wzk
= λ0zk/πw0 is the radar beam’s inten-

sity radius at range zk , which we will assume is sufficiently
large that Tzk

(ρ ′)e−2|ρ ′|2/w2
zk ≈ Tzk

(ρ ′); A ≡ ∫
dρ A2

(ρ) =
πr2

 /2 is the lens’ effective area; ρ ′
zk

= λ0zk/
√

2 πr is the
diffraction-limited (no-turbulence) spatial resolution for an
image-plane point detector; and α′ ≡ 1 + r2

 WD/ρ2
D is a

resolution-degradation factor caused by turbulence. Turbu-
lence begins to impair the laser radar’s spatial resolution
when its receiver-plane coherence length ρD/

√
WD becomes

comparable to the receiver’s lens radius r. Hence, when the
turbulence on the return path is either sufficiently weak, or
concentrated near the target, we get α′ ≈ 1 and there is no
loss of resolution. However, for sufficiently strong turbulence,
or turbulence concentrated near the receiver’s lens, significant
resolution degradation is incurred.

The computational ghost imager can calculate its reference
field for every ρ ′ of interest, but the laser radar must use pixels
of finite size in order to collect any optical power. To obtain a
closed-form result from the pixel integration in Eq. (48) we will
useAp(ρ ′) ≡ e−|ρ ′+ρ ′

p |2/r2
p and arrive at our final expression for

the laser radar’s average image,

〈LN (ρ ′
p,z)〉 = 2qηNT AAp

πz2
kw

2
zk
T ′

p

×
∫

dρ ′ Tzk
(ρ ′)

e
−|ρ ′−ρ ′

p |2/(β ′+α′)ρ ′2
zk

π (β ′ + α′)ρ ′2
zk

, (49)

where Ap ≡ ∫
dρ ′ A2

p(ρ ′) = πr2
p/2 is the pixel’s effective

area, and β ′ ≡ r2
p/2ρ

′2
zk

. Equation (49) quantifies the laser
radar’s loss of spatial resolution (its degradation from ρ ′

zk
,

the diffraction-limited, point-detector value) when the lens
area exceeds a turbulence coherence area and/or the pixel area
exceeds the diffraction-limited spot size.

C. Signal-to-noise ratio

The laser radar’s SNR for the pth pixel’s range-zk value is
the ratio of LN (ρ ′

p,zk)’s squared mean to its variance

SNRLN
(ρ ′

p,zk) ≡ 〈LN (ρ ′
p,z)〉2〈

L2
N (ρ ′

p,z)
〉 − 〈LN (ρ ′

p,z)〉2
. (50)

Our evaluation of this SNR mirrors what we did for the
ghost imager. So, as we did there, we shall assume that all
significant target detail is resolved by the imager, and that the
turbulence is weak enough that we can ignore its fluctuation
terms’ coordinate dependence in the planes of the transmitter,
target, and receiver. With the first assumption, Eq. (49) yields

〈LN (ρ ′
p,zk)〉2 =

[
2qηNT AAp

πz2
kw

2
zk
Tp

Tzk
(ρ ′

p)

]2

. (51)

As was the case for the ghost imager, the primary difficulty
encountered in SNR evaluation is finding the image’s second
moment. The laser radar’s second-moment calculation, how-
ever, is substantially simpler than that for the ghost imager
in that the laser radar case only requires turbulence and
target fourth moments and the shot noise’s second moment.
Consequently, the evaluation proceeds as follows.

First, we use the statistical independence of the turbulence,
target, and shot noise to separate averages involving these three
randomness contributors. Then, we employ Gaussian moment
factoring to reduce the target’s fourth moment into a sum
of products of second moments, and our assumption about
the coordinate independence of the turbulence fluctuations to
evaluate that fourth moment as we did for the ghost imager.
Next, we perform the resulting multidimensional Fourier
transforms of the Gaussian functions that arise from far-field
optical propagation in conjunction with the Gaussian pupil
functions we have assumed. Finally, under our assumption
that the laser radar resolves all significant target detail, we are
left with

SNRLN
(ρ ′

p,zk) = Tzk
(ρ ′

p)

Tzk
(ρ ′

p)
( 1+(2+β ′)γ

1+β ′
) + πw2

zk
z2
k

2ηNT NAAp

, (52)

where γ is the time-averaged turbulence factor from Eq. (36).
The noise-denominator terms in the preceding SNR formula

have the following physical interpretations. The first term is
due to the time-independent target speckle, exacerbated, to
some degree, by the turbulence-induced scintillation on the
transmitter-to-target and target-to-receiver paths. The second
term is due to shot noise. Thus, when NT N , the average
number of photons transmitted over all N pulses, is sufficiently
high, the SNR reaches a finite maximum value, namely, the
saturation signal-to-noise ratio, given by

SNRLN ,sat(ρ
′
p,zk) = 1 + β ′, (53)

which depends only on r2
p/2ρ

′2
zk

, the number of diffraction-
limited spots within the pixel area [26]. Increasing β ′, e.g., by
increasing the pixel size, will increase the saturation value, but
doing so degrades the radar’s spatial resolution [see Eq. (49)].
Conversely, when the SNR is much lower than its saturation
limit, it takes the shot-noise-limited form

SNRLN ,shot(ρ
′
p,zk) = 2ηNT NAApTzk

(ρ ′
p)

πw2
zk
z2
k

. (54)

V. PERFORMANCE COMPARISON

Having completed spatial resolution and SNR analyses for
both the computational ghost imager and the laser radar, we
are ready to compare their capabilities. Before proceeding,
two points deserve note. The first concerns ensuring that our
spatial resolution and SNR comparisons are fair. Toward that
end, we will take w0 = ρ0, so that the laser radar’s on-target
intensity pattern matches the ghost imager’s average on-target
intensity pattern. We will also assume that r = a0 because (1)
r and a0 correspond to intensity radii (r for the the intensity
transmission of the radar receiver, and a0 for the intensity
transmission of the ghost imager’s exit optics); and (2) r and
a0 determine the diffraction-limited spatial resolutions of these
two imagers. In addition, we we will take NTGINGI = NTLRNLR,
i.e., the product of the average number of transmitted photons
per pulse and the number of pulses employed for the ghost
imager (GI) and the laser radar (LR) must be equal, but we
will not require NTGI = NTLR and NGI = NLR, as originally
indicated in Sec. II. Thus, we are constraining both systems
to use the same average number of transmitted photons to
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form their images, but we are affording the laser radar the
opportunity to exploit its ability to form an image from a
single pulse, in contrast to the ghost imager’s fundamental
requirement for averaging the returns from multiple pulses.

Our second precomparison note is cautionary. Our analysis
has employed Gaussian functions for partially coherent and
coherent optical beams, and for photodetector pupil functions,
etc., in order to obtain closed-form expressions for our
systems’ spatial resolutions and SNRs. Although the use of
Gaussian functions should yield the correct dependence of
these performance metrics on system parameters, the constant
factors that appear in our results would be different had we
numerically evaluated the spatial resolutions and SNRs for
circular-pupil optics.

A. Spatial-resolution comparison

We have shown that the ghost imager and laser radar’s
average images for the target component at range zk convolve
Tzk

(ρ ′) with Gaussian point-spread functions of the form
P (ρ ′) = e−|ρ ′|2/r2

res/πr2
res, where

rres =
{√

α ρzk
, ghost imager√

β ′ + α′ ρ ′
zk
, laser radar

(55)

with ρzk
and ρ ′

zk
being the diffraction-limited resolutions, α �

1 and α′ � 1 accounting for turbulence-induced resolution
loss, and β ′ � 0 for resolution lost because of finite pixel size.

The diffraction-limited resolutions are ρzk
= λ0zk/πa0 and

ρ ′
zk

= λ0zk/
√

2 πa0, where we have used r = a0 in the latter,
showing that the laser radar’s diffraction-limited performance
is

√
2 times better than that of the computational ghost imager.

The numerical value of this resolution advantage depends
on our use of Gaussian functions, but the fact that the laser
radar’s diffraction-limited spatial resolution is better than that
of the computational ghost imager does not, so long as the
laser radar’s receiver pupil is the same as the ghost imager’s
transmitter pupil. That this is so follows from the ghost
imager’s PSF arising from convolution of the on-target average
intensity pattern of its transmitter with the corresponding
pattern from the computed reference, while the laser radar’s
PSF (in the 1:1 imaging setup we have assumed) corresponds
to just one of those patterns.

As noted in Sec. IV, the laser radar must employ finite-sized
pixels, and Eq. (52) shows that (other system parameters being
held constant) forcing β ′ � 1 will push the system into its
shot-noise-limited regime as the pixel area Ap is decreased.
Thus, a prudent compromise might be to size the pixels to
satisfy β ′ = 1, so that the laser radar’s spatial resolution, in
the absence of turbulence, only suffers a

√
2-factor increase.

This choice of pixel size, however, wipes out the laser radar’s
spatial-resolution advantage over the computational ghost
imager, i.e., the no-turbulence resolution of the former then
exactly matches the diffraction-limited resolution of the latter.

When turbulence is strong enough to dominate the spatial
resolution of both imagers, we get

rres =
{

λ0zk

√
WS/π

√
2 ρS, ghost imager

λ0zk

√
WD/π

√
2 ρD, laser radar

(56)

where we have continued our use of r = a0. For a situation in
which ρS/

√
WS = ρD/

√
WD , such as when the laser radar’s

receiver is colocated with the ghost-imager’s transmitter,
we find the turbulence-limited resolution to be equal for
both systems. More generally, either system could have
more favorable spatial-resolution behavior in the presence of
turbulence because different turbulence-strength profiles could
exist on the transmitter-to-target and target-to-receiver paths,
and the ghost imager’s spatial resolution is only sensitive to
turbulence on the transmitter-to-target path, while the laser
radar’s spatial resolution is only sensitive to the turbulence on
the target-to-receiver path.

B. Signal-to-noise ratio comparison

For our SNR comparison, we shall consider the two
imagers’ saturation SNRs and their shot-noise-limited SNRs.
Throughout we will assume that any turbulence that might be
present has no effect on spatial resolution, so that α = α′ = 1,
and that both imagers have sufficient resolution to resolve all
significant detail in Tzk

(ρ ′). Equations (42) and (53) specify
the saturation SNRs for the ghost imager and the laser radar,
and give us

SNRLN ,sat(ρ ′
p,zk)

SNRGN ,sat(ρ ′
p,zk)

= 1 + β ′

1 + 2β
. (57)

Setting r = a0, to make the laser radar’s receiver pupil be the
same size as the ghost imager’s transmitter pupil, and β ′ = 1,
so that these systems have the same spatial resolution, the
preceding ratio of their saturation SNRs becomes 2/(1 + β).
Consequently, the computational ghost-imager’s saturation
SNR will greatly exceed that of the laser radar when β =
r2
b /a2

0 � 1, i.e., when the bucket detector’s area is much
larger than the source area. There is a simple physical
explanation for this behavior: the saturation SNR is due to
the time-independent speckle created by reflection from the
rough-surfaced target. These speckles are ∼a0 in radius in the
receiver’s pupil plane, so when β � 1, the bucket detector
is averaging over many statistically independent speckles,
driving up the ghost imager’s saturation SNR.

There is, however, an intrinsic unfairness in the preceding
favorable view of the ghost imager’s saturation SNR because
by fixing r = a0 but letting β � 1, we are allowing the bucket
detector to have a much larger receiving aperture than the laser
radar. Suppose, instead, that we constrain the systems to have
the same size receiving aperture, so that rb = r, but maintain
β � 1. In that case, the laser radar’s diffraction-limited spatial
resolution would be better than that of the ghost imager by a
factor of rb/a0 � 1, but its SNR would be worse. However,
the laser radar could then use β ′ = 2r2

b /a2
0 � 1 and (1) have

its no-turbulence spatial resolution match the diffraction limit
of the ghost imager and (2) have its saturation SNR equal that
of the ghost imager. In this case, the time-independent speckle
is being averaged in the laser radar’s image plane because the
large pixel comprises a great many independent speckle lobes.
Finally, if we make all optics the same size, a0 = rb = r, and
choose the pixel size for equal spatial resolutions, then β =
β ′ = 1 and we find SNRLN ,sat(ρ ′

p,zk) = 2 SNRGN ,sat(ρ ′
p,zk)/3.

To summarize what we have seen so far concerning satura-
tion SNR behavior, fair comparisons between the ghost imager
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and the laser radar indicate that neither system will enjoy a
significant advantage in this regard. There is, however, a fine
point to be considered concerning atmospheric turbulence. We
have assumed the relevant turbulence coherence lengths to
be long enough that our imagers’ spatial resolutions do not
lose any resolution arising from propagation over turbulent
paths. Nevertheless, the target-speckle terms in the noise
denominators of Eqs. (37) and (52) both contain the time-
averaged scintillation factor γ . When a sufficient number of
pulses are averaged, as has been assumed in the saturation
SNR formulas, we get γ → 0. For the ghost imager, averaging
the returns from a large number of pulses is an intrinsic
requirement for image formation, but a laser radar can form
its image with a single pulse, in which case we get

SNRL1 (ρ ′
p,zk) −→ 1 + β ′

1 + (2 + β ′)γ
(58)

for NTLR sufficiently high. For β ′ = 2r2
b /a2

0 � 1, this SNR
can be substantially worse than the ghost imager’s saturation
SNR because γ � e4σ 2

S in this single-pulse case. The laser
radar will then need to employ more than a single pulse to
approach its full saturation SNR (and to match that of the
computational ghost imager at the same spatial resolution)
because of scintillation.

Now let us turn to SNR behavior when neither system’s
NT and N values are sufficient to reach SNR saturation by
comparing their shot-noise-limited performance. Here, using
r = a0, Eqs. (43) and (54) give us

SNRLN ,shot(ρ ′
p,zk)

SNRGN ,shot(ρ ′
p,zk)

= Azk
β ′

2πρ2
zk
βTzk

(ρ ′
p)

. (59)

For a fair comparison, we again set β = β ′ = 1 to give the
systems the same pupil sizes and spatial resolutions. The
preceding SNR ratio then reduces to Azk

/2πρ2
zk
Tzk

(ρ ′
p). For

a range-zk target whose intensity-reflection coefficient has
limited spatial variation, this number is approximately its
number of spatial-resolution cells, making the laser radar’s
shot-noise-limited SNR far superior to that of the com-
putational ghost imager. Increasing the size of the ghost
imager’s bucket detector can overcome this SNR disadvantage
by making β � 1. As in our saturation SNR comparison,
however, we should then allow the laser radar to increase
its lens size to equal the ghost imager’s new rb value, while
operating with β = r2

b /a2
0 � 1 to regain its shot-noise-limited

SNR advantage. Unlike what we found for the laser radar’s
saturation SNR, its shot-noise-limited SNR is the same at all
NTLRNLR values, i.e., Eq. (59) applies even when the laser radar
forms its image from a single pulse.

VI. CONCLUSIONS

Computational ghost imaging is, in many respects, a
dual of floodlight-illumination laser radar. The computational
ghost imager’s system complexity is in its transmitter, whose
sequence of SLM patterns creates the structured illumination
that provides the imager’s spatial resolution. The laser radar’s
complexity lies in its CCD receiver, which provides its
spatial resolution. Consequently, the size of the ghost imager’s
transmitter pupil sets its diffraction-limited spatial resolution,

whereas the laser radar’s no-turbulence spatial resolution is
set by the size of its receiver pupil in conjunction with that of
its CCD pixels. Thus, only turbulence on the transmitter-to-
target path can impair the ghost imager’s spatial resolution,
while the laser radar’s spatial resolution is only impacted
by turbulence on the target-to-receiver path. Therefore, ghost
imaging and laser radar systems that are designed to have equal
spatial resolutions in the absence of turbulence could have
significantly different performance in a bistatic configuration,
in which their transmitters and receivers are not colocated,
so that significantly different turbulence distributions are
encountered on these two paths. In such situations, either
one could offer the better spatial-resolution performance,
depending on which path had its turbulence concentrated near
the resolution-controlling pupil. Aside from this turbulence
issue, our analysis indicates that a fair comparison between
the computational ghost imager and the floodlight-illumination
laser radar shows them to have equal spatial resolutions, except
for the following two caveats: (1) the laser radar can form its
image from a single pulse, making it far better for imaging
moving targets; and (2) the computational ghost imager has
infinite depth of focus, whereas the laser radar will not for
ranges satisfying k0r

2
 /2z � 1.

Both the ghost imager and the laser radar have signal-
to-noise ratios that are shot-noise limited at low-NT , low-N
values and saturate at high-NT , high-N values. When their
optics are sized for equal spatial resolutions, with NTGI = NTLR

and NGI = NLR, there is little difference in their saturation
SNRs. This contrasts strongly with their shot-noise-limited
SNR behavior, under these conditions, in which the laser
radar outperforms the ghost imager by a factor approxi-
mately equal to the number of spatial-resolution cells on
the target. As a result, we can expect that the ghost imager
will require significantly more time to achieve a desired
SNR when operating in this regime. This key disadvantage
for correlation-based ghost imaging could be mitigated to
some degree, however, by the use of compressed-sensing
techniques, which enable many fewer pulses to suffice for
ghost-image formation. Recent work has demonstrated this
possibility in table-top ghost imaging done in reflection
[27], indicating its likely feasibility for standoff-sensing
applications.

What then are the possible advantages of ghost imaging
in comparison with laser radar? The principal such advantage
identified by our analysis accrues in bistatic configurations
wherein, for operational reasons, the transmitter must be
located in a region of weak turbulence, but the receiver
necessarily is in a strongly turbulent region. Beyond that,
however, there are some technological possibilities. The ghost
imager only requires a single-pixel detector, whereas the
laser radar needs a detector array. For wavelength regions in
which high-performance single-pixel detectors are available
but similar-quality detector arrays are not, ghost imagers would
provide active-imaging capability that laser radars could not.
A related technological advantage arises for ghost imaging
in multistatic configurations in which a network of simple,
small, single-pixel detectors view a target region that is floodlit
by a single, large-aperture, structured-illumination transmitter.
Individual images could be formed from each detector’s
outputs to capture multiple views of the target, and allow for
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more averaging of the target-induced speckle. A corresponding
multistatic laser radar would require high-resolution CCDs at
each receiver location, making it more complicated and more
expensive than the ghost imager.
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