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Operating characteristics of a femtosecond amplification cavity for infrared frequency combs
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We develop a cavity model including transverse field variations and gain saturation to elucidate the operating
characteristics of a femtosecond amplification cavity (fsAC) with an incident infrared frequency comb. After
validating the model against experimental data, we explore how the fsAC operating characteristics, such as average
output power and beam quality, vary with factors such as the pump beam and the output coupler reflectivity. We
also examine the locking range of the fsAC and how the nonlinear Kerr effect places a limitation on the pulse
duration that can be successfully amplified by the fsAC.
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I. INTRODUCTION

Stable mode-locked laser systems such as the femtosecond
frequency comb are often limited in their high power oper-
ation due to temporal instabilities resulting from high peak
intensities. External amplification of the pulse train to higher
average powers at the full repetition rate of the laser is typically
inefficient for bulk solid-state systems due to low gain and
short interaction lengths that result from the need for tightly
focused pump beams. In previous work, we demonstrated
the use of optical injection locking with femtosecond pulse
trains as an approach to scale up the average power of
Ti:sapphire-based fs frequency combs to record power levels
[1]. Although similar to many cw injection-locking schemes,
one must also take into account the additional parameters of
pulse phase, timing, and nonlinear effects in designing the
femtosecond amplification cavity (fsAC). The high average
powers that could be obtained in the Ti:sapphire-based system
were used by our group to significantly increase the power in
a VUV frequency comb based on intracavity high-harmonic
generation [2]. The fsAC approach enables flexibility for many
applications by enabling coherent amplification of the entire,
or portions of the, broad master laser spectrum. Furthermore,
one could envisage intracavity experiments with interactions
which would otherwise be too lossy to be performed in a
passive fs enhancement cavity (fsEC) alone.

In our initial work, we demonstrated that operation of the
fsAC is in many ways similar to that of cw injection locking,
provided the incident pulse train is sufficiently chirped to
reduce the pulse peak intensity and both the pulse train timing
and phase (i.e., two degree’s of freedom) are appropriately
stabilized to the fsAC. In this paper, we begin to explore in
more detail the operating characteristics of the fsAC over a
broader range of operating parameters to enable predictive
performance for a greater variety of potential applications.
We focus here on aspects of the cavity design that affect the
expected power levels as well as the effective locking range
for the fsAC. In future work, we will report on an extension
of this model to take into account the temporal structure of the
pulse train and the effects of dispersion on the performance of
the fsAC.

II. THE FEMTOSECOND AMPLIFICATION CAVITY

The experimental setup is shown schematically in Fig. 1.
The Ti:sapphire ring laser cavity is initially aligned and

optimized for maximum output power and beam quality. In this
free-running mode (i.e., not injection locked), the fsAC output
is bidirectional and multimode. When locked to an incident
Ti:sapphire pulse train, the output becomes unidirectional
and assumes the same spectral and temporal properties as
the master oscillator. This locking is accomplished using the
Pound-Drever-Hall technique by modulating a small piezo-
electric transducer mounted to a cavity mirror. Further details
of the system are found in Ref. [1]. For the pulse bandwidths
considered in the previous work and again analyzed here,
there was no noticeable limiting effect on the operation of
the fsAC deriving from the residual group-delay dispersion
of the cavity. As a result, the model presented here does
not include dispersion-related effects and the pulse stretching
and compression features [including an intracavity prism pair
for group delay dispersion (GDD) compensation] have been
omitted from the figure. The Ti:sapphire-crystal mount is
cooled using a thermoelectric cooler to near 0 ◦C; however,
the intense 18 W pump beam induces some local heating
in the crystal. Because we operate at power levels where
pump-beam-induced thermal lensing only begins to limit the
fsAC performance, we exclude such effects in our model.
Although thermal limitations would prevent the operation of
our current fsAC design at high powers, such effects can be,
and have previously been, mitigated by improved cooling of
the Ti:sapphire rod.

The specific fsAC cavity we consider has a distance
d = 10.1 cm between the curved mirrors of equal radius
of curvature R = 10 cm, the curved mirrors are rotated by
an angle of 5◦, and the round-trip path length is L = 3 m.
We consider a reference plane that is halfway between
the curved mirrors at the position of the Ti:sapphire gain
medium. Using these parameters, the ray transfer matrices
with elements Ax,Bx,Cx,Dx and Ay,By,Cy,Dy along the
sagittal and tangential planes of the cavity are readily evaluated
and the corresponding complex beam parameters qx,y of the
Gaussian mode along the respective transverse dimensions are
calculated for the center wavelength of λ = 0.8 μm [3]. For
our choice of reference plane, the Gaussian mode is focused
and has nearly equal spot sizes, wx � wy � 15 μm. That is,
the Gaussian mode has little astigmatism at the reference plane.

The above fsAC cavity corresponds to a frep = 100 MHz
repetition rate. We also consider a frep = 50 MHz fsAC that
includes a 3 m intracavity telescope section so that the ray
transfer matrices, and hence the Gaussian-mode properties,
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FIG. 1. (Color online) Simplified schematic of the fs amplifica-
tion cavity. The fsAC is seeded by a low-power Ti:sapphire frequency
comb and is locked to it by modulating a piezoelectric transducer
(PZT) mounted to a cavity mirror. As dispersion effects have been
neglected in this treatment, an intracavity prism pair for group-delay
dispersion compensation has been omitted.

are the same as for the 100 MHz case despite the on-axis path
length being twice as long.

III. MODEL EQUATIONS

The goal of this paper is to simulate many of the basic
operating characteristics of a fsAC. In this section, we describe
the model equations employed for our simulations and the
underlying assumptions. In particular, we employ a model that
neglects cavity dispersion and thus does not treat the temporal
dynamics in detail. However, we find that in order to obtain
agreement with experimental data, we need to account for the
transverse structure of the medium gain profile.

A. Cavity field equations

In the experiment, the pulses comprising the incident
frequency comb centered at λ = 0.8 μm are expanded to a
duration of tp before entering the fsAC. We neglect the effects
of dispersion within the cavity and assume that the incident
pulse train may be adequately modeled as a sequence of
square pulses of duration tp, average incident power Pin, and
repetition rate frep = 1/T , with T � tp being the fsAC round-
trip time. The incident pulse train therefore synchronously
pumps the cavity. We further assume that the incident field
is mode matched to the Gaussian mode of the cavity, which
has a focused spot size of w0 � 15 μm at the longitudinal
position of the gain medium. The incident field profile at the
position of the gain medium is thus of the form E(x,y) ∝
exp[−(x2 + y2)/w2

0], with (x,y) the transverse coordinates
perpendicular to the laser axis. For the experiments, the gain
medium has a length L = 6 mm and the Rayleigh range of
the cavity mode is zR = n0πw2

0/λ � 15 mm, with n0 = 1.76
at λ = 800 nm. Since zR > L, we shall treat the Ti:sapphire
medium as a thin gain sheet and ignore diffraction within the
gain medium.

Under the above assumptions, we describe the cavity field
using the slowly varying complex amplitude E(n)(x,y) after n

round trips, where |E(n)(x,y)|2 is normalized such that it yields
the transverse fluence profile J (n)(x,y) of the pulse circulating
in the cavity. Here we consider a reference plane just before
the gain medium where the cavity-mode spot size is w0. In a
similar manner, the complex field representing the input pulse

just before the gain medium may be written as

Ein(x,y) =
√

2Pin

πw2
0frep

e−(x2+y2)/w2
0 . (1)

Building on the above discussion, the circulating field
E(n+1)(x,y) after (n + 1) round trips, and just before the gain
medium, may be related to that after n round trips using the
mapping

E(n+1)(x,y) = reiφK̂[
√

G(n)(x0,y0)E(n)(x0,y0)] + tEin(x,y),

(2)

where r = √
R and t = i

√
1 − R are the field reflection and

transmission coefficients of the output coupler of reflectance
R, φ is an on-axis round-trip phase shift (see below), and
G(n)(x0,y0) is the net power gain profile after n round trips that
we describe in Sec. III B. The cavity mapping in Eq. (2) may be
interpreted as follows: The field En(x0,y0) over the transverse
plane (x0,y0) just before the gain medium is first multiplied by
the field gain profile

√
G(n)(x0,y0) to account for amplification.

The integral operator K̂ then propagates the field exiting the
gain medium around the cavity. More specifically, for an initial
function F (x0,y0), the integral operator produces an output
H (x,y) according to the generalized Huygens integral for the
cavity [4], where

H (x,y) = K̂[F (x0,y0)]

= 1

iλ
√

BxBy

∫ ∫ ∞

−∞
dx0dy0e

ik0
2Bx

[Axx
2−2xx0+Dxx

2
0 ]

× e
ik0
2By

[Ayy
2−2yy0+Dyy

2
0 ]
F (x0,y0). (3)

Once we have the propagated field K̂[
√

G(n)E(n)], we need
to multiply it by reiφ to account for reflection of the output
coupler and the round-trip phase shift, and add on the incident
field transmitted through the output coupler, with the result
being the circulating field E(n+1)(x,y) after (n + 1) round trips.

The round-trip phase shift φ accounts for the fact that the
input frequency may not exactly match a cavity mode. In
particular, the Gaussian mode accumulates a net phase shift
per round trip given by

φG = arg

(
1√

(Ax + Bx/qx)(Ay + By/qy)

)
, (4)

where qx,y are the complex beam parameters along the two
transverse directions. For our case in which the reference plane
is chosen at the gain medium, we have 1

qx,y
= 2i

kw2
0
. The round-

trip phase shift is then written in the form

φ = −φG + φL, (5)

so that the term −φG negates the Gaussian beam phase shift
and φL is then the phase shift due to detuning of the fsAC length
from the on-resonance condition. Unless otherwise stated, we
take the resonant case with φ = −φG. (In Sec. V, we shall
allow for detuning to investigate the locking range of the fsAC
along with a nonlinear extension to account for the Kerr effect.)

For the simulations, we iterate Eq. (2) for the internal field
starting from E(0)(x,y) = 0 to find the steady-state solution
E(n+1)(x,y) = E(n)(x,y) = E(x,y) for the cavity field, which
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is then used to extract the operating characteristics of the fsAC.
(Non-steady-state solutions will be relevant in Sec. V with
respect to the locking range of the fsAC.) Of particular interest
here is the average output power of the pulse train exiting the
fsAC. To calculate the output power, we need to obtain the
output field Eout(x,y) at the output coupler from the steady-
state field E(x,y). To this end, it is useful to write the integral
operator in Eq. (3) in the form K̂ = K̂orK̂ro, where K̂ro is
the integral operator for field propagation from the reference
plane at the gain medium to the output coupler starting out
propagating to the right, and K̂or is the integral operator that
performs free-space diffraction from the output coupler to the
reference plane at the gain medium. The field at the output
coupler may then be expressed formally as

Eout(x,y) = teiφK̂ro[
√

G(x0,y0)E(x0,y0)]

+ rK̂−1
or [Ein(x0,y0)], (6)

so that the fluence profile at the output will be given by
Jout(x,y) = |Eout(x,y)|2, and the average output power is

Pout = frep

∫ ∞

−∞

∫ ∞

−∞
dxdy|Eout(x,y)|2. (7)

We remark that the steady-state solution represented by
Eqs. (6) and (7) should correspond to an output pulse train, or
infrared frequency comb, whose average power is amplified
with respect to the input pulse train, but with otherwise
identical pulse duration tp and repetition rate frep.

Equations (6) and (7) are not particularly practical, but one
can use them to access the output power in a simpler manner.
In particular, if one operates on both sides of Eq. (6) with K̂or ,
we obtain

Ẽout(x,y) = Kor [Eout(x0,y0)]

= teiφK̂[
√

G(x0,y0)E(x0,y0)] + rEin(x,y). (8)

Now, although the field Ẽout(x,y) is not referenced to the
output coupler, its norm will be the same as Eout(x,y) since the
operator K̂or represents free-space diffraction which preserves
the norm of the field, so the output power is obtained in
equivalent form as

Pout = frep

∫ ∞

−∞

∫ ∞

−∞
dxdy|Ẽout(x,y)|2. (9)

Thus, once we have the steady-state internal field E(x,y), we
calculate Ẽ(x,y) using Eq. (8) and finally the average output
power Pout using Eq. (9).

B. Gain model

So far we have introduced the net power gain as G(n)(x,y).
To proceed, we write the net power gain after n round trips
as G(n)(x,y) = exp[g(n)(x,y)], with g(n)(x,y) the gain. Within
the usual four-level model for a Ti:sapphire laser medium, the
gain g(n)(x,y) will be proportional to the upper lasing level
population. We consider a Gaussian pump beam of spot size
wp resulting in a Gaussian profile for the small-signal gain in
the absence of gain saturation,

gs(x,y) = g0e
−2(x2+y2)/w2

p , (10)

where g0 will be proportional to the peak intensity of the
pump beam. To incorporate the effects of gain saturation and
propagation in the Ti:sapphire medium, we employ the Frantz-
Nodvik model [5] generalized to allow for gain recovery
between pulses,

g(n+1)(x,y) = g(n)(x,y) − J (n)(x,y)

Jsat

[
eg(n)(x,y) − 1

]
+ [gs(x,y) − g(n)(x,y)]

frepτ
. (11)

Here g(n)(x,y) is the gain profile after n round trips, g(0)(x,y) =
gs(x,y), Jsat is the saturation fluence, τ is the lifetime of the
upper state lasing transition, and J (n)(x,y) = |E(n)(x,y)|2 is
the pulse fluence profile after n round trips. The top line of this
equation corresponds to the Frantz-Nodvik model in the form
previously applied to regenerative amplification in Ti:sapphire
media [6]. In contrast, the second line corresponds to the gain
recovery that occurs in the time interval T = 1/frep between
successive pulses. We note that in the absence of an intracavity
field, J (n)(x,y) = 0, the steady-state solution of Eq. (11),
obtained by setting g(n+1) = g(n) = g, is g(x,y) = gs(x,y),
that is, the gain recovers to the small-signal value as it should.
To further explore the gain model, we consider the case that the
gain g(n) is close to unity and ignore any spatial dependence.
In the steady state then, we find the approximate gain
formula

g ≈ gs[
1 + (frepτ )J

Jsat

] . (12)

This limit yields gain saturation of the expected form, though
the intracavity fluence J is multiplied by a factor (frepτ ) =
τ/T . Because the upper state lifetime of the laser transition τ

is much greater than the cavity round-trip time T , the fluence
appearing in the saturation formula is accumulated over (frepτ )
round trips. For our simulations, we employ the full Frantz-
Nodvik model in Eq. (11), but the approximation in Eq. (12)
serves to elucidate the nature of the gain model.

For our simulations, we employed the gain model of
Eq. (11) in conjunction with the cavity field mapping in
Eq. (2) to obtain the steady-state solution for the intracavity
field E(x,y), and then Eq. (9) is employed to obtain the
average output power. The cavity propagation described by
the generalized Huygens integral in Eq. (3) is performed using
standard Fourier-transform methods on a square grid.

C. Laser threshold

The final ingredient of our model involves the properties of
the gain medium described by the small-signal gain in Eq. (10),
with peak gain g0 and gain spot size wp. This step requires
determining the value of the on-axis small-signal gain g0 = gth

required to achieve laser threshold for a given output coupler
reflectance R. To find this value, we need the small-signal
net power gain G = eg for the Gaussian mode of the cavity.
In our simulations, we see little distortion of the cavity field
from the Gaussian mode, so we may estimate the net power
gain by averaging the small-signal power gain egs over the
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FIG. 2. (Color online) Threshold gain gth as a function of R

calculated using Eq. (15).

Gaussian-mode profile,

eg =
∫ ∞

0 2πrdregs (r)e−2r2/w2
0∫ ∞

0 2πrdre−2r2/w2
0

, (13)

where r =
√

x2 + y2, and the small-signal gain gs(r) ≡
gs(x,y) is given by Eq. (10). As shown in the Appendix, for
the case wp = w0, this integral can be evaluated to yield

G = eg = 1

g0
(eg0 − 1). (14)

This result holds if the pump-beam spot size matches the
Gaussian-mode size at the gain medium as in the experiment.
The simulations presented here operate in this regime, though
the effect of varying the pump spot size is studied separately in
Sec. IV C. Setting g0 = gth in the threshold condition GR = 1
yields the relation

gth

(egth − 1)
= R, (15)

which can be used to obtain the on-axis small-signal gain gth

required for laser threshold with a given R. We have found
that over a large range of experimentally relevant parameters,
the threshold condition in Eq. (15) works very well. Figure 2
shows the calculated threshold gain as a function of R. For
example, for the fs amplifying cavities studied here, we have
R = 0.66 which yields gth = 0.78. Furthermore, hereafter we
specify g0 = ηgth using the parameter η � 0, which stipulates
how far above (or below) threshold the laser is operating. From
this, it follows that η can be written in the alternate forms

η = g0

gth
= Ppump

Pth
, (16)

where Ppump is the pump power and Pth is the threshold
pump power. This is a useful approach to specifying the peak
small-signal gain via η as the threshold pump power Pth is
experimentally accessible.

IV. OPERATING CHARACTERISTICS

A. Amplified output

In this section, we compare the results of our simulations
against results from our in-house experiment as a means to
validate our injection-locking model. Quantities of particular
interest are the average output power versus the pump-beam
power for both the 50 MHz and 100 MHz fsAC cavities, and
the amplification Gout given by the net power gain of the output
frequency comb compared to the input,

Gout = Pout

Pin
. (17)

For our simulations, we chose Jsat = 1.25 J/cm2, τ = 2.6 μs,
and Pth = 3.1 W. This value of the saturation fluence Jsat agrees
with previously measured values [6,7], and the threshold pump
power Pth = 3.1 W was determined experimentally, and allows
us to parametrize the level above threshold η = Ppump/Pth. The
value τ = 2.6 μs for the upper state lifetime is compatible
with a temperature rise of a few tens of degrees in the laser
medium due to the pump beam [8,9], and is consistent with
the conditions of the experiment. In spite of this implied
temperature rise, we have been able to successfully model
the fsAC without including the effects of thermal lensing.

Figure 3 shows the average power Pout of the output
frequency comb versus pump power Ppump for the cases of
(a) the 50 MHz fsAC with an average input power of Pin =
0.54 W, and (b) the 100 MHz fsAC with an average input power
of Pin = 0.86 W. In each case, there is excellent agreement
between the solid line showing the simulated output power
and the crosses marking experimental values. In terms of the
net power gain, the 100 MHz fsAC with Pin = 0.86 W yields
Gout = 7.8, in good agreement with the experiment of Ref. [1].
It is a testimony to the utility of the model that it works so
well for both fsAC cavities with different input powers. In
particular, according to Eq. (11), the gain recovery dynamics,
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FIG. 3. (Color online) Output power Pout vs pump power Ppump

for (a) the 50 MHz fsAC using Pin = 0.54 W, and (b) the 100 MHz
fsAC with Pin = 0.86 W. The solid lines correspond to the results
of the simulation and the crosses mark the experimental data. The
horizontal axis is the same in both plots.
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FIG. 4. (Color online) Simulated free-running output power Pout

vs pump power Ppump for the 50 MHz fsAC.

and hence gain saturation, will be significantly different for
the frep = 50,100 MHz cavities.

Our model can also predict the free-running laser properties
of the fsAC by taking the limit Pin → 0 with no injection.
Figure 4 shows the output power versus pump power for the
free-running 50 MHz fsAC. This figure clearly shows the laser
threshold at Ppump = Pth = 3.1 W, and also predicts Pout=5.1 W
for Ppump = 18 W, with excellent experimental agreement.
We find similar agreement for the case of the 100 MHz fsAC.

The results presented provide validation of our simulation
model against experiment. In the remainder of this paper, we
shall concentrate on the 50 MHz fsAC cavity as an illustrative
example, though very similar results are obtained for the
100 MHz case.

B. Below and above threshold

Having now validated our cavity model to a reasonable
degree, we turn to exploring some operating characteristics
of the 50 MHz fsAC. One question that arises is whether
there is any great benefit from operating the fsAC above
threshold η > 1. In particular, gain saturation will generally
reduce the net gain down close to threshold, thereby potentially
erasing any benefit of working above threshold. To address
this issue, Fig. 5(a) shows a plot of the amplification Gout

versus average input power Pin, and Fig. 5(b) shows the output
power Pout versus Pin. In each plot, the curves from bottom to
top are for η = 0.5,1,1.5, with the dashed line corresponding
to threshold with η = 1. Figure 5(a) clearly illustrates that
there is always a greater amplification above threshold in
comparison to below threshold, but as the input power is
increased, the amplifications for above and below threshold
approach the value at threshold (dashed line). In general, there
is always a benefit in the attainable amplification by working
above threshold, though this can be lessened at higher input
powers. Figure 5(b) shows the output power versus input power
corresponding to Fig. 5(a). Here we again see that there is a
decided advantage to working above threshold in terms of the
output power, even for larger input powers.
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FIG. 5. (Color online) For the case of the 50 MHz fsAC, the
plots are (a) the amplification Gout vs average input power Pin, and
(b) the output power Pout vs average input power Pin. In each plot,
the curves from bottom to top are for η = 0.5,1,1.5, with the dashed
line corresponding to threshold with η = 1. The horizontal axis is the
same in both plots.

C. Variation with pump beam

Next we examine the robustness of the operation of the fsAC
cavity against variations in the pump beam. In general, extreme
measures are taken to align the input beam with the cavity axis;
however, the pump beam may be misaligned or have a spot size
differing from the assumed condition wp = w0. To examine
the effects of such variations in the pump beam, we extend the
small-signal gain expression in Eq. (10) to

gs(x,y) = g0e
−2[(x−x0)2+y2]/w2

p , (18)

with x0 being the misalignment of the pump beam along the
x axis, wp being the pump-beam spot size, and g0 being
the peak small-signal gain that will be proportional to the
peak pump-beam intensity, Ip = Ppump/(πw2

p/2). In order to
conduct a comparative study, we consider the case of a fixed
pump-beam power so that g0 and wp are varied in such a way
that g0w

2
p = (ηgth)w2

0 remains constant. In particular, here we
consider the practically relevant case of the 50 MHz fsAC with
Pin = 0.54 W and parameters as in Fig. 3.

Figure 6 shows the variation of the output power Pout versus
the normalized pump spot size wp/w0. A key feature is that
for wp/w0 > 1, the output power decreases, albeit not rapidly,
indicating a robustness against variations in pump spot size. In
contrast, for wp/w0 < 1, the output power initially increases
with decreasing pump spot size. However, for wp/w0 < 0.67,
no steady-state solution for the cavity-mode equations is
found—numerically indicating the onset of an instability. That
is, the intracavity field does not approach a state for which
|E(n+1)(x,y)|2 = |E(n)(x,y)|2. Although our cavity model is
incapable of diagnosing the full nature of the instability
since we have neglected cavity dispersion and associated time
dynamics, the appearance of the instability signals that the
output pulse train will no longer simply be an amplified version
of the input pulse train. The consequence of this is that the
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FIG. 6. (Color online) Output power Pout vs the normalized pump
spot size wp/w0 for the 50 MHz fsAC with an input power of Pin =
0.54 W. For wp/w0 < 0.67, a steady-state solution is not obtained,
indicating that the fsAC is unstable in this regime.

fsAC will no longer act as a successful amplifier for infrared
frequency combs. Our main message from these simulations
is that although the details depend on the specific parameters
for the fsAC, we have found that the choice of pump spot
size wp/w0 = 1 provides a reliable operating point for fsAC
operation, with ample room for variations in the pump spot
size to allow for stable operation.

For a second set of simulations, we have considered the
same fsAC parameters as above with wp/w0 = 1 and varied
the normalized beam displacement x0/w0 of the pump beam.
The results displayed in Fig. 7(a) show the output power Pout

versus the normalized pump beam displacement x0/w0, and
Fig. 7(b) shows the beam quality factors M2
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FIG. 7. (Color online) For the case of the 50 MHz fsAC with an
input power of Pin = 0.54 W, the plots are (a) the output power Pout

vs the normalized pump-beam displacement x0/w0, and (b) the beam
quality factors M2

x (solid line) and M2
y (dashed line) along the two

transverse directions vs x0/w0. The horizontal axis is the same in
both plots.
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FIG. 8. (Color online) Output power Pout vs the reflectance R of
the output coupler for the case of the 50 MHz fsAC with an input
power of Pin = 0.54 W.

and M2
y (dashed line) along the two transverse directions

versus x0/w0. Figure 7(a) clearly shows that pump-beam
misalignment leads to a degradation of the output power. On
the other hand, the reduction in output power is only �10%
for a pump-beam misalignment of half the pump-beam spot
size x0 = wp/2, reflecting a very high degree of robustness
against misalignments. Very similar results were obtained for
the 100 MHz fsAC cavity.

Figure 7(b) shows the corresponding variation in the beam
quality factor M2

x,y along the x and y axis as a function of
wp/w0. The beam quality factor M2 provides a measure of the
quality of the output beam from the fsAC with respect to the
input Gaussian beam having M2

x,y = 1 [10]. It is noteworthy
that the output beam quality factors for the current fsAC design
remain very close to unity for pump-beam misalignments as
large as x0 = wp/2, again reflecting the remarkable robustness
of the cavity.

D. Variation with output coupler

We close this section with an investigation of whether the
average output power may be usefully increased by varying
the reflectance R of the output coupler. Figure 8 shows the
output power Pout versus R for the case of the 50 MHz
fsAC with an input power of Pin = 0.54 W. While the current
experimental setup uses R = 0.66 with output power �6.3 W,
the figure indicates that the output power can be increased
by approximately 5% to 6.6 W using R = 0.85. In the next
section, we shall see that such an increase may be offset by a
decrease in the attainable injection-locking range.

V. INJECTION-LOCKING RANGE

A. Locking range

In this section, we investigate the injection-locking range
of the 50 MHz fsAC with a pump power of Ppump = 18 W.
The results from Fig. 4 yield a free-running output power of
Pout = Pfr = 5.1 W for this cavity. For the purposes of this
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FIG. 9. (Color online) (a) Average output power Pout as a function
of frequency detuning �f . The input powers for the curves (from top
to bottom) are Pin = 0.54,0.25,0.05 W. Note: the output power is set
to zero when no stable solution is found. (b) Frequency locking range
flock vs input power Pin.

analysis, we vary the round-trip phase shift in Eq. (5) away
from resonance by allowing φL = 2π�f T = 2π�f/frep to
be nonzero, with �f being the frequency detuning from a
longitudinal cavity resonance. Figure 9(a) shows the average
output power Pout as a function of frequency detuning �f . The
input powers used for the curves (from top to bottom) are given
by Pin = 0.54,0.25,0.05 W. A key finding of these simulations
is that a stable intracavity field occurs only over a restricted
range of frequency detunings around resonance at �f = 0. For
ease of viewing, in Fig. 9(a), we set the output power to zero for
detunings at which the field solution is unstable. The injection-
locking range flock is, then, the range over which the output
power shown is nonzero. Figure 9(a) further illustrates that for
a given input power, the peak output power occurs for zero
detuning, and that the output power decreases with decreasing
input power and approaches the free-running output power of
Pfr = 5.1 W for small input powers (see the lower curve for
Pin = 0.05 W). Finally, it also demonstrates that the locking
range decreases with decreasing input power. These features
coincide with general expectations for the injection-locking
range even for continuous-wave operation [11].

The crosses in Fig. 9(b) show the frequency locking range
flock versus input power Pin obtained from the numerical
simulations, with the solid line showing a fit to the data. It is
interesting to compare this with theory for single-mode lasers,
which predicts the frequency locking range as [11]

flock = 2(1 − R)frep

π

√
Pin

Pfr
. (19)

Using the relevant experimental values, this formula yields
flock = 4.8

√
Pin MHz. Performing a numerical fit to the data

in Fig. 9(b) gives the same functional dependence as Eq. (19),
but with a modified overall multiplier: flock = 6.4

√
Pin MHz.

Although the injection-locking theory for single-mode lasers is
not strictly valid for the present system, it is interesting to note

the similarity between the systems. Theoretical predictions
for injection locking in mode-locked systems also share
the square-root dependence on the injected power [12].
Our simulations therefore comply with general expectations
regarding the locking range of the fsAC [11]. In particular,
we note that the predicted injection-locking range in Eq. (19)
decreases with increasing reflectance R of the output coupler.
Thus, in comparison to the case of R = 0.66 used here, the
increase in output power for R = 0.85 indicated in Fig. 8 will
lead to a concomitant smaller locking range—an important
tradeoff when considering fsAC design.

B. Limitations for short pulses

Because cavity dispersion has been neglected in this
treatment, the results obtained thus far are independent of the
input pulse duration tp. This is reflected in the fact that the
gain saturation of the Ti:sapphire amplifying medium depends
only on the circulating pulse fluence and not on the peak
pulse intensity, I (x,y) = |E(x,y)|2/tp. However, due to the
nonlinear Kerr effect [13] in the Ti:sapphire medium, with
nonlinear coefficient n2 = 3 × 10−16 cm2/W [14], the cavity
dynamics can become intensity dependent for shorter pulse
durations. While the approach in the previous sections has
tacitly dealt with the long pulse limit, we next elucidate how
the pulse duration enters the picture.

To incorporate the Kerr effect into the cavity model in
Eq. (2), we generalize the round-trip phase shift to include a
nonlinear, intensity-dependent term that depends on the round
trip n according to

φ → φ(n)(x,y) = −φG + φL + k0n2L|E(n)(x,y)|2
tp

, (20)

with L = 6 mm the gain medium length. Figure 10 shows the
average output power Pout including the nonlinear Kerr effect
as a function of frequency detuning �f for Pin = 0.54 W.
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FIG. 10. (Color online) Average output power Pout including the
nonlinear Kerr effect as a function of frequency detuning �f . From
the farthest left curve and moving to the right, the corresponding
pulse durations are tp = 5,10,20,50 ps. The output power is set to
zero when no stable solution is found.
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Again, for ease of viewing, we have set the output power
to zero for detunings where the field solution is unstable.
Starting from the farthest left curve and moving to the right,
the corresponding pulse durations are tp = 5,10,20,50 ps.
For the longest pulse duration tp = 50 ps, the curve of Pout

versus �f in Fig. 10 is very close to the corresponding curve
for Pin = 0.54 W in Fig. 9(a), whereas the remaining curves
for shorter pulse durations are clearly shifted to the left in
addition to becoming increasingly asymmetric with reducing
pulse duration. This implies that the nonlinear Kerr effect
comes into play for pulse durations tp < 50 ps. Furthermore,
we note from Fig. 10 that the frequency detuning �f of
peak output power shifts and becomes more negative with
decreasing pulse duration. This arises from the fact that as
the pulse duration is decreased and the nonlinear phase shift
due to the Kerr effect increases, a larger negative frequency
detuning is required to maintain overall cavity resonance. It
is noteworthy, however, that as the input pulse duration is
decreased, the output power at the position of the peaks in
Fig. 10 stays essentially the same—implying that decreasing
pulse duration does not sacrifice average output power. Indeed,
the relative insensitivity of the peak output power to the Kerr
effect means that the results in Figs. 3–8 are little changed by
the Kerr effect for t � 5 ps.

We conclude by pointing out that the Kerr effect imposes a
very real and practical limitation to the frequency comb pulse
duration that can be successfully amplified in the fsAC. In
particular, it is a practical reality that the cavity length of the
fsAC fluctuates with time and to deal with this a servo is used
to dynamically adjust the cavity length in such a way as to
maximize the output power. What this means is that the fsAC
strives to work at the peak of tuning curves shown in Fig. 10.
For long pulse durations, the peak is well pronounced with
stable regions on both sides that can accommodate fluctuations
around the peak. However, we see that already for tp = 5 ps,
the tuning curve has become very asymmetric with a large
stable region on the right side of the peak, but a smaller stable
region on the left side. For tp < 5 ps, this asymmetry becomes
more pronounced with the operating point at the detuning
of peak output power becoming ever closer to the unstable
region on the left of the tuning curve. This means that for
tp < 5 ps, there is little flexibility to accommodate unavoidable
fluctuations in the cavity detuning and this puts a limitation to
the pulse duration that can be stably amplified by the fsAC.
Our simulations imply that the minimum pulse duration is
tp = 2 ps for our particular fsAC design.

VI. SUMMARY AND CONCLUSIONS

In summary, we have developed a cavity model including
transverse field variations and gain saturation in the Ti:sapphire
gain medium to elucidate the operating characteristics of a
femtosecond amplification cavity with an incident infrared
frequency comb. We found excellent agreement between our
simulations and experiment for the case of input pulses of 5 ps
duration and we explored operating characteristics such as the
output power and injection-locking range. For shorter input
pulses, however, our simulations indicate that the nonlinear
Kerr effect will become a key player, in addition to temporal
effects related to cavity dispersion. In the near future, we will
report on an extended version of this model to address temporal
aspects such as the effect of pulse chirp and intracavity
dispersion on the performance of the fsAC.
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APPENDIX: THRESHOLD GAIN

We start from Eq. (13),

G = eg =
∫ ∞

0 2πrdregs (r)e−2r2/w2
0∫ ∞

0 2πrdre−2r2/w2
0

. (A1)

For the specific case wp = w0, the term egs (r) in the integral in
the numerator can be Taylor expanded as

gs(r) = eg0e
−2r2/w2

0 =
∞∑

j=0

g
j

0

j !
e−2jr2/w2

0 . (A2)

Substituting Eq. (A2) into (A1) and performing the integrals
yields

G =
∞∑

j=0

(
g

j

0

j !

)∫ ∞
0 2πrdre−2r2(1+j )/w2

0∫ ∞
0 2πrdre−2r2/w2

0

=
∞∑

j=0

(
g

j

0

j !

)
1

(1 + j )
= 1

g0

∞∑
j=1

(
g

j

0

j !

)
= 1

g0
(eg0 − 1),

(A3)

which is the desired result.
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