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Engineering wave localization in a fractal waveguide network
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We present an exact analytical method of engineering the localization of classical waves in a fractal waveguide
network. It is shown that a countable infinity of localized eigenmodes with a multitude of localization lengths
can exist in a Vicsek fractal geometry built with diamond-shaped monomode waveguides as the “unit cells.” The
family of localized modes forms clusters of increasing size. The length scale at which the onset of localization
for each mode takes place can be engineered at will, following a well-defined prescription developed within the
framework of a real space renormalization group. The scheme leads to an exact evaluation of the wave vector
for every such localized state, a task that is nontrivial, if not impossible for any random or deterministically
disordered waveguide network.
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I. INTRODUCTION

Since its inception, the phenomenon of Anderson localiza-
tion in a disordered lattice [1] has been found to be ubiquitous
in diverse fields of condensed matter physics and materials
science. While the popular domain of interest is related to
electronic systems, where the quantum interference plays a
pivotal role in localizing electronic eigenstates in the presence
of disorder [2–8], the effect is by no means confined to
electrons and extends over a variety of phenomena ranging
from spin freezing in one-dimensional semiconductors [9],
localization in optical lattices [10–12], or the localization of
matter waves (cold atoms forming Bose-Einstein condensates)
[13,14], to name a few. Incidentally, the latter has recently
been observed experimentally in one-dimensional matter
waveguides where the random potential is generated by laser
speckles [15].

In 1984 John [16] pointed out that the idea of localization
goes far beyond the electronic systems and is actually a general
phenomenon common to any wave propagation in systems
with disorder. Anderson [17] followed with a seminal paper
considering the idea of localization of classical waves, in an
attempt to work out the theory of white paints. The field
has gathered momentum in the last couple of decades and
a considerable volume of literature related to the localization
of classical waves, particularly light waves, ultrasound waves,
and microwaves, is now in existence [18–26].

The study of localization of light in disordered media
has been patronized by the discovery of the photonic band
gap (PBG) materials [27–29]. These systems exhibit gaps
in the frequency spectrum in which the propagation of
waves is forbidden. This has important implications in both
fundamental science and technological applications.

Photonic gaps, apart from materials with a large dielectric
constant, can also be observed in waveguide networks, as
proposed by several groups over the past years [30–38].
Anderson localized eigenmodes are observed inside the
photonic gaps and excellent agreement between theory and
experiments has been obtained [30]. The network models are
able to localize a propagating wave by virtue of the geometrical
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arrangement of the waveguide segments. Of particular interest
are a wide variety of models based on waveguide networks
designed following a deterministic fractal geometry [34–38],
where the gaps result from the typical topology exhibited
by the hierarchical arrangement of the waveguide segments.
The present communication also deals with a hierarchically
designed (fractal geometry) waveguide network, but addresses
a deeper fundamental question regarding wave localization in
such systems, as explained below.

Fractals or hierarchical geometries in general cause an
excitation to localize [39–42]. The energy spectrum turns out
to be singular continuous [39], with a gap in the vicinity
of every energy. Nevertheless, there can be a countable
infinity of extended eigenfunctions with high (or even, perfect)
transmittivity, even though there is no translational order in
such systems. Once again, this is true for electrons [43–49],
and classical waves as well [35,36]. A curious point, apparently
gone unnoticed or unappreciated so far, is that, while a
precise determination of the eigenvalues corresponding to
the extended eigenmodes is possible in the above cases of
hierarchically grown fractal networks, the task seems to be
practically impossible when it comes to an exact evaluation
of eigenvalues of the localized modes in such hierarchical
systems in their thermodynamic limits. Direct diagonalization
of the Hamiltonian (in the electronic case) or an exact
numerical solution of the wave equation doesn’t help, as the
overall character of the spectrum in all the cases is highly
fragmented, and the eigenvalues obtained from a finite sized
network are likely to slip away from the spectrum once we go
over to a higher generation. This problem has recently been
addressed in the context of electron localization in fractal
space [50], and we carry forward the central idea floated in
Ref. [50] to evaluate the exact wavelengths (wave vectors) of
the waves that can be localized at will in a properly designed
hierarchical single-channel network.

We design a Vicsek fractal network [51] consisting of
diamond-shaped loops, each arm of which mimics a single-
mode linear waveguide (see Fig. 1). While examination of the
localized mode eigenvalues and the nature of localization are
indeed the major factors motivating this work, other interests
in such a study are related to the general spectral character
and classical wave transport in these systems. As one can
easily appreciate, the geometry of a diamond-Vicsek network
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FIG. 1. (Color online) (a) Schematic view of the second generation of an infinite diamond-Vicsek waveguide network. The vertices at the
junction of two waveguides are labeled as “A” in the text, while those in the bulk (at the crossing of four waveguides) are labeled as “B.”
(b) Renormalized version of panel (a) with the dotted lines indicating the diagonal “hopping” which is generated due to renormalization.

provides an interesting culmination of the “open” character of
a typical Vicsek pattern and closed loops at shorter scales
of length. This is in marked contrast to the much-studied
Sierpinski gasket waveguide network [34], which is a closed
structure, or to the other deterministic waveguide networks
[36,37]. The presence of the loops generates the possibility
of an effectively long-ranged propagation of waves between
the various vertices, and its effect on the localization or
delocalization of waves is worth studying.

We find interesting results. For an infinite hierarchical
geometry, such as that presented above, a countable infinity
of eigenmodes with a multitude of localization lengths can be
precisely detected. One can work out an exact mathematical
prescription to specify the length scale at which the onset of
localization begins. The localization can, in principle, be de-
layed (staggered) in position space and the corresponding wave
vectors (or wavelengths) can be exactly evaluated following
the same prescription based on a real space renormalization
group (RSRG) decimation method [52]. In addition, it is
shown that for a given set of parameters, the center of the
spectrum corresponds to a perfectly extended eigenmode, with
the parameters describing the system exhibiting a fixed point
behavior. This central extended mode is flanked on either side
by localized wave functions with a hierarchy of localization
lengths.

In what follows we describe the results. In Sec. II, the model
and the mathematical method of handling the problem are
presented. Section III discusses the results and their analyses,
and in Sec. IV we draw our conclusions.

II. THE MODEL AND THE METHOD

A. The wave equation and its discretization

We have considered a waveguide network formed by
waveguide segments having the same lengths arranged in
a Vicsek fractal geometry [51]. Each segment has a single
channel for wave propagation. The wave function ψij between

any two nodal points i and j satisfies the wave equation:

∂2ψij (x)

∂x2
+ ω2

c2
ψij (x) = 0, (1)

where ω is the frequency of the wave; c is the speed of wave
propagation inside the material (waveguide) and is related to
the speed of light in vacuum c0 by the relation c = c0/

√
ε,

ε being the dielectric constant of the medium; and x is the
distance measured from the ith node. The above equation has
a solution of the form [53,54]

ψij (x) = ψi

sin[k(�ij − x)]

sin(k�ij )
+ ψj

sin(kx)

sin(k�ij )
, (2)

where k = ω/c = ω
√

ε/c0 is the value of the wave vector
inside the dielectric medium (waveguide), �ij is the length
of the segment between the nodes i and j , and ψi and ψj

are the values of the wave function at the ith and j th nodes,
respectively. The flux conservation condition,

∑
j

[
∂

∂x
ψij (x)

]
x=0

= 0, (3)

where the summation j is over all the nodes linked directly to
i, leads to a discretized version of Eq. (1) [54], viz.,

−ψi

∑
j

cot θij +
∑

j

ψj/ sin θij = 0, (4)

where θij = k�ij = ka, a being the constant length of a
waveguide, as considered in all the calculations which follow.
Equation (4) resembles a tight-binding difference equation
depicting the propagation of noninteracting electrons in a
lattice, viz.,

(E − εi)ψi =
∑

j

tijψj , (5)

with the “electron energy” E and an “on-site potential,” εi .
tij = 1/ sin θij plays the role of a “hopping (overlap) integral”
between the ith node and its neighboring nodes j . We exploit
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this resemblance to investigate the localization aspects of
classical waves. It is easy to see that, on replacing ka by
π − ka, Eq. (5) can be recast with just tij being replaced
by −tij . This does not change the spectrum or the nature of
eigenstates in any way.

We have chosen to set, quite arbitrarily, E = 2 cos ka,
so that εi = 2 cos ka + ∑

j cot θij . This does not affect the
final results in any way. As seen in Fig. 1, the Vicsek
waveguide network has two types of nodal points, viz., type
A (having two neighboring nodal points) and type B (having
four neighboring nodal points). Accordingly, in the equivalent
wave propagation problem the on-site potentials should be
assigned two values, viz., εA = 2 cos ka + 2 cot ka and εB =
2 cos ka + 4 cot ka, respectively. The overlap integral along
an arm of the waveguide is t = 1/ sin ka and represents the
overlap only between the nearest-neighbor vertices along an
edge.

Now we come to an important point. There is no second-
neighbor tunneling of the wave to begin with. However, the
decimation of a subset of nodes will generate an additional
overlap between the opposite vertices of a basic diamond
plaquette in the rescaled version of the original network [see

dotted lines in Fig. 1(b)]. To account for this, we define
an additional hopping across the diagonals of a diamond
plaquette, call it tij = λ, and set λ = 0 at the beginning. It is to
be appreciated that, unlike the term t = 1/ sin ka, one should
not look for any initial expression of λ. It is simply zero and the
generation of this additional hopping is a result of the rescaling
of the network only. The role of λ under successive RSRG
steps is going to be important in observing any localization or
extendedness of waveguide modes, as explained later.

We now proceed to describe the physics of wave propaga-
tion in such a fractal geometry by exploiting this exact analogy
with the corresponding electronic problem.

B. The RSRG scheme

A renormalized version of the fractal network is easily
obtained by decimating a subset of vertices from the original
geometry. This implies one has to eliminate a subset of the
wave amplitudes from the difference equations (5) in terms
of the surviving vertices [see Fig. 1(b)]. This results in the
following set of recursion relations for the system parameters,
viz., on-site potentials,

ε′
A = εA +

⎡
⎣ 2t2

E − εA − λ
+

(
λ + 2t2

E−εA−λ

)2(
(E − εB) − 2t2

E−εA−λ
− ξ

)
(
(E − εB) − 2t2

E−εA−λ
− ξ

)2 − (
λ + ξ

)2

⎤
⎦ ,

(6)

ε′
B = εB + 2

⎡
⎣ 2t2

E − εA − λ
+

(
λ + 2t2

E−εA−λ

)2(
(E − εB) − 2t2

E−εA−λ
− ξ

)
(
(E − εB) − 2t2

E−εA−λ
− ξ

)2 − (λ + ξ )2

⎤
⎦ ,

and the hopping (overlap) integrals,

t ′ = t[λ(E − εA − λ) + 2t2]2

[E2 − (εA + εB)(E − λ) − 2Eλ + λ2 − 2t2 + εAεB]2 − 4t2(E − εA − λ)2
,

(7)

λ′ =
(
λ + 2t2

E−εA−λ

)2(
λ + ξ

)
[
(E − εB) − 2t2

E−εA−λ
− ξ

]2 − (λ + ξ )2
,

where ξ = 2t2(E − εA − λ)/�, with � = (E − εA − λ)(E −
εB − λ) − 2t2, and λ = 0 at the beginning.

The scaling generates an effective second-neighbor hopping
(overlap) λ′, as pointed out in Sec. II A, and is obvious from
the above set of recursion relations and Fig. 1(b). The rescaled
network [Fig. 1(b)] represents an effective waveguide network
where waveguide segments connect the vertices of a diamond
plaquette along the edges as well as along the diagonals.
The latter has a length different from the edges and hence
λ′ differs from t ′. This is again equivalent to an electronic
problem with first- and second-neighbor hopping integrals t ′

and λ′, respectively [50], and forgetting about the classical
wave altogether, the localization properties of the eigenmodes
can now be studied via an evolution of these effective overlap
integrals under successive RSRG steps, beginning at the
stage depicted in Fig. 1(b). The parameters εA, εB , t , and
λ(= 0) obviously do not retain their simple forms of the initial
(bare length scale) stage.

These recursion relations will now be used to obtain
information about the local density of eigenmodes at specific
sites of the system and about the localized or extended
character of the modes, as discussed below.

III. RESULTS AND DISCUSSION

A. Local density of eigenmodes

As already stated, the exact mapping of the wave equation
onto a discrete Schrödinger type equation allows us to extract
information about the density of wave eigenmodes through a
Green’s function analysis [52]. We present in Fig. 2 the density
of modes at a B vertex, which is given by

ρ(B)(ka) = lim
η→0

{
− 1

π
Im[G(B)(ka + iη)]

}
. (8)

The distribution of eigenmodes, plotted within ka < 0 < 2π ,
shows clusters of nonzero values over a finite range of the
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FIG. 2. (Color online) Local density of eigenmodes at a bulk
B-type vertex of an infinite diamond-Vicsek waveguide network.

wave vector k and is found to be symmetric around ka = π/2.
The fragmented Cantor-like character, the typical signature of
a fractal spectrum, is apparent. An idea about the character
of the eigenmodes can be obtained by observing the flow
of t under successive RSRG iterations. In general, for an
arbitrary value of ka, for which the density of modes is
nonzero, t (n) → 0 as the number of iterations n increases,
implying a localized character of the corresponding eigenmode
[43,52]. However, for ka = (2m + 1)π/2, both the first- and
the second-neighbor hopping integrals t and λ remain nonzero
for an indefinite number of iterations. In fact, we observe
a one-cycle fixed point of the entire parameter space, viz.,
{ε′

A,ε′
B,t ′,λ′} = {εA,εB,t,λ}. The fact that t and λ remain finite

at all stages of RSRG implies that there is a nonzero overlap
between the wave amplitudes at all scales of length, and the
corresponding mode is an extended one.

The neighborhood of ka = (2m + 1)π/2 has been scanned
minutely. The self-similarity of the spectrum is always seen
with dense patches of eigenvalues clustered throughout the
intervals. For many of these eigenvalues t and λ remain finite
under successive decimation for a large number of steps. This
indicates that every local band center at ka = (2m + 1)π/2 is
flanked either by extended modes or, at least, by eigenmodes
with very large localization lengths.

B. Explicit construction of localized modes

The deterministic Vicsek fractal waveguide is self-similar
at all scales of length. This feature allows us to explicitly
construct a special distribution of wave functions by suitably
exploiting the difference equations, Eq. (5). These “special”
eigenmodes are localized and extend over clusters of single-
channel waveguide segments of various sizes. The planar ex-
tent of such clusters depends on the eigenvalue corresponding
to the localized mode and can be small or enormous, depending
on the wavelength (or wave vector). The construction is similar
to our recent work [50] on electronic states.

To elaborate, let us set

E = εB(n) − 2λ(n), (9)

where n refers to the stage of renormalization. This is, in
general, a polynomial equation in E (and, hence, in k). The

zeros of this equation will be the allowed wave vectors for
the infinite system if, and only if, with them, one can satisfy
Eq. (5) locally at every vertex of the network. This task can
be accomplished by trying to draw a nontrivial distribution of
amplitudes for a value of E (ka) obtained from Eq. (9) on
the undecimated vertices of an n-step renormalized network
and then trying to figure out the amplitude distribution on the
original waveguide structure at the bare length scale. This can
indeed be done, as we demonstrate in Fig. 3(a) for n = 1. For
n = 1 Eq. (9) reduces to

cos ka(2 cos 2ka − 1) = 0. (10)

Roots of the above equation are ka = ±π/2 and ka = ±π/6.
ka = π/2 (or, equivalently, −π/2) is of course, the extended
mode. The root ka = π/6 leads to the construction of wave
amplitudes as shown in Fig. 3. It is not difficult to extend
the construction depicted in Fig. 3(a) even to a network
of an arbitrarily large size, where the end vertices are not
actually visible. We are still able to satisfy Eq. (5) locally
at every vertex while drawing this distribution and, thus,
k = π/6a definitely belongs to the spectrum of the infinite
system, a fact that has been cross-checked by evaluation
of the local density of modes at the A and the B sites
at this special value of k. We get a stable, finite value of
the local density of modes which supports our argument
above.

In Fig. 3(a) we show the distribution of amplitudes on
the central cluster of an infinite diamond-Vicsek hierarchical
network for ka = π/6. The deep red arms connect network
vertices where the wave amplitudes are nonzero, and thus these
arms are the brightest looking ones as far as the distribution
of light intensity is concerned. The black lines represent
waveguides which will appear completely dark, as the wave
amplitudes at their vertices will have to be zero in order to
satisfy Eq. (5). There will be arms connecting one vertex with
a zero amplitude and another with a nonzero one. These are
depicted by a lighter shade of red and will “glow” with less
intensity compared to the deep red ones. The distribution of
intensity in any arm (apart from the black ones) is by no
means uniform. The colors just represent the fact that the
intensity is nonzero. The significant observation is that clusters
of nonzero amplitude span over a finite distance, but ultimately
get “decoupled” from each other on a larger scale of length.
This can be appreciated if we look at Fig. 3(b), which is a
larger version of the previous figure. The red-shaded clusters
are distributed along the principal X and Y axes, but are
separated from each other beyond a certain extent by light red
boxes. The black clusters representing amplitude voids are now
seen to span larger spatial distances. A similar construction is
possible for ka = −π/6, which is another solution of Eq. (9)
for n = 1, but this does not have any additional significance.
In terms of light, the entire hierarchical geometry will have an
appearance where light will be localized with higher intensity
at certain clusters of waveguides decoupled from each other
by completely dark patches.

It is apparent from the above discussion that the eigen-
function corresponding to ka = ±π/6 will be localized in
the fractal space. This is easily reconfirmed by studying the
evolution of the hopping integrals under successive RSRG
steps. The hopping integrals t and λ (zero initially, but grows
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FIG. 3. (Color online) (a) Distribution of amplitudes of the wave function for ka = π/6 [obtained by solving Eq. (9) for n = 1] on a
second-generation network. The dark-shaded plaquettes with black lines at the boundary embrace network vertices with zero amplitude. The
deep red waveguide segments (covering a dark-red-shaded region) connect vertices with nonzero amplitude and “glow” with maximum intensity.
The lighter red lines represent waveguide segments which have an intermediate intensity profile. The amplitudes of the wave are marked by
the numbers ±1, 0, ±α, and ±β, respectively, where α = −√

3/2 and β = 1/2. (b) The distribution of wave amplitudes for ka = π/6 on a
third-generation network. The thick blue lines represent one- and two-step renormalized lattices in panels (a) and (b), respectively.

later) remain nonzero at the first stage of RSRG (that is, n = 1),
indicating that the nearest-neighboring sites on a one-step
renormalized lattice will have a nonzero overlap of the wave
functions. They start decaying for n > 2 with the decay in
λ(n) taking place at a much slower rate compared to t(n). This
indicates that over a larger scale of length the corresponding
states are localized, but the effect is a weak one.

C. The staggering effect

The previous observation immediately leads to an inno-
vative way of exactly determining the wave vectors (wave-
lengths) corresponding to localized wave functions on such a
deterministic geometry at an arbitrary scale of length. We do
it using the following method.

We can solve Eq. (9), in principle, to get the desired k values
for any n. For example, we have done it explicitly for n = 2.
The roots are obtained from the equation

cos ka(2 cos 2ka − 1)(cos 2ka − 2 cos 8ka) = 0 (11)

and are given by ka = ±π/2, ±π/6, ±1.317 862, ±1.008 990,
±0.610 566, and ±0.133 440. For every such ka value, π − ka

trivially satisfies Eq. (11) and does not affect the spectrum or
the character of the eigenmodes, as already stated in Sec. II A.
It is thus enough to stick to the principal values of ka within the
interval [0,π ]. In every case, on beginning the RSRG iteration
with the wave vector k chosen arbitrarily from the above set,
the nearest-neighbor overlap integral t and the diagonal one,
viz., λ, remain nonzero at least up to that specific nth stage
of renormalization. After that, as the RSRG progresses, the
hoppings flow to zero with λ dominating over t at every step
of renormalization. This implies that for any such k value one
can draw a nontrivial distribution of wave amplitudes on the

renormalized fractal network. When mapped back onto the
original lattice the amplitudes will be found to span clusters
of increasing size. The exact size of the spanning clusters will
be determined by the value of n. The size, for example, with
n = 2 exceeds that for n = 1.

The spanning clusters finally get decoupled from similar
clusters when one looks at the distribution over a large
enough network. Speaking in terms of the red- and gray-
shaded zones, it should be appreciated that the size of the
red zone is much bigger for n = 2 compared to the n = 1
case. We refer the reader to Ref. [50] for understanding the
result.

It is now obvious that higher the value of n, the greater
the number of roots of the polynomial equation, Eq. (9), will
be. The roots have a nice nesting property. The roots obtained
from any (n − 1)th stage are found included in the solution
for the nth stage (see ka values for n = 2). The additional
roots obtained at the nth level over the existing roots from the
(n − 1)th level keep the overlap integrals nonzero up to that
specific nth RSRG step. Beyond this step, the overlap finally
starts to weaken in magnitude. This immediately implies that
for larger values of n, the clusters of nonzero amplitudes span
a wider fractal space, and the localization effect begins much
later. That is, the onset of localization can be delayed in space,
at one’s will, by choosing to solve Eq. (9) for larger values
of n.

It should also be appreciated that, the larger the value of n

is, the roots (ka values) become lower and lower submultiples
of π . For extremely large values of n, the localization begins
at an enormously large scale of length and extrapolating this
idea it is clear that as the roots of the Eq. (9) approach the limit
ka → 0, which is equivalent to the limit ω → 0, the modes
practically do not localize, a fact consistent with the idea of
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classical wave localization. We can thus induce a staggering
effect on the localization of waves in such a fractal waveguide
network.

Before we end this subsection, it is pertinent to emphasize
that the analysis of the localization of classical waves in this
fractal network has been done by exploiting the analogy of
the network equations with that of an electron propagating in
a similar lattice. This mapping is a mathematical construction
and once this is done the RSRG recursion relations are
insensitive to whether the input comes from a quantum case
or a classical one. However, in the classical case, the material
parameters play a crucial role. For example, a given condition
on the value of ka implies that the staggering effect can be
observed for a special combination of the dielectric condition
and the length of the waveguide segment. If we fix the length
of the waveguide segment at the very outset, then one can
figure out the appropriate wavelengths for which localization
will show up at an appropriate length scale, that is, the size of
the network itself.

On the other hand, in the electronic case, the wave function
amplitude is defined only at the vertices of the diamond
plaquettes. The Fermi energy E needs to be tuned to see
the staggered localization effect. The numerical values of the
lattice constant and the hopping integral at the initial stage
are not important as far as the localization is concerned.
Also, in the case of localization of classical waves, as already
mentioned, there will be a distinct variation of the intensity
throughout the fractal network. Each waveguide segment
having zero amplitudes at its end will basically sustain a
standing wave. The entire segment will have some glow
(vertices will be dark though), and this glow will be much
less compared to that of the plaquettes where we really
have nonzero amplitudes at all the vertices, as depicted
schematically in Fig. 3.

D. Transmission of waves

To get the two-terminal conductance for a finite-size
diamond-Vicsek fractal, we attach the system between two
semi-infinite one-dimensional single-channel waveguides.
The wave equation obeyed by the incident wave in these
waveguides is discretized, and the leads are artificially
converted into arrays of effective nodes characterized by a
constant on-site potential, εl = 2 cos ka + 2 cot ka, as before,
and a nearest-neighbor overlap integral, tl = 1/ sin ka. We
then successively renormalize the finite network to reduce
it into an effective two-vertex system, with a renormalized
effective on-site term equal to U and with an effective
hopping integral, T , between them. The transmission coef-
ficient across the effective dimer is given by the well-known
formula [55]

T = 4 sin2 ka

D2
1 + D2

2

, (12)

where D1 = [(M12 − M21) + (M11 − M22) cos ka] and D2 =
[(M11 + M22) sin ka]. The matrix elements Mij are given

by M11 = (E−U)2

T tl
− T

tl
, M12 = − (E−U)

T , M21 = −M12, M22 =
− tl

T , and cos ka = (E − εl)/2tl , with a being the lattice
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FIG. 4. (Color online) Transmission characteristics for a third-
generation Vicsek waveguide network. The length of each monomode
segment a is chosen to be unity.

constant and taken to be equal to unity throughout the
calculation.

In Fig. 4, we have shown the two-terminal transmission
characteristics for a third-generation waveguide network sys-
tem. The transmission spectrum is, as expected, full of gaps,
with resonant transmission exhibited at certain k values. With
increasing generation, the resonances become rarer and the
spectrum becomes much more fragmented.

IV. CONCLUDING REMARKS

In conclusion, we have examined the distribution of
intensity of a classical wave propagating in a Vicsek geometry
consisting of diamond-shaped single-channel waveguides. The
major result is that we have been able to identify a countable
infinity of localized eigenmodes displaying a multitude of
localization lengths. A prescription is given for an exact
determination of the wave vectors corresponding to all such
modes, a problem that is far from trivial in the case of
a deterministically disordered system. The localized wave
functions span the fractal space in clusters of increasing
sizes, the size being precisely controlled by the length scale
at which the wave vector (k) is evaluated. The onset of
localization can be exactly predicted from the stage of the
RSRG and can be delayed (staggered) in space. The study
provides a unique opportunity to experimentally examine the
localization of classical waves, for example, light, triggered by
the lattice topology without bothering about the high dielectric
constant materials. It might be useful in developing novel
photonic band-gap structures, where the wavelengths to be
screened or allowed to go through can be controlled over
arbitrarily small domains exploiting the fractal character of the
network.
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