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Scaling symmetry and conserved charge for shape-invariant optical fields
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In this work we present an extensive study of the scaling symmetry typical of a paraxial wave theory. In
particular, by means of a Lagrangian approach we derive the conservation law and the corresponding generalized
charge associated with the scale invariance symmetry. In general, such a conserved charge, qs say, can take
any value that remains constant during propagation. However, it is explicitly proven that for the whole class
of physically realizable shape-invariant fields, that is, fields whose intensity distribution maintains its shape on
propagation, qs must necessarily vanish. Finally, an interesting relation between such charge qs and the effective
radius of a beam, as introduced by Siegman some years ago, is derived.
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I. INTRODUCTION

Symmetries have always attracted a lot of interest from
physicists, mainly because of their close connection with the
fundamental properties of a system, as stated by Noether’s
theorem [1,2]. This is true in optics a well, where, in the last
years, there was a notable growth in publication of works
that studied and explained some of the features of optical
fields by using symmetry arguments [3–8]. As an example, we
can recall here the beautiful derivation, due to Wünche [5],
of Hermite-Gauss and Laguerre-Gauss beams by application
of certain differential operators to the fundamental Gaussian
beam, introduced in the context of Lie’s algebra for the paraxial
regime. Another useful application of group theory to optics
is the demonstration of the existence of the generic class
of Gaussianly modulated paraxial beams obtained from the
corresponding nondiffracting beams, solutions of Helmholtz’s
wave equation [6]. In another work, Simon and Mukunda [8]
described in a universal way the propagation of shape-invariant
fields by using the Iwasawa decomposition for the first-order
optics. The goal of the present work is to present an extensive
study of the scale-invariance symmetry in paraxial optics.
This is performed by employing a Lagrangian description of
a paraxial wave theory. Through our study, we will be able
to point out the structure of the conservation law associated
with the most general form of scaling symmetry and, more
importantly, we will be able to derive a very general expression
for the corresponding conserved charge qs . Among all possible
solutions of the paraxial wave equation, we apply the main
results of our work to the interesting class of so-called
shape-invariant fields, namely fields whose intensity profile
does not change in propagation apart from a trivial scaling
factor. We explicitly show that any shape-invariant field must
necessarily bring a conserved charge qs = 0. Finally, we
provide the reader with an interesting connection between
the said charge qs and the concept, introduced several years
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ago, of the average radius of curvature for a beam. The paper
is organized as follows. In Sec. II we recall briefly the main
ingredients of a Lagrangian theory, such as the Lagrangian and
Lagrangian density, the energy-momentum tensor, and some
related quantities. In Sec. III we analyze the scale invariance
symmetry, by making use of some results of Lie’s group theory
applied to the paraxial wave equation and of Noether’s theorem
for scalar fields. Then we point out the explicit expression for
the conserved scale-invariant current and charge. In Sec. IV
we compute the value of the conserved charge associated with
the scale-invariance symmetry for the case of shape-invariant
fields and for the nontrivial case of a quartic-aberrated beam.
Finally, in the last Sec. VI we summarize the results of our
work.

II. PARAXIAL OPTICS AS A FIELD THEORY

From now on, we refer in the text to a (x,y,z) Cartesian
reference frame and we consider only monochromatic scalar
paraxial fields, with the z axis denoting the mean direction
of propagation of the beam. It is known that a paraxial field
u(x,y,z), and its complex conjugate version u�(x,y,z), must
fulfill the wave equations

∇2
⊥u(x,y,z) + 2ik∂zu(x,y,z) = 0, (1a)

∇2
⊥u�(x,y,z) − 2ik∂zu

�(x,y,z) = 0, (1b)

that constitute the equations of motion for the fields in absence
of sources and currents [9]. Equation (1a) is also known
as paraxial wave equation (PWE). In Eqs. (1a) and (1b)
∇2

⊥ stands for the transverse Laplacian operator, which in
the above-mentioned frame is given by ∇2

⊥ = ∂2
x + ∂2

y . Since
we intend to investigate the consequences deriving from the
scaling symmetry of PWE, we need to recall briefly here
the main features of such a symmetry. More specifically, a
scaling symmetry of PWE is that symmetry transformation
that, starting from a solution u(x,y,z) for Eq. (1a), leads to the
new solution

ũ(x,y,z) = exp(−ε)u[exp(ε)x, exp(ε)y, exp(2ε)z], (2)
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where ε is a real, positive parameter. Before analyzing the
conserved quantities associated with this symmetry, we need to
recall some preliminary facts on the Lagrangian formalism for
field theories. For this reason, in the next sections we introduce
a Lagrangian density and the canonical energy-momentum
tensor associated with the PWE in Eq. (1a) [and its complex
conjugated version, Eq. (1b)], pointing out some known
conservation laws.

A. The Lagrangian density L D

In any classical field theory, one can define the Lagrangian
L as

L =
∫

�

LDdxdy, (3)

where

LD = LD(u,u�,∂μu,∂μu�) (4)

is called Lagrangian density, where μ = {x,y,z} and �

denotes the integration domain in the (x,y) space. It is possible
to show that LD governs the field dynamics [10]. In fact, once
the functional action S is defined as

S =
∫

τ

LDdxdydz, (5)

one can derive the equations of motion, known as Euler-
Lagrange equations, by looking for those fields which ex-
tremize S. The expressions for the Euler-Lagrange equations
obtained this way are

∂LD

∂u
− ∂μ

∂LD

∂(∂μu)
= 0, (6a)

∂LD

∂u�
− ∂μ

∂LD

∂(∂μu�)
= 0. (6b)

In our case we need to solve the inverse problem, because
we already know the equations of motion, namely Eqs. (1a)
and (1b), and we need to derive an expression for the
Lagrangian density LD . It is easily shown that the Lagrangian
density

LD(u,u�,∂μu,∂μu�) = ∂au∂au� + iku∂zu
� − iku�∂zu

= ∇⊥u∇⊥u� + iku∂zu
� − iku�∂zu

= |∇⊥u|2 + iku∂zu
� − iku�∂zu (7)

(with a = {x,y}) leads to the correct equations of motion,
given in Eqs. (1), when substituted into the Eqs. (6). We recall
also here that the Lagrangian density is not unique. In fact, a
term of form dF (u; z)/dz can be added without altering the
value of the action S in Eq. (5). Since the physics remains
unchanged, and we are working only with observables, we set
it to F = 0. Additionally, for the sake of clarity throughout
our work we keep the distinction between covariant and
contravariant in the notation, although the metric would make
it possible to identify them.

Finding a Lagrangian density is the fundamental step for
our end, because by means of it one can introduce several
quantities which play an important role in symmetry problems,
as we show in the next section.

B. Energy-momentum tensor

Once the form for Lagrangian density LD is given, we can
compute the Hamiltonian as follows:

H = − ∂LD

∂(∂zu)
∂zu − ∂LD

∂(∂zu�)
∂zu

� + LD, (8)

which results to be

H = ∂au∂au� = |∇⊥u|2. (9)

The integration of Eq. (9) produces a quantity, which we call
total Hamiltonian energy, equal to

E =
∫

�

Hdxdy =
∫

�

|∇⊥u|2dxdy. (10)

In Appendix A we show how such Hamiltonian energy is
related to the field energy as usually defined in the literature.
One should also notice that Eq. (9) is a positive definite
quantity, as it should be. Since the total Hamiltonian energy
is conserved during free-space propagation, we expect that
existence of an energy current, say s, which satisfies the
following continuity relation:

∂zH + ∇⊥ · s = 0. (11)

In effect, if we define the current s as

sa = − ∂LD

∂(∂au)
∂zu − ∂LD

∂(∂au�)
∂zu

�, (12)

by using Eq. (7), it becomes

sa = −∂au�∂zu − ∂au∂zu
� (13)

and it is simple to check that s satisfies Eq. (11). More
generally, it is straightforward to realize that the Hamiltonian
H and the energy current s coincide, respectively, with the T zz

and the T za components of the following quantity (which is
reminiscent of the energy-momentum tensor for classical field
theories):

T αβ = − ∂LD

∂(∂βu)
∂αu − ∂LD

∂(∂βu�)
∂αu� + ηαβLD, (14)

where ηαβ = δαβ and δ is the Kronecher symbol. The elements
T zz and T za have been already discussed above in the text. As
to the remaining two other elements of Eq. (14), after denoting
with pa the coefficient T az, we have

pa = T az = − ∂LD

∂(∂zu)
∂au − ∂LD

∂(∂zu�)
∂au�

= iku�∂au − iku∂au
� (15)

and

T ab = − ∂L

∂(∂bu)
∂au − ∂L

∂(∂bu�)
∂au� + ηabL. (16)

One should notice that the tensor T αβ is not symmetric, but it
is invariant under complex conjugation, i.e., T αβ = (T αβ)�. A
very important relation fulfilled by T αβ is the following:

∂βT αβ = 0, (17)

which can be proven to derive directly from the invariance of
the theory under spatial translations. Equation (17) includes,
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as special cases, the energy conservation, already written in
Eq. (11), and also the relation

∂zT
az + ∂aT

ab = 0 (18)

between the vector p and the components T ab. Before closing
the present section we wish to emphasize that the vector p
satisfies another continuity relation:

∂ap
a − 2k2∂z|u|2 = ∇⊥ · p − 2k2∂z|u|2 = 0, (19)

which represents the well-known continuity equation for
paraxial optics. With all the quantities defined so far, in the
next section the focus is on the scale-invariance symmetry.

III. CONSERVED CHARGE FOR SCALE-INVARIANCE
SYMMETRY

The most general form for a conservation law can be written
as follows:

1√
g

∂μ(
√

gJμ) = 0, (20)

where J represents a conserved current and g the determinant
of the metric tensor gαβ . In the simplest cases

√
g does not

depend on x,y,z variables so that Eq. (20) can be rewritten as

∂μJμ = 0. (21)

If u indicates a solution of Eq. (1a), we are interested here in
the action of transformations that produce a scaling on spatial
coordinates as well as on the field itself. For this purpose,
it is convenient to associate with Eq. (1a) a manifold M ∈
X × U , where X = Rep, with p = 3 meaning the number
of independent variables and U = Req , with q = 1, meaning
the number of dependent variables. A solution of PWE is
represented on M by a point (x,y,z,u) while a map represents
a symmetry transformation if it connects two different points,
(x,y,z,u) and (x̃,ỹ,z̃,ũ), lying on the said manifold M . An
application of Lie’s group theory to the PWE allows us to
obtain all the infinitesimal symmetry vector generators, among
which there are [6,11]:

v1 = x∂x + y∂y + 2z∂z, (22a)

v2 = u∂u, (22b)

which generate the maps

ψ1(ε,v1) = exp(εv1), (23a)

ψ2(ε,v2) = exp(εv2), (23b)

where ε is a real parameter characterizing the transformation.
More specifically, Eq. (23) acts on the spatial variables to
produce new solutions of the PWE, u1 and u2 say, as in the
following:

u1(x,y,z) = u[exp(ε)x, exp(ε)y, exp(2ε)z], (24a)

u2(x,y,z) = exp(−ε)u(x,y,z). (24b)

A transformation like that in Eq. (24b) is often called internal
symmetry, because it involves only the field amplitude while
leaving the independent variables (x,y,z) undisturbed. To cite
an example of an internal symmetry, we recall the action

of a gauge transformation on the wave function in quantum
mechanics [1,12]. On coming back to Eqs. (24), they can
be combined to give the total scale-invariance transformation
already written in Eq. (2). A physical system that shows a
specific symmetry can have a conserved quantity associated
with that symmetry. This can be formally stated by means of
Noether’s theorem (the reader interested in the details of the
theorem might consider to look, for instance, at Ref. [1] for
more details), which gives a way to build a conserved current
Jμ as follows:

Jμ = vν
1T μ

ν + ∂L

∂(∂μu)

du2

dε

∣∣∣∣
ε=0

+
(

∂L

∂(∂μu)

du2

dε

∣∣∣∣
ε=0

)�

,

(25)

where vν
1 are the components of the vector appearing into the

transformations (22). In Eq. (25) there are two main terms:
(i) vν

1T μ
ν , which accounts for the action on the spatial

coordinates (x,y,z) only;
(ii) the term

∂L

∂(∂μu)

du2

dε

∣∣∣∣
ε=0

, (26)

which is due to the contribution of the internal symmetry
Eq. (24b).
Furthermore, as we require the current to be observable, we
have added the conjugate term of the internal symmetry, i.e.,
the term (

∂L

∂(∂μu)

du2

dε

∣∣∣∣
ε=0

)�

. (27)

After doing the calculations, the current Jμ assumes the final
form

Jμ = vα
1 T μ

α + ∂L

∂(∂μu)
(−u) + ∂L

∂(∂μu�)
(−u�). (28)

One can verify that this current is conserved, namely that
∂μJμ = 0. For the reader interested in the details, we have
provided a proof of that in Appendix B.

To obtain the expression for the conserved charge associated
to the conserved current, it is necessary to evaluate the integral∫

τ

∂μJμdτ = 0, (29)

where τ is a generic volume in (x,y,z) space. More specifically,
if we choose τ as the internal volume of a cylinder with
symmetry axis parallel to the z axis and with mantle �m

and bases �a and �b, Eq. (29) becomes, after applying the
divergence theorem,∫

�m

J⊥ · dS +
∫

�a

J zdS +
∫

�b

J zdS = 0. (30)

At this point we require the transverse current to vanish,
i.e., J⊥ → 0, when the base radius of the cylinder becomes
infinitely large. From that follows that the quantity

qs =
∫∫

�∞
J zdxdy (31)

is conserved during propagation. qs in Eq. (31) is the conserved
charge we were looking for. Its explicit expression, evaluated
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on a general z plane, can be rewritten as

qs =
[∫∫

�∞

(
xT z

x + yT z
y + 2zT z

z

)
dxdy

]
z

=
[∫∫

�∞

(
xaT z

a + 2zT z
z

)
dxdy

]
z

=
[∫∫

�∞
(r⊥ · p + 2zH)dxdy

]
z

=
[∫∫

�∞
(r⊥ · p)dxdy

]
z

+ 2zE, (32)

where H is the Hamiltonian. In Eq. (9), p is the linear
momentum given in Eq. (15), r⊥ = (x,y) the transverse
position vector, and E the field energy already introduced in
Eq. (10). The subscript z means that all the quantities appearing
within the square brackets have to be evaluated on a generic
z plane. The current density in Eq. (25) and the charge in
Eq. (32) are the results which have motivated our investigation.
In particular, from a different perspective, we can say that the
scale-invariance symmetry of paraxial optics is induced by the
conservation of the charge qs given in Eq. (32). In the next
section we derive an important theorem for the value of qs in
the case of important class of shape-invariant fields.

It is not straightforward to provide the reader with a physical
meaning of the conserved charge qs . From Eq. (32) we see that
it depends on the integral of the scalar product (r⊥ · p). The
field p is a linear momentum on the (x,y) plane and it accounts
for the way the energy flows on each transverse plane. Since
the field keeps its energy during free-space propagation, it is
evident that the transverse energy flow must be in balance with
the total energy carried by the field, which is contained in the
additional term 2zE in Eq. (32).

IV. THE VALUE OF qs FOR SHAPE-INVARIANT FIELDS

Shape-invariant fields are special solutions of PWE sharing
the property of having an intensity profile that remains essen-
tially the same during propagation, apart from a scaling in the
transverse coordinates. Gaussian, Hermite-Gauss, Laguerre-
Gauss, and paraxial nondiffracting beams (Bessel, Mathieu
beams) are some representatives of them [7,13–16]. In general,
we can write their intensity as

I (r⊥,z) = α(z)I0 [α(z)r⊥,0] , (33)

where I = |u|2; the subscript denotes the z = 0 plane. As to the
function α(z) appearing in Eq. (33), it was elsewhere proven
that

α(z) = 1√
1 ± (z/zR)2

, (34)

with zR as a real parameter [17]. It is interesting to notice
that from Eqs. (19) and (33) already follows that, on z = 0,
∇⊥ · p = 0. Hence, since p is free of divergence on z = 0,
it can be written as p = ∇⊥ × W, where W is a not further
specified as a vector field. Thus, we can rewrite the integrand
appearing in Eq. (32) as

r⊥ · p = r⊥ · ∇⊥ × W = ∇⊥ · (r⊥ × W) + W · ∇⊥ × r⊥
= ∇⊥ · (r⊥ × W) , (35)

where we used the vector identity B · ∇ × A = ∇⊥ · (A ×
B) + A · ∇⊥ × B and the fact that ∇⊥ × r⊥ = 0. Since the
charge qs is not a function of the z variable, it is sufficient to
evaluate it on z = 0 only. In that case, we have

qz=0
s =

[∫
�∞

(r⊥ · p)dxdy

]
z=0

=
[∫

�∞
∇⊥ · (r⊥ × W) dxdy

]
z=0

=
[∫

∂�∞
r⊥ × W · dl

]
z=0

, (36)

where a two-dimensional version of Gauss’ theorem has been
used. In Eq. (36) ∂�∞ is the border of the surface �∞ and
dl represents the vector line element on such border. At this
point, we further require to deal only with physically realizable
fields, which implies that W → 0 for r⊥ → ∞. From Eq. (36),
it is evident that this directly implies that qs = 0. Thus, we
are led to conclude that qs = 0 for any physically realizable
shape-invariant field.

The converse, however, is not true. In other words, it
is possible to have fields with qs = 0 which are not shape
invariant. This can be seen by rewriting the charge qs in
a different way. In particular, if we write the complex
field u in terms of its amplitude and phase as u(x,y,z) =
[I (x,y,z)]1/2 exp [iϕ(x,y,z)], it follows that

p = iku�∇⊥u − iku∇⊥u� = −2kI∇⊥ϕ (37)

and for qs we get

qs =
[∫ ∫

�∞
−2kI (r⊥ · ∇⊥ϕ)dxdy

]
z

+ 2zE

=
[∫ 2π

0

∫ ∞

0
−2kIr2

⊥∂r⊥ϕdrdθ

]
z

+ 2zE, (38)

where the standard relations x = r⊥ cos θ , y = r⊥ sin θ be-
tween Cartesian and circular coordinates have been used. On
z = 0, Eq. (38) becomes

qs =
[∫ 2π

0

∫ ∞

0
−2kIr2

⊥∂r⊥ϕdr⊥dθ

]
z=0

. (39)

Equation (39) points out how the phase of the field, on the
input plane, can affect the conserved charge qs . It is interesting
to discuss some particular cases. Let us consider first a field
with a phase that, on z = 0, does not depend on r⊥. In such
a case we have ∂r⊥ϕ = 0 and qs vanishes. In other words,
given a field u(x,y,z) = [I (x,y,z)]1/2 exp[iϕ(x,y,z)], then a
sufficient condition to have a vanishing conserved charge qs is
∂r⊥ϕ|z=0 = 0. The condition is sufficient but not necessary
because, as is easy to show, qs can be zero also when
∂r⊥ϕ|z=0 �= 0. For instance, let us consider the case of a field of
type u(x,y,0) = u(r⊥,θ,0) = [I (r⊥)]1/2 exp[iϕ(r⊥,θ )] with a
phase of form ϕ(r⊥,θ ) = f (r⊥)g(θ ), where f (r⊥) and g(θ ) are
two functions of r⊥ and θ variables, respectively. In that case
qs becomes

qs =
[∫ 2π

0
g(θ )dθ

] [∫ ∞

0
−2kIr2

⊥∂r⊥f (r⊥)dr⊥

]
z=0

= 0

(40)
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because
∫ 2π

0 g(θ )dθ = 0, since the function g(θ ) has to be
periodic on θ .

As an example of a field that has a conserved charge qs

different from zero, let us consider the case of a quartic-
aberrated Gaussian beam that, on the plane z = 0, takes the
expression

u(x,y,0) = A exp

(
− r2

⊥
w2

0

+ iβr4
⊥

)
, (41)

where β describes the said aberration and w0 represents the
well-known beam waist of a nonaberrated Gaussian beam. In
this case one has ∂r⊥ϕ|z=0 = 3βr3 and the conserved charges
result to be depending on the introduced aberration

q(0)
s =

∫ 2π

0

∫ ∞

0
−2kA2 exp

(
−2r2

⊥
w2

0

)
r2
⊥3βr3

⊥dr⊥dθ

= −12βπk

∫ ∞

0
A2 exp

(
−2r2

⊥
w2

0

)
r5
⊥dr⊥ (42)

= −3

2
βπkw6

0, (43)

which is different from zero and directly proportional to the
aberration parameter β.

V. RELATIONSHIP BETWEEN THE CONSERVED
CHARGE qs AND THE EFFECTIVE RADIUS

OF CURVATURE OF A BEAM

There exists an interesting connection between the just-
introduced conserved charge qs and the effective radius of
curvature of a general paraxial beam as defined, several years
ago, by Siegman [18]. Such a quantity was introduced to
describe the effective radius of curvature of a real beam even
when it may be characterized by a distorted wave front and by
a very irregular amplitude profile. For the sake of simplicity,
we refer to an axially symmetric beam, for which an average
curvature radius can be defined, on z, as

Rz = −kσ 2
z

[
2π

∫ ∞

0
r2
⊥∂rϕIdr⊥

]−1

z

, (44)

where σ 2
z is the variance of the transverse intensity distribution,

propagating on z according to a quadratic law

σ 2
z = σ 2

0

[
1 +

(
M2z

kσ 2
0

)2
]

. (45)

Here σ0 is the value of σz evaluated on z = 0. As is well known,
the M2 accounts for spreading properties of the beam during
free-space propagation. The said relation between Rz and qs

readily follows after comparing (38) and (44) and reads

Rz = −kσ 2
0

[
1 + (

M2z

kσ 2
0

)2]
qs − 2zE

. (46)

Equation (46) represents a generalization of the result given
by Siegman in his already cited work [18]. In fact, Siegman
introduced a propagation law for the average radius of
curvature Rz, for a generic paraxial beams, that can be simply
obtained by putting qs = 0 into Eq. (46). Thus, Eq. (46) in
some sense is a generalization of that propagation law to cases

where qs �= 0. More interestingly, apart from the dependence
on z, Eq. (46) clearly shows that Rz is exclusively expressed
as a function of the field invariants qs , σ0, M2, E.

VI. CONCLUSIONS

In the present work we have performed a detailed study
about the scale-invariance symmetry in paraxial optics. By
using a Lagrangian description for the paraxial regime, we
have obtained the generic structure of the conserved current
and charge qs associated with the said symmetry. Additionally,
we have shown that shape-invariant fields have always qs = 0.
We have discussed how such a conserved charge is influenced
by the behavior of the phase of a field under study, in particular
by the phase profile on an input plane. Conditions to obtain
a nonvanishing charge qs have been discussed as well. In
addition, we have shown how the concept of average radius
of curvature of a generic beam actually is founded on the
scale-invariance properties of paraxial optical beams.
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APPENDIX A: RELATIONSHIP BETWEEN THE
HAMILTONIAN ENERGY AND FIELD ENERGY

In Sec. II A we recalled how, within a Lagrangian picture,
it is possible to define a conserved energy E, which is the
total Hamiltonian energy. At a first sight, this energy seems
to differ from the usual way the energy of a paraxial beam is
defined. The aim of the present section is to show how the two
definitions of energy are actually related to each other.

If u(x,y,z) denotes the field under consideration, then
we can define its energy in the usual way as the integral∫ |u|2 dxdy. If we now sum Eqs. (11) and (19) together we
obtain

∇⊥ · (p + s) + ∂z(H − 2k2|u|2) = 0. (A1)

Integrating over the whole x,y plane and requiring that both p
and s must vanish at infinity, we get

∂z

∫
�∞

(H − 2k2|u|2)dxdy = 0, (A2)

where we made use of Gauss’s theorem. Equation (A2) implies
that the integral ∫

�∞
(H − 2k2|u|2)dxdy (A3)

is invariant on propagation. Thus, we have

E = C + 2k2
∫

�∞
|u|2dxdy, (A4)

where C is just a constant term. Equation (A4) represents
the relation we were looking for. By setting the constant
C to zero, one obtains the relevant result that, apart from
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a trivial proportional factor, E coincides with the field
energy for paraxial fields, as commonly defined in the
literature.

APPENDIX B: PROOF OF THE CONSERVATION OF THE
SCALE-INVARIANCE CURRENT

In the present appendix we explicitly prove that the current
given in Eq. (28), is conserved. We work in Cartesian
coordinates.

We obtain for the J x and J y components

J x = vα
1 T x

α + ∂LD

∂(∂xu)
(−u) + ∂LD

∂(∂xu�)
(−u�)

= xT x
x + yT x

y + 2zT x
z + ∂xu

�(−u) + ∂xu(−u�),

(B1)

J y = vα
1 T y

α + ∂LD

∂(∂yu)
(−u) + ∂LD

∂(∂yu�)
(−u�)

= xT y
x + yT y

y + 2zT y
z + ∂yu

�(−u) + ∂yu(−u�),

(B2)

while for J z it reads

J z = vα
1 T z

α + ∂LD

∂(∂zu)
(−u) + ∂LD

∂(∂zu�)
(−u�)

= xT z
x + yT z

y + 2zT z
z + (−iku�)(−u) + (+iku�)(−u�)

= xT z
x + yT z

y + 2zT z
z . (B3)

The divergence of J becomes

∂μJμ = T x
x + x∂xT

x
x + y∂xT

x
y + 2z∂xT

x
z − u∂2

xu� − ∂xu
�∂xu

− u�∂2
xu − ∂xu∂xu

� + x∂yT
y
x + y∂yT

y
y + T y

y

+ 2zT y
z − u∂2

yu� − ∂yu
�∂yu − u�∂2

yu − ∂yu∂yu
�

+ x∂zT
z
x + y∂zT

z
y + 2z∂zT

z
z + 2T z

z . (B4)

Equation (B4) simplifies by using the conservation laws
already discussed, in particular that in Eq. (17), and gives

∂μJμ = x
(
∂xT

x
x + ∂yT

y
x + ∂zT

z
x

) + y
(
∂xT

x
y + ∂yT

y
y + ∂zT

z
y

)
+ 2z

(
∂xT

x
z + ∂yT

y
z + ∂zT

z
z

) + T x
x + T y

y + 2T z
z

−u∂2
xu� − ∂xu

�∂xu − u�∂2
xu − ∂xu∂xu

� − u∂2
yu�

− ∂yu
�∂yu − u�∂2

yu − ∂yu∂yu
�

= T x
x + T y

y + 2T z
z − u∂2

xu� − ∂xu
�∂xu − u�∂2

xu

− ∂xu∂xu
� − u∂2

yu� − ∂yu
�∂yu − u�∂2

yu − ∂yu∂yu
�

= 0, (B5)

in which we have used the explicit form of T x
x , T

y
y (we have

already pointed out that T z
z coincides with the Hamiltonian

density H), i.e.,

T x
x = −∂xu∂xu

� + ∂yu∂yu
� + iku∂zu

� − iku�∂zu, (B6)

T y
y = −∂yu∂yu

� + ∂xu∂xu
� + iku∂zu

� − iku�∂zu, (B7)

and we have used Eqs. (1), too.
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