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Quantum phase transitions of three-level atoms interacting with a one-mode electromagnetic field
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We apply the energy surface method to study a system of Na three-level atoms interacting with a one-mode
radiation field in the �, �, and V configurations. We obtain an estimation of the ground-state energy, the
expectation value of the total number of excitations, and the phase diagram of the model in the interaction
parameter space and compare the results with the exact solutions. The phase diagram separates the behavior of, in
general, a dominant single state without excitations (M = 0) from a collective state with excitations (M �= 0). We
have first- and second-order phase transitions, except for the V configuration, which only presents second-order
phase transitions.
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I. INTRODUCTION

The Tavis-Cummings model [1], which describes the
interaction of a collection of N two-level atoms with a
quantized electromagnetic field in the dipolar and rotating-
wave approximations, has an extensive use in quantum optics
[2]. Recently this model has been physically realized using a
QED cavity with Bose-Einstein condensates [3,4]. Particularly
interesting has been the investigation of the phase transitions
of the system in the thermodynamic limit [5], and at zero
temperature [6,7].

The physics of three-level systems interacting with one
or two quantized modes of the electromagnetic field is very
rich and many special dynamical situations have been studied.
In particular, a formalism to describe one three-level atom
interacting with a one- or a two-mode field has been discussed
together with the atomic level occupation probabilities, coher-
ence properties, photon probability distribution, fluctuations,
and the evolution of squeezing in a series of works [8]. For
one three-level atom interacting with a one- or a two-mode
field, it was found that the phase distribution properties of the
field reflect the collapses and revivals of the level occupation
probabilities. However, for the two-mode case, there are
exceptions and the collapses and revivals are decorrelated from
the phase field [9].

A comprehensive review of the dynamical interaction of
an atom with radiation within the framework of the Jaynes-
Cummings type has been done by Yoo and Eberly [10]. How-
ever, by means of the thermodynamic Green’s function, the
phase transitions of the Dicke model, including all modes of the
radiation field, have been considered for a finite temperature in
Ref. [11] for atoms confined in a cubic resonance wavelength.
Recently, there has been a semiclassical treatment of the phase
transitions in a system of three-level atoms in the � configu-
ration interacting with a two-mode quantized electromagnetic
field without the rotating-wave approximation, using, however,
the generalized Holstein-Primakoff transformation to find the
separatrix of the system in the thermodynamic limit [12].
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The main contribution of this manuscript is the estab-
lishment of the separatrix of a system of three-level atoms
interacting with a one-mode electromagnetic field for the three
atomic configurations, �, �, and V (cf. Fig. 1). Each separatrix
determines in control parameter space (dipolar strengths)
where the quantum phase transitions take place and which are
of first and second order, depending on the values of the dipolar
interactions. The presence of the quantum phase transitions
can be clearly seen in the calculation of the ground-state
energies and in the expectation value of the total number of
excitations, as functions of the dipolar couplings μ12, μ13, and
μ23. The agreement with the corresponding exact quantum
calculations is remarkable, in spite of considering a small
number Na of atoms (Na = 2 and Na = 10). Furthermore,
by taking μ23 = 0 in the � and � configurations, and μ13 = 0
in the V case, the corresponding Hamiltonian systems describe
two-level problems in the manner of Tavis-Cummings, giving
consistency to our results. In these cases it is straightforward
to check that the separatrix coincides with the one established
by Hepp and Lieb [5].

The organization of the paper is as follows. In Sec. II we
establish the model and present the basic formulation of the
problem. In Sec. III an analytic expression for the energy
surface of the system is obtained, and we use it to obtain
an estimation of the ground state of the system in the three
basic configurations. In Sec. IV we solve the Hamiltonian for
a finite number of particles and compare the results with those
previously obtained. Finally, a summary of the general results
and conclusions is outlined in Sec. V.

II. MODEL HAMILTONIAN

We consider a quantum system of Na three-level atoms,
each atom being able to occupy one of three levels character-
ized by energies ω1, ω2, and ω3 (where we have taken h̄ = 1),
interacting dipolarly with a one-mode field of frequency �,
and assume the rotating-wave approximation. We consider
ω1 � ω2 � ω3. The Hamiltonian describing this system can
be written as Ref. [10]

Ĥ = � â†â +
3∑

k=1

ωk Âkk − μ12√
Na

(â Â21 + â† Â12)

− μ13√
Na

(â Â31 + â† Â13) − μ23√
Na

(â Â32 + â† Â23), (1)
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FIG. 1. (Color online) Schematic representation of the three
atomic configurations. h̄ωi denotes the energy of the ith level, and μij

the dipolar coupling between levels i and j . We use h̄ = 1 throughout.

where the first two terms on the right-hand side are related to
the free atomic and field parts. The â, â† denote the annihilation
and creation operators of the radiation field, and the operators
Âij are the generators of a U(3) algebra. The operators â, â†

satisfy the Heisenberg-Weyl algebra commutators

[â, â†] = 1̂, [â, â] = 0,

while the atomic operators Âij (weight for i = j , lowering
for i > j and raising with i < j ) fulfill the U(3) algebra
commutation relations

[Âij , Âkl] = δjkÂil − δilÂkj .

The usual three-level atomic arrangements are obtained from
Eq. (1), imposing μ13 = 0 for the � configuration, μ12 = 0
for the � configuration, or μ23 = 0 for the V configuration. In
each case there are two constants of motion: the total number
of atoms

N̂a = Â11 + Â22 + Â33, (2)

and the total number of excitations

M̂� = â†â + Â22 + 2 Â33, M̂� = â†â + Â33,
(3)

M̂V = â†â + Â22 + Â33.

III. ENERGY SURFACE

In order to obtain an energy surface, we use as a trial state
the direct product of coherent states in each subspace. The use
of coherent states as trial states lets us determine in analytic
form the expectation values of matter and field observables.
Thus we use the tensor product of Heisenberg-Weyl HW(1)
coherent states for the radiation part, |α} = eα â† |0〉, and
U(3) coherent states for the atomic part. The un-normalized
U(3) coherent state can be constructed by taking the exponen-
tial of the lowering generators acting on the highest weight
states of U(3),

|[h1,h2,h3]γ1,γ2,γ3} = eγ3Â21 eγ2Â31 eγ1Â32 | [h1,h2,h3]〉,
where we denote by

| [h1, h2, h3]〉 ≡
∣∣∣∣∣
h1 h2 h3

h1 h2

h1

〉
,

the highest weight state of the Gelfand-Tsetlin basis of the
irreducible representation [h1, h2, h3] of U(3) [13]. The action
of the raising operators Âij on the highest weight state
vanishes: Âij | [h1, h2, h3]〉 = 0.

In this contribution we only consider the completely
symmetric representation [Na, 0, 0] of U(3), where Na denotes

the number of atoms. Therefore the trial state is the tensor
product

|Na,α,γ2,γ3} = eα â† |0〉 ⊗ eγ3Â21 eγ2Â31 |[Na,0,0]〉.
The parameter γ1 does not appear in the coherent state because
Â32 | [Na, 0, 0]〉 = 0.

The expectation value with respect to this state of the model
Hamiltonian (1) gives the energy surface

H(	,	2,	3,ϑ1,ϑ2,ϑ3)

= �	2 + Na

ω1 + ω2 	2
3 + ω3 	2

2

1 + 	2
2 + 	2

3

− 2
√

Na	

× μ12	3 cos ϑ3 + μ13	2 cos ϑ2 + μ23	2	3 cos ϑ1

1 + 	2
2 + 	2

3

,

where we have used the identifications γk = 	k exp(i ϕk), with
k = 2, 3, and α = 	 exp(i ϕ). Additionally, the angles ϑ1 =
ϕ − ϕ2 + ϕ3, ϑ2 = ϕ − ϕ2, and ϑ3 = ϕ − ϕ3 were defined.

The minima for the energy surface are obtained when ϑi =
0, π for i = 1,2,3, and

μ12 cos ϑ3 > 0, μ13 cos ϑ2 > 0, μ23 cos ϑ1 > 0.

To have an intensive quantity we divide the energy surface
H(	,	2,	3,ϑ1,ϑ2,ϑ3) by Na , and use the conditions of a

FIG. 2. (Color online) Numerical results for the lowest value of
the energy surface for the � configuration (a) and its corresponding
estimation for the constant of motion M� (b), as functions of μ12 and
μ23. We consider the resonant case ω32 = ω21 = 1, with ω1 = 0.
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FIG. 3. (Color online) Numerical results for the lowest value of
the energy surface for the � configuration (a) and its corresponding
estimation for the constant of motion M� (b), as functions of μ13 and
μ23. We consider the nonresonant case ω31 = 1.3, ω32 = 0.8, and
ω1 = 0.

minimum for the angles ϑi to obtain

E(	̄, 	2, 	3) = 	̄2 + ω1 + ω2 	2
3 + ω3 	2

2

1 + 	2
2 + 	2

3

− 2 	̄
|μ12| 	3 + |μ13| 	2 + |μ23| 	2 	3

1 + 	2
2 + 	2

3

,

(4)

where ρ̄ = ρ/
√

Na , and ωk and μkl are now measured in units
of [h̄�]. E = E Na � is given in units of [h̄�], and in what
follows we will set � = 1.

Using the Ritz variational principle, one finds the best
variational approximation to the ground-state energy of the
system and its corresponding eigenstate for the energy surface
(4). The values of 	̄c are always given in terms of 	2 c and 	3 c.
These last two, independent of Na , are found numerically.
For the configuration � the estimation of the ground energy is
plotted in Fig. 2(a) as a function of μ12 and μ23. In Fig. 2(b) we
show also the corresponding value for the constant of motion
M�. In both figures we used the resonant case ω32 = ω21 = 1,
and ω1 = 0, with the notation ωij ≡ ωi − ωj . The white lines
indicate the separatrix of the configuration.

For the configuration � the result for the semiclassical
ground energy is plotted in Fig. 3(a) as a function of μ13

and μ23. In Fig. 3(b) we show the corresponding value of the

FIG. 4. (Color online) Numerical results for the lowest value of
the energy surface for the V configuration (a) and its corresponding
estimation for the constant of motion MV (b), as functions of μ12 and
μ13. We consider ω31 = ω21 = 1 with ω1 = 0.

constant of motion M�. In both figures we used ω31 = 1.3,
ω32 = 0.8, and ω1 = 0. Note that, in this case, we chose for
illustrative purposes to work away from resonance. Again, the
white lines denote the separatrix of the system.

Finally, considering the V configuration we obtain the
semiclassical ground energy shown in Fig. 4(a) as a function
of μ12 and μ13, and in Fig. 4(b) the corresponding value
of the constant of motion MV is displayed. In both figures
we used again the resonant case ω31 = ω21 = 1, with ω1 =
0. The white line is the corresponding separatrix for the
configuration.

The separatrix of the system is obtained by analyzing the
stability and equilibrium properties of the energy surface by
means of the catastrophe formalism. Thus the locus of the
points where the thermodynamic phase transition M = 0 →
M �= 0 occurs is given in each case by the following:

For the � configuration,

μ2
12 + [|μ23| − √

ω31]2 �(|μ23| − √
ω31) = ω21; (5)

for the � configuration,

μ2
13 + [|μ23| − √

ω21]2 �(|μ23| − √
ω21) = ω31; (6)
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FIG. 5. (Color online) Numerical results for the ground-state
energy of the model Hamiltonian for the � configuration (a) and
the corresponding value of the constant of motion M� (b), as
functions of μ12 and μ23. We consider the case Na = 2, ω32 =
ω21 = 1, and ω1 = 0. The white line corresponds to the semiclassical
separatrix.

and for the V configuration,

μ2
12

ω21
+ μ2

13

ω31
= 1. (7)

Each separatrix is indicating the minimum values of the dipole
transition strengths between the levels where the total number
of excitations can be different from zero, that is, establishes
the regions where the ground state has a collective character
formed by a linear combination of states with excited atoms
and/or field excitations, as opposed to those in which it has, in
general, a single-state configuration.

The Ehrenfest procedure [14] is used to determine numer-
ically the order of the phase transitions of the system. We
want to emphasize that for the cases of equal detuning or
in resonance for the V and � configurations the order can
be obtained analytically. In summary, the three-level atoms
present first- and second-order phase transitions; the first ones
are associated to discontinuities in the first derivative of the
energy surface while the second ones to discontinuities of the
second derivative of the energy surface [14]. The first-order
phase transitions imply level crossings in the ground state
of the system, while for the second-order ones there is an

FIG. 6. (Color online) Numerical results for the ground-state
energy of the model Hamiltonian for the � configuration (a) and the
corresponding value of the constant of motion M� (b), as functions
of μ13 and μ23. We consider the case Na = 2, ω31 − � = 0.3,
ω32 − � = −0.2, and ω1 = 0. The white line corresponds to the
semiclassical separatrix.

absence of level crossings in the ground state, when the control
parameters are changed [15]. For the � configuration, the
phase transition across μ12 = √

ω21 in the separatrix is of
second order, and the one that takes place along the segment
of the circumference is of first order. For the � configuration
something similar happens: across μ13 = √

ω31 in the sepa-
ratrix the phase transition is of second order, and along the
segment of circumference in the separatrix is of first order. For
the V configuration all transitions are always of second order.

IV. QUANTUM CASE

In the quantum case we must construct the proper basis for
each configuration taking into account (3). Thus the basis is
characterized by Na , the number of atoms, which also defines
the U(3) highest weight state, and M , the total excitation
number for the configuration considered.

The value of the matrix elements of the U(3) generators in
the Hamiltonian (1) in the Gelfand-Tsetlin basis are given in
Ref. [16]. Using the matrix elements, we calculate the matrix
Hamiltonian and through a diagonalization procedure obtain
the ground-state energies, and the expectation value of the total
number of excitations. In some cases for all the configurations
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FIG. 7. (Color online) Numerical results for the ground-state
energy of the model Hamiltonian for the V configuration (a) and the
corresponding value of the constant of motion MV (b), as functions
of μ12 and μ13. We consider the case Na = 2, ω31 = ω21 = 1, and
ω1 = 0. The white line corresponds to the semiclassical separatrix.

one can get analytic expressions for the lowest energy states for
a few number of atoms. For example, for the � configuration
and one atom we obtain

EM�
= M� −

√
M� μ2

12 + (M� − 1) μ2
23,

which coincides with the results given in Ref. [10] after an
identification of the parameters used here.

In Figs. 5–7, we show the ground-state energy and the value
of the constant of motion M for the �, �, and V configurations
as functions of the interaction parameters for Na = 2 atoms
and for the same parameter values as in the semiclassical case,
for comparison purposes. We can observe that the resemblance
between the semiclassical and quantum results is excellent.
In the quantum case we also take notice of phase crossovers
in the ground-state energy which occur every time the value
of the constant of motion changes [17]. This may be seen as
different shades in the energy surface and is better seen in
the plot for M where there is a jump when a phase crossover
takes place. For the � configuration we see in Fig. 5 that
there are phase transitions from the region M� = 0 directly
to regions M� = 1, 2, . . . , 5 for Na = 2 atoms. When the
number of atoms increases, greater values of M� are pulled
toward the region with M� = 0, in such a way that there will
be phase transitions from this value to greater M�’s. For the
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FIG. 8. (Color online) Comparison of the equipotential curves
of the ground-state energy of the model Hamiltonian in the �

configuration for Na = 2, 10, lower continuous and middle broken
lines, respectively, with ω32 = ω21 = 1 and ω1 = 0. The upper line
corresponds to the semiclassical separatrix, to which all tend as
Na → ∞.

other configurations, one has a similar effect when the number
of atoms increases.

When the number of atoms Na increases, all the curves
where the constant of motion changes tend to the classical
separatrix. This behavior is shown in Fig. 8, where we plot the
equipotential curves for the ground-state energy of the model
in the � configuration, with Na = 2, 10 atoms for M� = 0,
and compare with the semiclassical separatrix.

V. CONCLUSIONS

We studied the three main configurations of a system of Na

three-level atoms interacting with a one-mode radiation field,
which is the simplest generalization of the Tavis-Cummings
model. Using HW(1) and U(3) coherent states, we established
the energy surface for the system and obtained an approximate
expression for the ground state of the system, as well as
the separatrix in the parameters of the model, which defines
the locus of the quantum phase transitions. Although the
phase transitions in all the configurations are similar, in
the thermodynamic limit there are only two zones, and the
precise form for the V configuration is qualitatively different
to the � and � configurations. For the � and � configurations,
the phase transition from one region to the other can be of first
or second order, depending on the zone where the separatrix
is crossed; for the V configuration all phase transitions are of
second order. The comparison with the exact ground state of
the model shows that our approximation is excellent, at least for
the energy and the expectation value of the constant of motion
of each configuration. We were also able to verify numerically
that when the number of atoms goes to infinity, the multitude
of quantum phase crossovers tend to the thermodynamic
limit.
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[7] O. Castaños, R. López-Peña, E. Nahmad-Achar, J. G. Hirsch,
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