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Quantum vacuum emission in a nonlinear optical medium illuminated by a strong laser pulse
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A strong light pulse propagating in a nonlinear Kerr medium produces a change in the refractive index, which
makes light travel at different speeds inside and outside the pulse. By tuning the pulse velocity, an analog black
hole horizon can be obtained in a suitable frequency window. In this paper, we develop a quantum theory of light
propagation for this system, including the frequency dispersion of the refractive index of the medium by coupling
the electromagnetic field to matter polarization fields. In a configuration with a single black hole horizon, the
spectrum of spontaneously emitted particles presents some similarities with Hawking radiation. Furthermore,
even in horizonless systems spontaneous vacuum emission is still possible due to the dispersive nature of the
medium, yet with dramatically different spectral properties.
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I. INTRODUCTION

Hawking radiation [1,2] is the quantum production of
particles from vacuum fluctuations due to the presence of a
black hole horizon in a curved stationary geometry. In the
pioneering work [3], it was shown that this prediction does
not reside on the peculiar dynamical features of a general-
relativistic space-time, but only on the kinematic properties
of a quantum field living in a curved space-time. As a result,
analogous quantum vacuum emission phenomena have been
anticipated to occur in several physical systems, ranging from
flowing fluids and superfluids, to ion rings, to nonlinear optical
systems [4]. In particular, the advanced techniques of pulse
manipulation and light detection that have been developed in
the recent years put nonlinear optical systems among the most
promising candidates for the realization of analog models of
gravitational systems.

In addition to the many proposals that appeared in the last
few years to observe analog Hawking radiation in optical
systems [5–8], the first claim of observation of an analog
Hawking radiation in a laboratory was reported in Refs. [9,10]
using the refractive index change induced by a strong laser
pulse propagating across a nonlinear dielectric medium. The
velocity of the pulse can be tuned either by changing the laser
wavelength or by using an axicon with different angles to
produce a Bessel beam [11–13]). In this way the speed of
optical photons inside the pulse can be made smaller than
the velocity of the pulse itself, while the speed of photons
outside the pulse remains larger. Consequently, the boundaries
of the pulse appear as analog horizons, as seen from the frame
comoving with the pulse. Based on the analogy with gravity,
they are therefore expected to emit analog Hawking radiation.
Unfortunately, the experimental observation in Refs. [9,10]
of Hawking emission in this system is still considered as
controversial by some authors, who recently raised a few
issues [14,15]. In spite of attempts at alternative theoretical
interpretation [16,17], no satisfactory complete model of the
experimental observations has yet been found, in particular for
what concerns the crucial effect of the nontrivial dispersion of
the refractive index.
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Different from previous studies that reside deep in the
analogy with gravitational physics, the present work aims
to develop a microscopical quantum optical model of light
propagation in a nonlinear dielectric modulated by the passage
of a high-intensity laser pulse. The structure of radiative
electromagnetic modes is described by using the Lagrangian
of the electromagnetic field coupled with three polarization
fields. In this way, we are able to canonically quantize
a theory which exactly reproduces the complete Sellmeier
dispersion of transparent materials such as the fused silica
used in the experiment [9]. This allows us to describe the
system in a far more realistic way than existing works
based on simplified subluminal dispersions [18,19] and obtain
quantitative predictions for the spectrum of spontaneously
emitted photons in a one-dimensional geometry, under the
only simplifying assumptions that the strong pulse propagates
through the medium in a steady and rigid way and that the
jump in the spatial profile of the refractive index is very sharp.

One of the most important conclusions of our work is that
the highly nontrivial dispersion relation makes the analogy
with standard quantum field theory in curved space-time
much weaker than in other analog systems considered in the
literature, such as Bose-Einstein condensates [4]: For instance,
in the present nonlinear optical context, an analog horizon
can be defined only in a finite range of frequencies [20] that
does not extend to the long-wavelength limit where the analog
geometry is generally defined. Nonetheless, the properties of
the quantum vacuum emission in this frequency range still
share several features of standard Hawking radiation.

Furthermore, in contrast to nondispersive media, where
a necessary and sufficient condition to trigger emission
processes à la Hawking is the presence of analog horizons,
quantum vacuum radiation occurs in dispersive media even in
the absence of any horizon as soon as the dispersion allows
for modes with a negative norm but a positive frequency,
as seen from the pulse comoving frame [20]. With respect
to the above-mentioned Hawking-like emission channel, this
additional emission is however generally much weaker.

The structure of the article is as follows. In Sec. II, we
start from the Lagrangian to derive and solve the equation
of motion for the electromagnetic field coupled to matter
polarization fields. In Sec. III, the properties of the eigenmodes
are investigated in the most significant configuration with
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a single analog black hole horizon, and the two bases of
in- and outgoing scattering modes are built. In Sec. IV, the
spectrum of emitted particles is computed in the case of a
large refractive index jump between the two sides of the analog
black hole horizon. The more realistic case of a small refractive
index jump is studied in Sec. V along with the horizonless
configuration recently realized in experiment [9]. Conclusions
are finally drawn in Sec. VI.

II. THE GENERAL FRAMEWORK

In this section we develop the quantum theory used to de-
scribe light propagation in a dielectric medium with a refractive
index modulation that moves in space at a uniform velocity v:
In the experiments, the refractive index change is generated by
the strong pulse via the Kerr nonlinearity of the medium. At
the simplest level of approximation, one can assume that the
refractive index change follows locally in space and instanta-
neously in time the intensity profile of the pump pulse [21].

The optical properties of the medium are described in the
spirit of the Hopfield model [22] in terms of an electromagnetic
field interacting with a polarization field. To closely repro-
duce the Sellmeier dispersion relation of typical transparent
dielectrics such as the fused silica used in the experiment of
Ref. [9], the polarization of the medium has to show three
poles with different strengths and frequencies. The effect of
the passage of the pulse in the medium is then modeled as a spa-
tiotemporal variation of these quantities, considered as external
parameters. More sophisticated models where the internal
level structure of the emitters is explicitly taken into account
were developed in Refs. [23–25] but the complexity of such a
description goes far beyond the scope of the present work.

For the sake of simplicity, the strong pulse is assumed
to propagate across the medium at a constant speed and
to maintain a constant shape in space. This approximation
prevents us from describing possible time-dependent effects,
as studied in Ref. [16]. We also restrict our description to
a one-dimensional geometry where light modes propagate
parallel to the direction of the pulse velocity. The refractive
index jump is assumed to be localized at the sharp interface
between two asymptotic homogeneous regions. More general
configurations with smooth refractive index profiles will be
the subject of future work.

A. The field equation

In the laboratory reference frame, the Lagrangian density
in one dimension of the electromagnetic field coupled to N

polarization fields Pi is

Ll = (∂T A)2

8πc2
− (∂XA)2

8π

+
N∑

i=1

(
(∂T Pi)2

2βi�
2
i

− P 2
i

2βi

+ 1

c
A ∂T Pi

)
, (1)

where A and Pi oscillate in a direction orthogonal to their
propagation direction. In this simple model the polarization
is described by fields of harmonic oscillators, with elastic
constant β−1 and inertia (βi�

2
i )−1. For the sake of simplicity,

in this paper we restrict to the case N = 3, which suitably

describes the dispersion relation in fused silica, the material
used in the experiment of Ref. [9].

A propagating strong light pulse causes a local pertur-
bations of the parameters βi and �i . Consequently, the
system is stationary when observed in the reference frame
comoving with the pulse at velocity v. Thus, it is convenient to
transform the laboratory coordinates X and T to the comoving
coordinates x and t , by applying a Lorentz boost � with
velocity v

t = γ [T − vX/c2], x = γ [X − vT ], (2)

where γ = 1/
√

1 − v2/c2. Coherently, differential operators
transform as

∂T = γ [∂t − v∂x], ∂X = γ [∂x − v∂t/c
2]. (3)

Furthermore, we treat A and Pi as scalar fields; that is, we
do not transform them under the boost. Although this might
appear not correct, it is completely legitimate, as shown in
Appendix A.

The transformed Lagrangian density is

L = Ȧ2

8πc2
− A′2

8π
+

3∑
i=1

[
γ 2

2βi�
2
i

(Ṗi − vP ′
i )2

− P 2
i

2βi

+ γ

c
A(Ṗi − vP ′

i )2

]
, (4)

where dot and prime denote derivation with respect to t and x,
respectively.

As usual, the conjugate momenta are obtained by varying
the Lagrangian

L =
∫

dx L (5)

with respect to the time derivatives of A and Pi :

�A = Ȧ

4πc2
, �Pi

= γ 2

βi�
2
i

(Ṗi − vP ′
i ) + γ

c
A. (6)

We can impose canonical commutation relations on A and Pi

(see Appendix A),

[A(x),�A(x ′)] = ih̄ δ(x − x ′),
(7)[

Pi(x),�Pj
(x ′)

] = ih̄ δij δ(x − x ′),

and all the other commutators vanish.
The Hamiltonian density

H = 1

2

[
Ȧ�A + �AȦ +

3∑
i=1

(
Ṗi �Pi

+ �Pi
Ṗi

)] − L (8)

becomes

H = 2πc2 �2
A + A′2

8π
+

3∑
i=1

[
βi�

2
i

2γ 2

(
�Pi

− γ

c
A

)2

+ P 2
i

2βi

+ 1

2

(
P ′

i �Pi
+ �Pi

P ′
i

)]
, (9)

and the Hamilton equations are derived by the commutators of
the fields and their conjugate momenta with the Hamiltonian

H =
∫

dx H. (10)
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We obtain

Ȧ = 4πc2 �A, (11)

Ṗi = βi�
2
i

γ 2

(
�Pi

− γ

c
A

)
+ vP ′

i , (12)

�̇A = A′′

4π
+

3∑
i=1

[
βi�

2
i

γ c

(
�Pi

− γ

c
A

)]
, (13)

�̇Pi
= −Pi

βi

+ ∂x

(
v�Pi

)
. (14)

Note that one might have obtained the first two equations
directly from the definition of conjugate momenta (6).

It is now convenient to define the eight-dimensional vector

V = (
A P1 P2 P3 �A �P1 �P2 �P3

)T
(15)

and the matrix

η =
(

0 I4

−I4 0

)
, (16)

where I4 is the 4 × 4 identity matrix. With this nota-
tion the Hamilton equations can be written in a compact
form as

V̇ = η(∇VH). (17)

Moreover, a scalar product

〈V1,V2〉 = i

h̄

∫
dx V

†
1 (x,t) η V2(x,t) (18)

can be defined on the set of the solutions of Eq. (17),
generalized to complex values. By virtue of Eq. (17), using
η2 = −I8, η†η = I8 and the fact that the Hamiltonian density
H is quadratic in the fields and their momenta, this scalar

product is conserved by time evolution:

∂t 〈V1,V2〉 = i

h̄

∫
dx[∂t (V

†
1 ) η V2 + V

†
1 η ∂t (V2)]

= i

h̄

∫
dx[(∇VH)†|(V =V1)V2

−V
†

1 (∇VH)†|(V =V2)] = 0. (19)

Being the system stationary in the reference system comov-
ing with the pulse, it is convenient to expand the real field V

on a basis of frequency eigenmodes Vω, rather than, as usually
done, on a basis of wave-vector eigenmodes:

V =
∫

dω
∑

α

(
V α

ω âα
ω + V α∗

ω âα†
ω

)
, (20)

where

âα
ω = 〈

V α
ω ,V

〉
, (21)

the label α denotes various modes with the same eigenfre-
quency ω, V α

ω are properly normalized (see Appendix B) with
respect to the norm induced by the scalar product defined in
Eq. (18), and the integral generally includes both positive- and
negative-frequency modes with positive norm.

B. Homogeneous systems

In the asymptotic regions, far from the perturbation, the
system is homogeneous and the parameters �i , βi , and v are
constant in both time and space. In this situation one can chose
V α

ω as momentum eigenmodes,

V α
ω (x,t) = e−iωt+ikαxV̄ α

ω , (22)

where V̄ α
ω is a vector of constant C numbers, satisfying

−iωV̄ α
ω = ηK(kα) V̄ α

ω , (23)

and

K(kα) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k2
α/4π + ∑3

i=1 βi�
2
i /c

2 0 0 0 0 −β1�
2
1/γ c −β2�

2
2/γ c −β3�

2
3/γ c

0 1/β1 0 0 0 −ikαv 0 0

0 0 1/β2 0 0 0 −ikαv 0

0 0 0 1/β3 0 0 0 −ikαv

0 0 0 0 4πc2 0 0 0

−β1�
2
1/γ c +ikαv 0 0 0 β1�

2
1/γ

2 0 0

−β2�
2
2/γ c 0 +ikαv 0 0 0 β2�

2
2/γ

2 0

−β3�
2
3/γ c 0 0 +ikαv 0 0 0 β3�

2
3/γ

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (24)

Equation (23) can be written as

[iηK(kα) − ωI8]V̄ α
ω = 0, (25)

which has nonvanishing solutions if and only if

det[iηK(kα) − ωI8] = 0. (26)

The computation of the above determinant yields the disper-
sion relation

c2k2
α = ω2 +

3∑
i=1

4πβi γ 2(ω + vk)2

1 − γ 2(ω + vk)2/�2
i

, (27)

that has, in general, eight solutions kα for each value of the
frequency ω.
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Applying the boost of Eq. (2) to ω and k, the corresponding
frequency � and wave number K , measured in the laboratory
reference frame, are

� = γ [ω + vk], K = γ [k + vω/c2]. (28)

Equation (27) becomes

c2K2 = �2

[
1 +

3∑
i=1

4πβi

1 − �2/�2
i

]
, (29)

which is the well-known Sellmeier dispersion relation [26,27].
The solutions of the system (23) (eigenmodes of iηK) are

V̄ α
ω = Cα

ω

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c

iβ1 γ (ω + vkα)
[
1 − γ 2(ω + vk)2/�2

1

]−1

iβ2 γ (ω + vkα)
[
1 − γ 2(ω + vk)2/�2

2

]−1

iβ3 γ (ω + vkα)
[
1 − γ 2(ω + vk)2/�2

3

]−1

−iω/4πc

γ
[
1 − γ 2(ω + vk)2/�2

1

]−1

γ
[
1 − γ 2(ω + vk)2/�2

2

]−1

γ
[
1 − γ 2(ω + vk)2/�2

3

]−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(30)

where the constant Cα
ω is computed in Appendix B,

∣∣Cα
ω

∣∣2 = h̄

∣∣∣∣∣c2kα − v

3∑
i=1

4πβiγ
2(ω − vkα)[

1 − γ 2(ω − vkα)2/�2
i

]2

∣∣∣∣∣
−1

,

(31)

using the normalization condition∣∣〈V α1
ω1

,V α2
ω2

〉∣∣ = δ(ω2 − ω1) δα2α1 . (32)

The modulus is needed since some modes have negative norm,
because the scalar product of Eq. (18) is not positive definite.
In particular, it is possible to show (see Appendix B) that the
norm of a mode is positive when its laboratory frequency � is
positive, whereas it is negative when � < 0, independently of
the value of K .

The expansion of Eq. (20), which contains positive-norm
eigenmodes V α

ω with either positive or negative frequency
ω, can be rewritten by considering only positive frequencies
ω. As a consequence, negative-norm eigenmodes must be
included in the integral. Indeed, for a given positive value of
the comoving frequency ω, the dispersion relation (27) admits
solutions for k, such that � = γ (ω + vk) is negative and the
associated modes have negative norm. This implies that, in
the expansion of the field V , the Fock operators associated
with those positive-ω modes are not destruction operators but
instead creation operators. Naming P the set of positive-norm
modes V α

ω , labeled by α, and N the set of negative-norm modes
V α̃

ω , labeled by α̃, V becomes

V =
∫ ∞

0
dω e−iωt

(∑
α∈P

e+ikαxV̄ α
ω âα

ω

+
∑
α̃∈N

e+ikα̃x V̄ α̃
ω âα̃†

ω

)
+ H.c., (33)

where H.c. stands for Hermitian conjugate. Note that the
positive-frequency part of the field (i.e., evolving with e−iωt )
mixes creation âα

ω and destruction âα̃†
ω operators.

Using Eq. (21) and the normalization of Eq. (32) for the
frequency eigenmodes V α

ω , it is easy to check that âβ
ω and âβ†

ω

are creation and destruction operators, since their commutation
relations, implied by the canonical commutators of the fields
given in Eq. (7), are[

âβ
ω,â

β ′†
ω′

] = δ(ω − ω′)δββ ′ , (34)

where now β can indifferently belong to either P or N .

C. Matching conditions

In this paper, we consider only configurations with a single
analog black hole horizon. For the sake of simplicity we
model this system with two homogeneous half-line regions
(representing, respectively, the interior and the exterior of the
analog black hole) connected by a discontinuity at x = 0. On
the two sides of the discontinuity, the elastic constant β−1

i takes
different constant values

βi = βi,Lθ (−x) + βi,Rθ (x). (35)

We also impose that the inertia (βi�
2
i )−1, physically corre-

sponding to the masses of the oscillator fields [see Eq. (1)], is
the same in the two regions; that is, �i must vary accordingly
to

βi,L�2
i,L = βi,R�2

i,R. (36)

In the context of analog systems, the steplike profile has been
proved to provide reliable results when the parameters do not
vary very much between the two homogeneous regions [28].
This is indeed the case in the optical system considered in
Ref. [9] where the relative difference in the refractive index in
the two regions is of the order of 0.1%.

In this geometry, a frequency eigenmode V α
ω [see Eq. (20)]

can be written as

V α
ω =

∑
α

Lα
ω V α

ω,L θ (−x) +
∑

α

Rα
ω V α

ω,R θ (x), (37)

where Lα
ω and Rα

ω are constant and V α
ω,L and V α

ω,R are
frequency-momentum eigenmodes, as in Eq. (22); that is, they
are solutions of the field equation Eq. (17) in the homogeneous
left (x < 0) and right (x > 0) regions, respectively.

The relations between Lα
ω’s and Rα

ω’s, are determined by
solving the field equation in a neighborhood of x = 0. Writing
V α

ω of Eq. (37) in a more compact form,

V α
ω = VL θ (−x) + VR θ (x), (38)

its first and second spatial derivatives are

V α
ω

′ = V ′
L θ (−x) + V ′

R θ (x) + (VR − VL)δ(x), (39)

V α
ω

′′ = V ′′
L θ (−x) + V ′′

R θ (x) + 2(V ′
R − V ′

L)δ(x)

+ (VR − VL)δ′(x). (40)

We now put the above expressions in Eqs. (11), (12), (13),
and (14), and group all the terms with θ (x), θ (−x), δ(x),
and δ′(x). The terms with θ (x) and θ (−x) trivially give
two sets of equations, separately satisfied by VL and VR in
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the homogeneous left and right regions. These equations are
solved as in Sec. II B. For instance, Eq. (11) gives

ȦR = 4πc2 �A,R, ȦL = 4πc2 �A,R. (41)

The connection formulas between the two asymptotic
regions are given instead by δ(x) and δ′(x) terms. Equation (11)
does not contain any of them. Equation (12) has a term with
δ(x)

v(Pi,R − Pi,L)δ(x) = 0, (42)

yielding

v[Pi,R(0) − Pi,L(0)] = 0, (43)

which has two solutions:

v = 0 or Pi,R(0) = Pi,L(0). (44)

Thus, when v 	= 0, Pi’s must be continuous at x = 0.
Equation (13) contains a second derivative of A, generating

both a term with δ(x) and one with δ′(x). The associated
equations are

AR(0) = AL(0), A′
R(0) = A′

L(0), (45)

so that both A and A′ are continuous in x = 0; that is, the
magnetic field B is continuous. Consequently, because of
Eq. (41), also �A and �′

A are continuous in x = 0. Since
the electric field is proportional to the time derivative of A,
this implies that both E and its first spatial derivative are
continuous in x = 0.

Finally, Eq. (14) contains the first derivative of �P (v is
constant), generating a δ(x) term that yields

v = 0 or �Pi,L(0) = �Pi,R(0), (46)

and, consequently, �Pi
’s are continuous at x = 0 when v 	= 0.

Summarizing, we proved that
(i) A, �A, and their first and second derivatives are

continuous in x = 0,
(ii) if v 	= 0, Pi and �Pi

are continuous.
To completely fix the relations between modes in the left

and right regions, one must determine the matching conditions
of P ′

i and �′
Pi

, and also those of of Pi and �Pi
if v = 0.

a. v 	= 0. The θ (−x) and θ (x) terms of Eq. (12) are

vP ′
i,L = Ṗi,L − βi,L�2

i,L

γ 2

(
�Pi,L − γ

c
AL

)
,

(47)

vP ′
i,R = Ṗi,R − βi,R�2

i,R

γ 2

(
�Pi,R − γ

c
AR

)
.

Since A, �A, and Ṗi = iωPi are continuous, and βi�
2
i are

equal on both sides of the discontinuity, Eq. (47) implies that
also P ′

i is continuous at x = 0.
Similarly, the matching condition for �′

Pi
is found from the

θ (−x) and θ (x) terms of Eq. (14):

βi,L

(
�̇Pi ,L − v�′

Pi ,L

) = −Pi,L,
(48)

βi,R

(
�̇Pi ,R − v�′

Pi ,R

) = −Pi,R.

By continuity of Pi ,

βi

(
�̇Pi

− v�′
Pi

) = −Pi (49)

is continuous at x = 0 and, accordingly, �′
Pi

is discontinuous.

The continuity of Ṗi and P ′
i implies that the derivative of

Pi with respect to the laboratory time T ,

∂T Pi = γ (Ṗi − vP ′
i ), (50)

is continuous. Analogously, Eq. (49) implies that

βi∂T �Pi
(51)

is continuous at x = 0. The physical meaning of this condition
is evident when the second equation of (6) is rewritten as

�Pi
= γ

βi�
2
i

∂T Pi + γ

c
A. (52)

Differentiating with respect to T ,

∂T �Pi
= γ

βi�
2
i

∂2
T Pi + γ

c
∂T A, (53)

where we used the constancy of βi�
2
i . Multiplying both sides

of this equation by βi , using Eq. (49) in the form

βi ∂T �Pi
= −γPi, (54)

and noting that E = −∂T A/c is the electric field, one obtains

∂2
T Pi = −�2

i Pi + βi�
2
i E. (55)

This equation describes the dynamics of a harmonic oscillator
of frequency �i and mass (βi�

2
i )−1, which is forced by E.

When the perturbation, caused by the laser pulse, passes at
some X = X0, at time T = T0 = X0/v, the mass (βi�

2
i )−1

remains unchanged, but the oscillator frequency �i changes
from �i,R to �i,L. As a consequence of Eq. (55), Pi and ∂T Pi

are unchanged as the perturbation arrives at X = X0, but ∂2
T Pi

has a finite jump; that is, it is discontinuous at X = X0 and
T = T0.

b. v = 0. In this case, Eqs. (12) and (14) simplify to

Ṗi = βi�
2
i

(
�Pi

− A

c

)
, �̇Pi

= −Pi

βi

. (56)

Differentiating the first equation with respect to time, using
the second equation and E = −Ȧ/c,

P̈i = −�2
i Pi + βi�

2
i E, (57)

which coincides with Eq. (55) because T = t when v = 0.
Since βi�

2
i E is continuous at x = 0,

P̈i + �2
i Pi (58)

is continuous and, for an eigenmode of frequency ω,(
ω2 − �2

i,L

)
Pi,L = (

ω2 − �2
i,R

)
Pi,R (59)

at x = 0. Thus, Pi is not continuous at x = 0, because �i is
discontinuous.

Similarly, by deriving the second equation of (56) with
respect to time, one obtains

�̈Pi
= −�2

i

(
�Pi

− A

c

)
, (60)

which implies that

�̈Pi

�2
i

+ �Pi
(61)
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is continuous; that is(
1 − ω2

�2
i,L

)
�Pi,L

=
(

1 − ω2

�2
i,R

)
�Pi,R

(62)

at x = 0, and �Pi
is discontinuous.

To conclude this section, it is worth checking how many
constants are fixed by the matching conditions. In Eq. (37),
there are 16 unknown constants Lα

ω and Rα
ω, corresponding,

respectively, to the 8 solutions of the dispersion relation (27)
in each of the two homogeneous asymptotic regions. More-
over, for every frequency ω, there are, in general, 8 global
solutions V α

ω . Thus, those constants should be constrained by
8 equations, but we found 16 matching conditions for the
continuity of A, Pi , �A, �Pi

, and of their first derivatives. The
system is apparently overdetermined. However, it is possible to
show that 8 constraints are redundant. In fact, the 8 continuity
relations of the conjugate momenta are directly implied by the
8 relations of the fields [see, for instance, Eq. (41)].

At the end of the day, for each frequency ω, there are
16 parameters and 8 independent constraints, leaving 8 free
parameters, associated with the 8 globally defined solutions of
the field equation (17).

III. MODE ANALYSIS

In this section we apply the quantum field formalism intro-
duced in the previous section to build the global eigenmodes of
the system by imposing the suitable matching conditions at the
transition interface. The identification of the different ingoing
and outgoing channels and then the calculation of the S matrix
describing the scattering of light at the interface are the basic
ingredients to calculate the intensity and the spectrum of the
quantum vacuum emission in the next section.

A. Asymptotic modes

A stationary system (in the reference frame comoving with
the laser pulse) made of two asymptotic homogeneous regions,
connected by a transition region was first investigated under a
purely kinematic perspective in Ref. [20]. In particular, it was
shown that it is possible to tune the velocity of propagation
of the pulse in such a way that the transition between the two
asymptotic flat regions looks like an analog black hole horizon.

In that analysis, only the optical branch (corresponding to
optical frequencies) of the dispersion relation was considered:
Within this approximation, the dispersion relation admits
four solutions of k sharing the same value of the comoving
frequencies ω. Before studying the full problem, taking into
account all the branches of the dispersion relation, it is worth
summarizing the most relevant aspects of the analysis in
Ref. [20].

Assuming that the perturbation is moving in the positive
x direction (v > 0), a frequency-dependent horizon is present
for a giving comoving frequency ω when, on the left of the
perturbation, there are only negative group velocity (measured
in the comoving frame) modes, while on the right there are both
negative and positive group velocity modes. In this case, light
can propagate only leftward in the left region, both leftward
and rightward in the right region. In analogy with black hole
physics, the left and right regions correspond, respectively,

to the interior and the exterior of a black hole, and, in the
transition region, there is one point corresponding to a black
hole horizon.

This physics is illustrated in Fig. 1, where the optical branch
of the dispersion relation (27) is plotted in the comoving
frame, in both the left (left panel) and the right (right panel)
regions, for a steplike pulse (top panel) moving rightward at
v = 0.66c. In the right region the dispersion relation is given
directly by Eq. (27), while in the left region (representing the
interior of a propagating pulse), the effective refractive index
of optical-frequency modes has been increased by δn = 0.1,
by perturbing the parameters βi and �i in the dispersion
relation. Solid (dashed) curves denote branches with positive
(negative) laboratory frequency. As demonstrated in Sec. II B,
they correspond to positive- (negative-) norm modes.

The dispersion relation is solved for a given comoving
frequency ω. The arrows indicate the direction of propagation
of the corresponding modes. Modes are named using the
notation introduced in Sec. II. The superscript o stands for
positive-norm optical branch and õ stands for negative-norm
optical branch. The subscripts L and R denote, respectively,
modes defined in the left and right regions. For outer points
(right panel, δn = 0), the dispersion relation has four solutions.
Three of them correspond to modes (V õ

ω,R , V o
ω,R , V o2

ω,R)
propagating leftward from x = +∞ toward the horizon. The
fourth one, denoted by an open dot, corresponds instead to
an outgoing mode (Vω,R), with positive group velocity. For
inner points (left panel, δn > 0.1) the dispersion relation
has only two real solutions, both corresponding to leftgoing
modes (V õ

ω,L, V o
ω,L) which propagate from the horizon toward

x = −∞. Note that the two extra solutions present only in the
right region for ωmin < ω < ωmax correspond, respectively, to
a leftgoing (V o2

ω,R) and a rightgoing (Vω,R) mode.
As a result, according to the above given definition,

within the frequency range ωmin < ω < ωmax (where h̄ωmin

and h̄ωmax are represented in the right panel with dotted
lines), the discontinuity in the pulse profile represents an
analog black hole horizon. Note that the dispersion relation
has one solution corresponding to a negative-norm mode
V õ

ω,R , leftward propagating from +∞ to the horizon, and
one solution (right panel, open dot), corresponding to a
positive-norm mode Vω,R propagating from the horizon to
infinity in the exterior part of the analog black hole. This
mode structure might originate some phenomenon similar to
Hawking radiation.

In the present paper, this analysis is extended to the full
Sellmeier dispersion relation, which, in general, admits eight
solutions, corresponding to eight (propagating if k is real)
asymptotic modes (AMs) in each region (x < 0 or x > 0).
Proceeding in analogy with Ref. [20], one must first identify a
range of frequencies ωmin < ω < ωmax, for which the optical
branch possesses four real solutions in the right region and only
two in the left one. Second, on each side one must localize four
additional solutions on the other branches of the dispersion
relation and describe the associated modes.

In Fig. 2 the full Sellmeier dispersion relation is plotted
for x < 0 (upper left panel) and x > 0 (upper right panel)
in the laboratory reference frame (�,K) [see Eq. (29)]. A
boost is then performed on the axes and the new axes (ω,k) in
the reference frame comoving with the pulse are drawn [see
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FIG. 1. Black-hole-like configuration. Simplified analysis of the Sellmeier dispersion relation (27) in fused silica, as seen from the
comoving frame. Only the optical branch is shown. Positive (negative) laboratory frequency branches are represented by solid (dashed) curves.
The dispersion is plotted on the left (δn = 0.1, left panel, interior of the analog black hole) and on the right (δn = 0, right panel, exterior
of the analog black hole) of a perturbation moving rightward with v = 0.66c in the laboratory frame (see top panel). The black horizontal
line represents a generic frequency for which there are four real solutions in the right region (right panel) and two real solutions in the left
one (left panel) and the system shows an analog black hole horizon. In the right panel, the dashed horizontal lines indicate the maximum
and the minimum values of the frequency for which this behavior occurs. Modes are labeled with the notation introduced in Sec. II and their
propagation direction is indicated by arrows.

Eq. (27)]. The central region of those plots (gray-dot-bordered
square) is enlarged in the bottom panels. The dispersion
relation is graphically solved for a fixed value of the comoving
frequency ω (dashed line) in the (ωmin, ωmax) range. There
are eight branches: four with positive � (solid curves) and
four with negative � (dashed curves), symmetrically placed
in the lower half plane. In this comoving-frequency range no
solution belongs to the highest (positive or negative) energy
branches. We therefore name only the six branches of the
dispersion relation with low energy |�|. In the upper half plane
(� > 0), starting from the lowest energy branch we call them
lower (l), optical (o), and upper (u). Symmetrically, the three
branches with negative laboratory frequency � and negative
norm (as demonstrated in Sec. II C) are labeled by l̃, õ, and
ũ. Accordingly, the solutions of the dispersion relation are
labeled by a superscript l, o, u, l̃, õ, and ũ. To assist the reader
in the comparison with Fig. 1, the solutions on the positive- and
negative-frequency optical branches o and õ are denoted by an
open dot. The arrow above each solution indicates the direction
of propagation (group velocity in the comoving frame) of the
associated mode V

α/α̃

ω,L/R .
Note that, for x < 0 (left panels), there are six real-k

solutions, all corresponding to leftgoing modes. The remaining
two solutions of Eq. (27) have complex conjugate k. They are
associated with exponentially growing (V grow

ω,L ) and decaying
(V dec

ω,L) modes for x → −∞. For x > 0 (right bottom panel),
instead, the eight solutions are all real. The two extra real
solutions, that do not have a corresponding solution on the
left side, belong to the optical branch and are associated,
respectively, with a leftgoing mode, named V o2

ω,R , and with
the unique rightgoing mode, simply named Vω,R , without any
superscript.

B. Globally defined modes

In the previous section, plane waves modes propagating
in the asymptotically flat left and right regions have been
identified. Combining those asymptotic waves, two relevant
bases of globally defined asymptotically bounded modes
(GDMs) (not diverging at infinity) can be constructed.

We define the in basis as the set of in modes, whose
asymptotic decomposition (37) has only one AM with group
velocity vg directed toward x = 0. We say that the group
velocity of an AM is directed toward the horizon if vg > 0
(vg < 0) for modes which are solutions of the mode equation
in the left (right) region.

Analogously, we define the out basis as the set of out modes,
whose asymptotic decomposition has only one AM with group
velocity directed toward x = −∞ (x = +∞) if the AM is a
solution of the field equation in the left (right) region.

To clarify the meaning of these definitions with an example,
the asymptotic decomposition of one of the three negative-
norm in GDMs is schematically represented in Fig. 3. We
name it V in,õ

ω since its unique incoming AM is V õ
ω,R; that is,

in the asymptotic decomposition of Eq. (37) Rõ
ω is the only

nonvanishing coefficient associated with a mode with group
velocity directed toward the horizon (see Fig. 2).

In Table I, all the coefficients Lα
ω’s and Rα

ω’s are reported
for the asymptotic decompositions of the three negative-norm
in GDMs V in,l̃

ω , V in,õ
ω , V in,ũ

ω . As noticed in the previous section,
both the AMs V o2

ω,R and Vω,R , which are present only in
the right region, lie on the optical branch of the dispersion
relation. As mentioned at the beginning of Sec. III A, in the
simplified analysis restricted to the optical branch, analog
Hawking radiation is expected on the AM Vω,R , due to the
scattering at the analog horizon of the optical negative-norm in
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ω,R

V u
ω,R

ωΩ

k

K
V l̃

ω,L

V l
ω,L

V o
ω,L

V u
ω,L

δn

0

0

x

ωΩ

k

K

ωΩ ωΩ

k

KV l̃
ω,R

V l
ω,R

V o
ω,R

V o2
ω,R

Vω,R

FIG. 2. Black-hole-like configuration. Graphical representation of the Sellmeier dispersion relation, as seen from the laboratory reference
frame (�,K), for x < 0 (left panels) and x > 0 (right panels). The (ω,k) axes of the comoving reference frame are obtained through a boost
of velocity v. As sketched in the top panel, the refractive index in the left region is larger than in the right region. This difference in the
refractive index is obtained by properly changing the parameters βi and �i appearing in the Lagrangian (1). In this plot the values of the
velocity v and of the refractive index change δn have been arbitrarily chosen for illustrative purposes. The bottom panels are enlargements of
the gray-dot-bordered squared of the respective upper panels. The dispersion relation is graphically solved for a fixed comoving frequency ω,
chosen in the frequency window in which the black hole horizon is present. Solutions appear both on the positive-norm positive-� branches
(solid curves) and on the negative-norm negative-� branches (dashed curves). The open dots denote solutions on the optical branches with
positive (o) and negative (õ) frequency �. The arrows indicate the direction of propagation (group velocity in the comoving frame) of the
associated modes V

α/α̃

ω,L/R . In the left region (left panels), the dispersion relation has only six real-k solutions. In the right region (right panels),
the real-k solutions are eight, and the two extra solutions are one leftgoing (V o2

ω,R) and one rightgoing (Vω,R).

GDM V in,õ
ω . Thus, aiming to extend the definition of Hawking

radiation to the present situation, adopting standard notation,
we name βω the coefficient of Vω,R in the expansion of V in,õ

ω .
Similarly, we name αω the coefficient of V õ

ω,L. Furthermore,
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FIG. 3. Asymptotic decomposition of the globally defined in

mode V in,õ
ω . The only asymptotic branch with group velocity directed

toward the horizon is V õ
ω,R . Positive- (negative-) norm modes are

represented by solid (dashed) lines.

adopting the notation of Ref. [29], the coefficients of modes
with negative (positive) norm, in the expansion of modes
with negative norm are named A (B). As an example, in the
expansion of the negative-norm mode V in,õ

ω , the coefficients of
the negative-norm modes V l̃

ω,L and V ũ
ω,L are named Ao,l

ω and

Ao,u
ω . The coefficients of the positive-norm modes V õ

ω,L, V l̃
ω,L,

and V ũ
ω,L are named Bω, Bo,l

ω , and Bo,u
ω , respectively.

Finally, the eight unknown coefficients in the two left and
right asymptotic expansions for each GDM are determined
by imposing the matching conditions (eight independent
equations), derived in Sec. II C.

By proceeding along this line, it is possible to construct
seven in GDMs—V in,l̃

ω , V in,õ
ω , V in,ũ

ω , V in,l
ω , V in,o

ω , V in,u
ω , V in,o2

ω —
whose unique branches with group velocity directed toward
the horizon are, respectively, V l̃

ω,R , V õ
ω,R , V ũ

ω,R , V l
ω,R , V o

ω,R ,
V u

ω,R , V o2
ω,R . Similarly, one constructs seven out GDMs—

V out,l̃
ω , V out,õ

ω , V out,ũ
ω , V out,l

ω , V out,o
ω , V out,u

ω , V out
ω —whose unique

branches with group velocity directed to infinity are, respec-
tively, V l̃

ω,L, V õ
ω,L, V ũ

ω,L, V l
ω,L, V o

ω,L, V u
ω,L, Vω,R .

C. The scattering matrix

As in Eq. (33), the field operator V is expanded indif-
ferently with respect either to the in or to the out basis of

GDMs:

V =
∫ ∞

0
dω e−iωt

(∑
α∈P

V in,α
ω âin,α

ω +
∑
α̃∈N

V in,α̃
ω âin,α̃†

ω

)
+ H.c.

(63)

=
∫ ∞

0
dω e−iωt

(∑
α∈P

V out,α
ω âout,α

ω +
∑
α̃∈N

V out,α̃
ω âout,α̃†

ω

)
+H.c.

(64)

The transformation between the two bases follows straight-
forwardly from the construction of the previous section. The
coefficients of the matrix connecting the in and out orthogonal
bases can be directly read from the expansion of in and out
modes on the orthogonal bases of left and right AMs. For
instance, from the second line of Table I,

V in,õ
ω = Ao,l

ω V out,l̃
ω + αωV out,õ

ω + Ao,u
ω V out,ũ

ω + Bo,l
ω V out,l

ω

+BωV out,o
ω + Bo,u

ω V out,u
ω + βωV out

ω . (65)

Repeating this procedure for each in mode, the scattering
matrix S is fully determined

V in,β
ω =

∑
β ′

Sββ ′
V out,β ′

ω , (66)

where β and β ′ run over all positive- and negative-norm modes.
The relation between in and out destruction and creation
operators is easily derived from the S matrix,

Âout = ST Âin, (67)

where

Âin = (
âin,l̃ †

ω âin,õ, †
ω âin,ũ †

ω âin,l
ω âin,o

ω âin,u
ω âin,o2

ω

)T
, (68)

Âout = (
âout,l̃ †

ω âout,õ †
ω âout,ũ †

ω âout,l
ω âout,o

ω âout,u
ω âout

ω

)T
(69)

are seven-dimensional vectors formed, respectively, by the in

and out creation operators âin,α̃†
ω and âout,α̃†

ω , respectively, of
the negative-norm modes, and by the in and out destruction
operators âin,α

ω and âout,α
ω , respectively, of the positive-norm

modes.

IV. SPONTANEOUS EMISSION

In this section we make use of the S matrix calculated in the
previous section to provide quantitative predictions for some of
the simplest observable quantities such as the intensity and the
spectrum of the quantum vacuum emission. A straightforward
extension of the formalism following the lines of [30,31] can
be used to obtain information on more sophisticated quantities
like the correlation properties of the quantum vacuum emission

TABLE I. Coefficients of the asymptotic decomposition of the globally defined in modes V in,l̃
ω , V in,õ

ω , and V in,ũ
ω on the bases of left and

right AMs.

Coefficients of left modes Coefficients of right modes

V l̃
ω,L V õ

ω,L V ũ
ω,L V l

ω,L V o
ω,L V u

ω,L V dec
ω,L V

grow
ω,L V l̃

ω,R V õ
ω,R V ũ

ω,R V l
ω,R V o

ω,R V o2
ω,R V u

ω,R Vω,R

V in,l̃
ω αl

ω Al,o
ω Al,u

ω B l
ω B l,o

ω B l,u
ω Dl

ω 0 1 0 0 0 0 0 0 β l
ω

V in,õ
ω Ao,l

ω αω Ao,u
ω Bo,l

ω Bω Bo,u
ω Do

ω 0 0 1 0 0 0 0 0 βω

V in,ũ
ω Au,l

ω Au,o
ω αu

ω Bu,l
ω Bu,o

ω Bu
ω Du

ω 0 0 0 1 0 0 0 0 βu
ω
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FIG. 4. Black-hole-like configuration. Particle fluxes (left panel) I out
ω (solid line), I out,l

ω (dashed line), I out,o
ω (dotted line), and I out,u

ω (dot-dashed
line) and the corresponding energy fluxes (right panel) f out

ω , f out,l
ω , f out,o

ω , and f out,u
ω , as seen from the comoving reference frame, for a black

hole horizon configuration, as sketched in Fig. 2. Parameters v = 0.66c and ε = 0.3, yielding via Eq. (80) a large refractive index jump of
δn = 0.12 for optical frequencies.

into the different outgoing modes: Given the importance of
correlation experiments to assess the quantum vacuum nature
of the emission, this problem will be the subject of future work.

A. Comoving frame

For the sake of simplicity, we make the reasonable assump-
tion that there are no ingoing particles; that is, the system
is in the vacuum state defined by the destruction operators
associated with the in modes:

âin,α
ω |0in〉 = 0, âin,α̃

ω |0in〉 = 0. (70)

The occupation numbers of out modes on this state are easily
computed using Eq. (67). They, in general, do not vanish, since
Eq. (67) mixes creation and destruction operators. For instance,
the expected occupation number of the unique rightgoing mode
V out

ω on the state |0in〉 is

〈0in|2πâout†
ω âout

ω |0in〉 = 2πδ(0)
(|βω|2 + ∣∣β l

ω

∣∣2 + ∣∣βu
ω

∣∣2)
, (71)

where the factor 2π has been inserted coherently with the
normalization of the Fock operators of Eq. (34). As usual,
there is an infrared divergence associated with the quantization
of a field theory in an infinite space-time volume. Going to a
finite-size time box �t , one must replace

2πδ(ω − ω′) −→ �t δωω′ . (72)

This implies that the number of particles �n created in a time
�t at a frequency ω is

�nout
ω = (|βω|2 + ∣∣β l

ω

∣∣2 + ∣∣βu
ω

∣∣2)
�t. (73)

Analogously, there are several other channels in which
particles are created, related to the mixing of the other positive-
and negative-norm modes. For the positive-frequency modes
one obtains

�nout,l
ω = (∣∣B l

ω

∣∣2 + ∣∣Bo,l
ω

∣∣2 + ∣∣Bu,l
ω

∣∣2)
�t, (74)

�nout,o
ω = (|Bω|2 + ∣∣B l,o

ω

∣∣2 + ∣∣Bu,o
ω

∣∣2)
�t, (75)

�nout,u
ω = (

∣∣Bu
ω

∣∣2 + ∣∣B l,u
ω

∣∣2 + ∣∣Bo,u
ω

∣∣2
)�t. (76)

Since in the comoving reference frame the source of photons
(the pulse) is at rest, the number of created particles rω per unit
time and unit bandwidth coincides with the flux of particles
Iω crossing a certain surface at constant x. Thus, the flux of
particles per unit time and unit bandwidth in the comoving
reference frame is

I out,α
ω = rout,α

ω = dnout,α

dt dω
= �nout,α

ω

�t
. (77)

The flux of energy (which coincides with the energy production
rate in the reference frame where the source is at rest)
associated with the mode α is

f out,α
ω = dEout,α

dt dω
= h̄ω I out,α

ω . (78)

In Fig. 4 we plot the fluxes of particles I out
ω (solid line), I out,l

ω

(dashed line), I out,o
ω (dotted line), I out,u

ω (dot-dashed line) and
the respective energy fluxes (right panel) f out

ω , f out,l
ω , f out,o

ω ,
and f out,u

ω , for a pulse moving with velocity v = 0.66c. The
values of βi,R and �i,R in the right region have been chosen
accordingly to the dispersion relation in fused silica, the
material used in the experiment of Ref. [9]:

β1,R = 0.071 419 14, h̄�1,R = 0.125 285 eV,

β2,R = 0.032 463 04, h̄�2,R = 10.6661 eV, (79)

β3,R = 0.055 399 15, h̄�3,R = 18.1252 eV.

In the left region, for illustrative purposes we used

βi,L = (1 + ε)βi,R, �i,L = (1 + ε)−1/2�i,R, (80)

with a very large value of ε = 0.3. When � is in the optical
range and far enough from the poles of the dispersion relation

δn = nL − nR ≈ n2
R − 1

2nR

ε, (81)

that yields a quite large value of δn ≈ 0.12, which requires a
very strong laser intensity I ≈ 3 × 1014 W/cm2 [9,20].

From Fig. 4, it is immediate to see that the dominant
contribution to the energy flux comes from the rightgoing
modes via Hawking-like processes as discussed in the previous
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FIG. 5. Black-hole-like configuration. Frequency-dependent tem-
perature Tω of the Hawking-like radiation I out

ω , as defined in Eq. (82).
The emission spectrum is observed in the comoving reference frame
for the black hole horizon configuration considered in Fig. 4.

section and in Ref. [20]. However, what can we say about
its thermal properties? It is well known that, in the 1 + 1
dimensional case, the energy flux of a thermal source goes to a
constant value in the low-frequency limit ω → 0. In the present
situation, however, the Hawking-like channel is open only in a
narrow range of frequencies ωmin < ω < ωmax (see Fig. 1),
and the low-frequency limit cannot be taken: As a result,
asking whether the spectrum is thermal or not is not really
a well-posed question. Nevertheless, one can observe that the
energy flux does not vary much within the ωmin < ω < ωmax

frequency window; an exception is made for frequencies in
the close vicinity of the boundaries. To make this statement
more quantitative, in Fig. 5 we plot the (frequency-dependent)
temperature Tω corresponding to the rightgoing flux I out

ω , as
implicitly defined by

I out
ω = 1

eh̄ω/kBTω + 1
. (82)

If the spectrum were perfectly thermal, Tω would be indepen-
dent of frequency. In the present situation, even if the value
of Tω maintains the same order of magnitude for frequencies
within the (ωmin,ωmax) frequency range, the spectrum is still
substantially different from a thermal one.

To investigate more deeply the features of the spectrum of
V out

ω (the global modes associated with the asymptotic plane
wave Vω,R; see Fig. 2), in Fig. 6 the flux of particles is separated
into its components due to |βω|2 (solid line), |β l

ω|2 (dashed
line), and |βu

ω|2 (dotted line). Note that the contributions to
spontaneous emission on the mode V out

ω by the lower and the
upper branch are negligible with respect to the term coming
from the optical negative-frequency mode V in,õ

ω , associated
with the AM V õ

ω,R of Fig. 2. This behavior was anticipated
in Ref. [20] and it has been now confirmed by the present
calculation.

To make our discussion complete, it is important to assess
whether the full three-pole Sellmeier dispersion relation is re-
ally needed or simplified models based on modified dispersion
relations are enough to properly reproduce the main features of
the emission. As a relevant example, we consider a single-pole
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FIG. 6. Black-hole-like configuration. Separate contribution of
|βω|2 (solid line), |β l

ω|2 (dashed line), and |βu
ω|2 (dotted line) to the flux

of particles I out
ω for the black hole horizon configuration considered

in Fig. 4.

form of the dispersion relation, for which the optical branch (in
this case the lower polariton) has a simple subluminal disper-
sion. The details of the calculation are given in Appendix C:
The main conclusion is that, in contrast to the full Sellmaier
dispersion, in this case the emission spectrum turns out to be
perfectly thermal from arbitrarily low frequencies up to a cer-
tain cutoff frequency. To understand this result, it is enough to
note that this simplified dispersion admits an analog geometry
in the low-frequency limit, so that the concept of horizon is well
defined in the standard gravitational sense. Any material where
the low-frequency pole is not present, such as diamond [27],
would therefore show a thermal spectrum. On the other hand, in
the case of the full Sellmeier dispersion, the dramatic deviation
of the emission spectrum from thermality stems from the
presence of the low-frequency pole in the infrared region.

B. Laboratory frame

In the previous section we investigated the spectral prop-
erties of the quantum vacuum emission as observed from
the frame comoving with the pulse; in particular, we have
provided a critical comparison with the thermal spectrum that
is expected for standard Hawking radiation. In this section, we
show how an even more dramatic departure from a thermal
spectrum is obtained when the emission is observed in the
laboratory reference frame.

With an eye to recent experimental studies, we focus our
attention on the total number of particles created by the moving
pulse rather than the flux of particles per unit time. In fact, the
pulse stably propagates only for a very short distance �Xs

(about 1 mm [10]), corresponding to a duration of �Ts =
�Xs/Vg . In an experiment one observes the pulse in this small
region and measures the photons produced therein. Naming R�

the production rate of particles at frequency �, as measured in
the laboratory, the number of particles produced by the pulse in
the laboratory time dT in the range of frequency (�,� + d�)
is

�N = R�dT d�. (83)
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FIG. 7. Black-hole-like configuration. Energy production rate εout
�

on the rightgoing mode V out
ω(�) as seen by an observer in the laboratory,

for the black hole horizon configuration considered in Fig. 4.

Since the number of created particles is invariant under Lorentz
transformation,

�N = r�dtdω; (84)

that is, �N can also be computed as the number of particles
created in the comoving time dt by the pulse, in the frequency
range (ω,ω + dω). To compute the relation between R� and
rω, it is enough to compute the transformation rules of the
frequency range and of the time interval. Using the inverse of
the Lorentz transformation (28)

ω = γ (� − vK), (85)

dω can be expressed in term of d� as

dω = γ

(
d� − v

dK

d�
d�

)
= γ

(
1 − v

Vg(�)

)
d�, (86)

where Vg is the particle group velocity measured in the
laboratory reference frame. The transformation of the time
interval is found by noting that the source (the pulse) is at
rest in the comoving frame, so dt is its proper time interval.
Consequently, the corresponding laboratory time interval dT

is given by the usual Lorentz dilation of time,

dT = γ dt. (87)

Putting everything together, the rate of particle production, as
seen in the laboratory frame is

R� =
(

1 − v

Vg

)
rω. (88)

The corresponding energy production rate ε� in the labo-
ratory frame is

ε� = h̄�R� = h̄�I�

(
1 − v

Vg

)
. (89)

This quantity is plotted in Fig. 7 for the rightgoing mode
V out

ω , which is responsible for the Hawking-like emission. The
effect of the boost is twofold. First, it shifts the emission fre-
quency in the laboratory: � is much larger than the comoving
frequency ω, reaching optical frequencies. Unfortunately, as
observed in Ref. [20], this boost effect is completely lost in a
three-dimensional system when one looks perpendicularly to

the pulse propagation. Radiation at such high frequency could
be observed perpendicularly only if some scattering process
changed the direction of photons.

To conclude this section, it is interesting to give a rough
estimate of the number of photons emitted on the rightgoing
mode V out

ω(�) by this process. Integrating over frequency the
production rate in the laboratory frame and multiplying it
by the time �Ts = �Xs/V over which the pulse stably
propagates, we obtain (for �Xs ≈ 1 mm)

Npulse =
∫

R�d�
�Xs

V
≈ 240. (90)

Of course, the same result can be obtained by directly
integrating the particle production rate rω, measured in the
comoving frame (coinciding with the flux Iω), over the
comoving frequency ω and multiplying by the proper duration
of the pulse �ts = �Ts/γ (V ).

C. Outside the analog horizon frequency window

In the previous subsection we focused on the frequency
range where Hawking-like emission is present. We now
investigate the range of comoving frequencies below ωmin

and above ωmax, where the main particle production channel
disappears. Particle creation is indeed possible also outside the
(ωmin, ωmax) range through the other channels, and the dashed,
dotted, and dot-dashed lines of Fig. 4 can then be extended
for ω < ωmin and ω > ωmax. Since for those values of the
comoving frequency there are only six real-k solutions also
for x > 0, a new mode analysis must be performed following
Sec. III to compute a new 6 × 6 scattering matrix. In Fig. 8 the
numerical results of this computation are reported, together
with the results for ωmin < ω < ωmax, obtained in the previous
section. The flux of particles in the comoving frame I out,l

ω

(dashed line), I out,o
ω (dotted line), and I out,u

ω (dot-dashed line)
are plotted in the left panel, and the respective energy fluxes
f out

ω , f out,l
ω , f out,o

ω are plotted in the right one.
First, note that the dominant contribution to the emission

comes from the frequency range ωmin < ω < ωmax, thanks to
the presence of the Hawking channel (solid line). This result
confirms the naive expectation that the presence of a horizon
should enhance the production of particles.

Second, both the occupation numbers and the energy fluxes
are continuous at ω = ωmin and ω = ωmax, for modes that do
not feel the presence of any horizon, that is, when no turning
point is present. For these modes the transition between the
two regimes is continuous.

Third, it is worth remarking that the high-frequency region
of this plot must be read cum grano salis. Indeed, we used step
functions to describe the spatial behavior of βi and �i , such
that arbitrary large frequency/momentum modes are excited.
However, in real physical situations, the transition between the
two regions x < 0 and x > 0 takes place on a finite length and
only modes up to a certain frequency ωcutoff are excited. Thus,
Fig. 8 provides reliable results only up to ωcutoff . Beyond this
frequency, the off-diagonal coefficients of the scattering matrix
S go to zero exponentially with ω and S reduces to the identity.
Indeed, for ω > ωcutoff , modes do not mix because they are well
approximated by their WKB expansion. In a realistic situation,
ωcutoff is not larger than the frequency associated with the width
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FIG. 8. Black-hole-like configuration. Fluxes of particles I out
ω (solid line), I out,l

ω (dashed line), I out,o
ω (dotted line), and I out,u

ω (dot-dashed line)
and the respective energy fluxes (right panel) f out

ω , f out,l
ω , f out,o

ω , and f out,u
ω for the black hole horizon configuration considered in Fig. 4. The

plot has been restricted to ω < ωcutoff . I out
ω and f out

ω (solid lines) are defined only for ωmin < ω < ωmax.

of the steepening of the pulse [10,16] (approximately 1 μm),
corresponding to ωcutoff ≈ 2 × 1015 s (h̄ωcutoff ≈ 1.3 eV).

V. PARTICLE PRODUCTION IN OTHER
CONFIGURATIONS

In the previous section, we derived the flux of spontaneously
created particles in a configuration closely resembling a black
hole geometry. However, as pointed out in Ref. [20], radiation
from vacuum fluctuation is expected in optical systems even
in the absence of horizons, provided that negative-norm
modes with positive comoving frequency are present. We now
apply the techniques introduced in this paper to a horizonless
configuration for a weaker perturbation (δn ≈ 0.001), similar
to the one experimentally realized in Ref. [9]. As a preliminary
step, however, we compute the emitted flux for a horizon
configuration with a value of δn ≈ 0.001, which coincide with
the experimental value [9], so that it is possible to compare
the flux produced by a weak perturbation, both in the presence
and in the absence of horizons.

A. Small refractive index jump

In a realistic situation δn is generally a couple of orders
of magnitude smaller than the value used in the previous
section. Unfortunately, if δn is small, the pulse velocity v

must be extremely fine tuned in order to obtain a configuration
with a horizon, as in Fig. 2. At the same time, the frequency
window (ωmin,ωmax) becomes very narrow and the emission
on the rightgoing mode V out

ω is strongly suppressed. In Fig. 9,
the energy fluxes associated with the spontaneous particle
production are represented for δn = 0.001. This value has been
obtained by modifying the values of βi and �i in the left region,
as in Eq. (80), with ε ≈ 0.0026. The pulse velocity is v =
0.6838c, h̄ωmin = 0.013 79 eV, and h̄ωmax = 0.013 96 eV.

In Fig. 10, the fluxes of particles and the respective energy
fluxes are plotted for any frequency smaller than the cutoff
ωcutoff , arbitrarily chosen at h̄ωcutoff ≈ 1.3 eV. The Hawking
channel is no longer the dominant one, but its flux is now
comparable with the flux of leftgoing particles on the optical-
branch mode V out,o

ω . Note also that the range (ωmin,ωmax) is

so narrow to be almost invisible on the scale of the figure. As
a consequence its contribution to the total flux of leftgoing
particles is very small.

Furthermore, the number of particles produced on the lower
and the upper branches are about three orders of magnitude
smaller than the production on the optical branch (both
right- and leftgoing). We have also checked that the main
contribution to particle production comes from the incoming
negative-frequency mode on the optical branch. Both those
results confirm that the lower and upper branch can be safely
neglected, as anticipated in Ref. [20]. Note that the latter result
was already visible in Fig. 6, for a different configuration with
a larger refractive index jump.

Finally, in Fig. 11, the energy produced per unit bandwidth
and unit time on the rightgoing branch V out

ω(�) is plotted in the
laboratory reference frame. Quite surprisingly the frequency
window of Hawking-like emission is much larger. In fact, even
if the comoving frequencies ωmin and ωmax almost coincide, k
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FIG. 9. Black-hole-like configuration—small δn. Energy fluxes
f out

ω (solid line), f out,l
ω (dashed line), f out,o

ω (dotted line), and f out,u
ω

(dot-dashed line), for a configuration with a small refractive index
jump (δn ≈ 0.001), obtained using ε = 0.0026 in Eq. (80). The pulse
velocity has been fine tuned to v = 0.6838c to have an analog black
hole horizon.
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FIG. 10. Black-hole-like configuration—small δn. Fluxes of particles I out
ω (solid line), I out,l

ω (dashed line), I out,o
ω (dotted line), and I out,u

ω

(dot-dashed line) and the respective energy fluxes f out
ω , f out,l

ω , f out,o
ω , and f out,u

ω , for the black hole horizon configuration considered in Fig. 9.
The plot has been restricted to ω < ωcutoff . I out

ω and f out
ω (solid lines) are defined only for ωmin < ω < ωmax.

varies in a wide range, because the comoving-frame group
velocity vg almost vanishes. Consequently, from Eq. (28),
the laboratory frequency � varies in a quite wide window.
However, since the total number of created particles must be
the same in both reference frames, the production rate per
unit bandwidth is much smaller. Integrating the production
rate over frequency and multiplying for �Xs/V , with �Xs ≈
1 mm, we obtain a tiny average number (N ≈ 8 × 10−4) of
particles produced by each pulse. In this configuration, fewer
particles are produced on the rightgoing mode V out

ω with
respect to other modes. In fact, the total number of photons
produced on positive-norm modes, obtained by integrating all
the curves of Fig. 10 (left panel) is Ntot ≈ 7 × 10−2.

B. Horizonless configuration

In this section we investigate a configuration where the
velocity of the pulse is so large that no horizon is present,
because the two rightmost solutions on the optical branch
disappear [see Fig. 1 (right panel) or Fig. 2 (bottom right
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FIG. 11. Black-hole-like configuration—small δn. Energy pro-
duction rate εout

� of the rightgoing mode V out
ω(�), as seen by an observer

in the laboratory, for the black hole horizon configuration considered
in Fig. 9.

panel)]. This situation was realized in the experiment of
Ref. [9]. A system without any horizon behaves similarly to
the case investigated in Sec. IV C for ω < ωmin or ω > ωmax,
with the exception that there is now no frequency window
where eight real-k solutions of the dispersion relation exist in
the right region. As a consequence the Hawking-like process
cannot occur. To this purpose, the pulse velocity has been
chosen here fast enough that the straight dotted line of the
right bottom panel of Fig. 2 becomes steeper than the tangent
to the optical branch at its inflection point.

In analogy with Fig. 1, in Fig. 12 the dispersion relation
in the comoving frame is solved only for the optical branch,
on both sides of the perturbation, for a pulse with δn = 0.001
and moving at v ≈ 0.69c, which are the parameters of the
experiment of Ref. [9]. Only two solutions (one with positive
and one with negative norm) are present both in the left (V o

ω,L,
V õ

ω,L) and in the right (V o
ω,R , V õ

ω,R) regions for all values of the
frequency ω. In particular, the solutions corresponding to AMs
V o2

ω,R and Vω,R , the latter being the mode responsible for analog
Hawking radiation, disappear. Even if particle production is
still possible, due to the mixing of positive- and negative-
norm frequency modes, the spectrum will be different and the
Hawking-like channel is absent. For the sake of completeness,
in Fig. 13, the full Sellmeier dispersion relation is graphically
solved for this configuration for x < 0 (left panels) and x > 0
(right panels).

The only effect caused by the absence of the horizon is
the disappearance of the flux associated with the outgoing
rightgoing mode. The fluxes of emitted photons (Fig. 14)
are suppressed by the smallness of δn, as in Sec. V A.
The integrated (over frequency) number of created particles
(N ≈ 0.06, for a pulse which stably propagates for about
1 mm) does not significantly differ with respect to the horizon
configuration with the same small value of δn.

As a final point it is useful to note that the results of this
section aim to reproduce the emission from the leading edge
of a propagating pulse. However, it has been pointed out that
in an actual experiment nonlinear effects in pulse propagation
make the trailing edge of the pulse much steeper than the
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FIG. 12. Horizonless configuration. Simplified analysis of the Sellmeier dispersion relation (27) in fused silica, as seen from the comoving
frame. Only the optical branch is shown. Positive (negative) laboratory frequency branches are represented by solid (dashed) curves. The
dispersion is plotted on the left (δn = 0.001, left panel) and on the right (δn = 0, right panel) of a perturbation moving rightward with
v = 0.69c in the laboratory frame (see top panel). For all frequencies there are two real solutions in both the left (left panel) and the right (right
panel) regions. Modes are labeled with the notation introduced in Sec. II and their propagation direction is indicated by arrows.
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FIG. 13. Horizonless configuration. Graphical representation of the Sellmeier dispersion relation, as seen from the laboratory reference
frame (�,K), for x < 0 (left panel) and x > 0 (right panel). The chosen plot range excludes the highest-frequency branch. However, there
are no solutions on it (see discussion in Sec. III A). The (ω,k) axes of the comoving reference frame are obtained through a boost of velocity
v. As sketched in the top panel, the refractive index in the left region is larger than in the right region. This difference in the refractive index
is obtained by properly changing the parameters βi and �i appearing in the Lagrangian (1). In this plot the values of the velocity v and of
the refractive index change δn have been arbitrarily chosen for illustrative purposes. The dispersion relation is graphically solved for a fixed
comoving frequency ω. Solutions appear both on the positive-norm positive-� branches (solid curves) and on the negative-norm negative-�
branches (dashed curves). The open dots denote solutions on the optical branches with positive (o) and negative (õ) frequency �. The arrows
indicate the direction of propagation (group velocity in the comoving frame) of the associated modes V

α/α̃

ω,L/R . The dispersion relation has only
six real-k solutions in both regions, corresponding to six propagating modes on both sides.
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FIG. 14. Horizonless configuration. Occupation numbers I out,l
ω (dashed line), I out,o

ω (dotted line), and I out,u
ω (dot-dashed line) and the

corresponding energy fluxes (right panel) f out
ω , f out,l

ω , f out,o
ω , and f out,u

ω , for the horizonless configuration of Fig. 13. The velocity of the pulse
and the variation of the refractive index are v = 0.69c and ε = 0.0026, the parameters of the experiment of Ref. [9], yielding via Eq. (80) a
jump in the refractive index of δn = 0.001.

leading one [10,16]. Thus, most of the emission should
come from the trailing edge. In our formalism this situation
corresponds to a steplike profile where the two regions of
different refractive index are exchanged with respect to the
top panel of Fig. 13. In contrast to horizon configurations,
where a black hole would be turned into a white hole, no
significant change is expected to appear in the horizonless
case, as the topology of modes (six propagating modes in
both the right and the left region) remains unchanged. A
complete study of configurations corresponding to the trailing
edge of a propagating refractive index perturbation (both with
and without horizon) will be the subject of a forthcoming
publication.

VI. SUMMARY AND DISCUSSION

In this paper we have developed a microscopic theory of the
spontaneous quantum vacuum emission generated by a strong
light pulse propagating in a Kerr nonlinear optical medium:
The effect of the pulse is modeled as a moving refractive
index perturbation following in a local and instantaneous way
the intensity profile of the strong pulse. For simplicity, we
restrict our attention to the case of a single sharp interface
separating two homogeneous regions of spatially constant
optical properties for which several authors have anticipated
the occurrence of the optical analog of a black hole horizon
for suitable values of the pulse speed and the amplitude of the
refractive index jump. In contrast to previous work, our theory
takes into full account the unavoidable frequency dispersion of
the refractive index of the dielectric medium. Describing the
leading edge of pulse, we identified the different regimes with
or without an analog black hole horizon that can be obtained
depending on the pulse parameters. Future work will extend
our theory to the emission from the trailing edge of the pulse
in both cases, with or without an analog white hole horizon.

Moving to the reference frame comoving with the
pulse where the optical properties of the system are time-
independent, the classical eigenmodes of the coupled electro-

magnetic and matter polarization fields at a given frequency
are derived within a Lagrangian formalism and then quantized
through canonical quantization. The mixing of positive- and
negative-norm modes at the same frequency is responsible
for the emission of quantum vacuum radiation, whose rate of
production has been computed.

In a configuration with an analog black hole horizon, one
can identify a quantum vacuum emission channel showing
some similarities with Hawking radiation: This emission
channel completely disappears in the absence of a horizon
and the corresponding emission temperature has a moderate
frequency dependence when observed in the frame comoving
with the pulse. On the other hand, because of the nontrivial
shape of the Sellmeier dispersion relation, this emission
channel is only available and active for frequencies in the
restricted ωmin < ω < ωmax range where the analog black
hole horizon exists, and the emission spectrum dramatically
deviates from a thermal law when observed in the laboratory
frame. In addition to this Hawking-like radiation, we have
found that quantum vacuum radiation is also emitted on several
other channels and outside this frequency window, albeit
with a much weaker intensity, a strongly nonthermal spectral
distribution, and independently of the presence or absence of
the horizon.

As the experiment in Ref. [9] was carried out in a
parameter range not showing any horizon, it is interesting
to conclude the paper by discussing whether it is legitimate
to denote the quantum vacuum emission in this regime as
“Hawking radiation.” This question is all the more relevant
given the ongoing debate [14,15] on the interpretation of the
experimental results. Even if the results of our calculations are
objective, an answer to this question requires a preliminary
agreement on the definition of Hawking radiation, which is
somehow a matter of personal taste.

If a broad definition is chosen, where the only requirement is
the steady production of particles out of the quantum vacuum,
there are no difficulties in considering the predicted emission
as an example Hawking radiation. The answer is different if
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we also require the emission to be thermal, which is definitely
not the case of the quantum vacuum emission in horizonless
configurations or outside the ωmin < ω < ωmax window of
a horizon configurations. Even inside the ωmin < ω < ωmax

of a horizon configuration some care has to be paid not to
overstretch the gravitational analogy: Even if the emission has
an approximately thermal spectrum within this window, the
fact that is does not extend down to low frequencies is related
to the difficulties of a description of the light propagation in
terms of a curved space-time metric that underlies the very
concept of the gravitational analogy.
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APPENDIX A: LAGRANGIAN DENSITY IN THE
COMOVING FRAME

In Sec. II A, we applied a Lorentz boost � to the system
described by the Lagrangian of Eq. (1), to obtain Eq. (4). In
doing so, we transformed the space and time coordinates, but
we treated both the fields A and P as scalars.1 This is possible
since we are dealing with a 1 + 1 dimensional system.

To properly proceed, one should first apply the Lorentz
transformation � to the fields A and P , assuming that both A

and P oscillate in the z direction. A is the z component of the
electromagnetic potential

Aμ =

⎛
⎜⎝

0
0
0
A

⎞
⎟⎠, (A1)

which transforms as

Aμ
p = �μ

νA
μ, (A2)

where the subscript p indicates that A
μ
p is measured in the

reference frame comoving with the pulse. Analogously, P is
one of the three components of the magnetization-polarization

1To maintain the notation compact, the subscript i is omitted in this
Appendix.

tensor

Mμν =

⎛
⎜⎝

0 cPx cPy cPz

−cPx 0 −Mz My

−cPy Mz 0 −Mx

−cPz −My Mx 0

⎞
⎟⎠

=

⎛
⎜⎝

0 0 0 cP

0 0 0 0
0 0 0 0

−cP 0 0 0

⎞
⎟⎠, (A3)

which transform as

Mμν
p = �μ

ρ�
ν
σ Mρσ . (A4)

By doing so, the Lagrangian density can be rewritten in term
of the new fields A

μ
p and M

μν
p .

Moreover, the Lagrangian density can always be expressed
by using new fields that are functions of A

μ
p and M

μν
p , provided

that the transformation to those new fields does not involve
any time derivative of A

μ
p and M

μν
p . Such a transformation

generates a canonical transformation on the Hamiltonian
variables so that the commutation rules among the new fields
and their respective momenta are still canonical. We chose
to apply to A

μ
p and M

μν
p the linear transformation �−1, not

involving any time derivative of the fields. The new fields A
μ
n

and M
μν
n are

Aμ
n ≡ (�−1)μνA

ν
p = (�−1)μν�

ν
ρA

ρ = Aμ,

Mμν
n ≡ (�−1)μρ(�−1)νσ Mρσ

p (A5)

= (�−1)μρ(�−1)νσ�ρ
α�σ

βMαβ
p = Mμν.

That is, Aμ
n and M

μν
n coincide with the old fields Aμ and Mμν ,

as measured in the laboratory frame. The only nonvanishing
components of those fields are A and P , as in Eqs. (A1)
and (A3).

APPENDIX B: MODE NORMALIZATION

The scalar product (18) on two eigenmodes with real
frequencies ω1 and ω2 and real momenta kα1 and kα2 is

〈
V α1

ω1
,V α2

ω2

〉 = i

h̄

∫
dx e−i(ω2−ω1)t+i(kα2 −kα1 )x V̄ α1†

ω1
η V̄ α2

ω2

= 2πδ
(
kα2 − kα1

)
e−i(ω2−ω1)t V̄ α1†

ω1
η V̄ α2

ω2
. (B1)

This proves that modes with different momenta are orthogonal.
However, for each value of k there are eight solutions ω of the
dispersion relation (27). Thus, there are modes with different
frequencies ω1 	= ω2 which share the same momentum kα1 =
kα2 . Yet, those modes are solutions of the eigenvalue problem
of Eq. (23) of the Hermitian matrix K(kα). As a consequence,
eigenmodes with different eigenfrequencies ω1 and ω2 are also
orthogonal. Since, at a fixed k, ω can take only a finite set of
values, it is possible to write

V̄ α1†
ω1

η V̄ α2
ω2

= δω2ω1 V̄ α1†
ω2

η V̄ α2
ω2

. (B2)

Putting this expression into Eq. (B1),

〈
V α1

ω1
,V α2

ω2

〉 = 2πδ
(
kα2 − kα1

)
δω2ω1

i

h̄
V̄ α1†

ω2
η V̄ α2

ω2
, (B3)
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and noting that

δ
(
kα2 − kα1

)
δω2ω1 =

∣∣∣∣dω

dk

∣∣∣∣
k=kα2

δ(ω2 − ω1) δkα2 kα1
, (B4)

the combination of Dirac and Kroenecker δ’s appearing in
Eq. (B3) can be rewritten as∣∣∣∣dω

dk

∣∣∣∣
k=kα2

δ(ω2 − ω1) δα2α1 , (B5)

where, as said, α labels the eight solutions with different
momentum, sharing the same comoving frequency ω.

In conclusion, we proved that eigenmodes with different ω

and kα are orthogonal,

〈
V α1

ω1
,V α2

ω2

〉 = 2π

∣∣∣∣dω

dk

∣∣∣∣
k=kα2

δ(ω2 − ω1) δα2α1

i

h̄
V̄ α2†

ω2
η V̄ α2

ω2
,

(B6)

where the last term of this expression is easily computed from
Eq. (30):

i V̄ α†
ω η V̄ α

ω =
∣∣Cα

ω

∣∣2

2π

[
ω +

3∑
i=1

4πβiγ
2(ω + vk)[

1 − γ 2(ω + vk)2/�2
i

]2

]
,

(B7)

where, for the sake of conciseness, the index α is omitted on
the right-hand side. By using the Lorentz transformation (28),

i V̄ α†
ω η V̄ α

ω

= γ
∣∣Cα

ω

∣∣2

2π

{
−vK + �

[
1 +

3∑
i=1

4πβi(
1 − �2/�2

i

)2

]}
. (B8)

Note that the scalar product is not positive definite. Thus, we
must characterize under what conditions a mode has indeed
positive or negative norm.

From the dispersion relation in the glass rest frame (29),
the group velocity Vg in the laboratory frame is given by

V −1
g = dK

d�
= �

K

dK2

d�2
= �

c2K

[
1 +

3∑
i=1

4πβi(
1 − �2/�2

i

)2

]
,

(B9)

so that

i V̄ α†
ω η V̄ α

ω = γ c2
∣∣Cα

ω

∣∣2

2π

K

Vg

(
1 − vVg

c2

)
. (B10)

Since there is no absorption, the group velocity |Vg| must
be smaller than the speed of light c [32]. Furthermore,
v < c, so that the term in parentheses in Eq. (B10) is always
positive. Furthermore, the sign of Vg is positive (negative) if
� and K have the same (opposite) sign [see Eq. (B9)]. As a
consequence, the sign of the above scalar product is always
equal to the sign of �; that is, modes with positive (negative)
rest frame frequency � have positive (negative) norm.

Finally, the normalization constant Cα
ω , appearing in

Eq. (30) is fixed by imposing∣∣ 〈V α1
ω1

,V α2
ω2

〉 ∣∣ = δ(ω2 − ω1) δα2α1 (B11)

for both positive- and negative-norm modes and by comparing
the above condition with Eqs. (B6) and (B10):

∣∣Cα
ω

∣∣2 =
∣∣∣∣γ c2

h̄

vg

Vg

(
1 − vVg

c2

)
K

∣∣∣∣
−1

. (B12)

Using the relativistic composition of velocities

vg = Vg − v

1 − vVg/c2
, (B13)

Eq. (B10) simplifies to

∣∣Cα
ω

∣∣2 =
∣∣∣∣γ c2

h̄

(
1 − v

Vg

)
K

∣∣∣∣
−1

. (B14)

Replacing Vg from Eq. (B9),

∣∣Cα
ω

∣∣2 = h̄

∣∣∣∣∣c2γ

(
K − v

c2
�

)
− v

3∑
i=1

4πβiγ�i(
1 − �2/�2

i

)2

∣∣∣∣∣
−1

,

(B15)

and going back to the comoving frame frequency ω and
momentum kα ,

∣∣Cα
ω

∣∣2 = h̄

∣∣∣∣∣c2kα − v

3∑
i=1

4πβiγ
2(ω − vkα)[

1 − γ 2(ω − vkα)2/�2
i

]2

∣∣∣∣∣
−1

.

(B16)

APPENDIX C: EMISSION SPECTRUM FOR SIMPLIFIED
SINGLE-POLE DISPERSION RELATION

To further assess the importance of using a realistic form of
the dispersion relation to study analog Hawking emission, in
this appendix we apply our method to calculate the emission
spectrum for the case of the simplified dispersion relation with
a single pole,

c2K2 = �2

[
1 + 4πβ

1 − �2/�2
0

]
. (C1)

In order for the resulting standard polariton dispersion [22]
to approximate the full Sellmeier one (29) in the optical
frequency range, we choose β = β2 and �0 = �2. Since the
analog geometry is now well defined in the low-frequency
limit, black hole horizon configurations are easily identified, as
sketched in Fig. 15. In general, for a fixed comoving frequency
ω this dispersion relation Eq. (C1) has four solutions on both
sides of the discontinuity. When an analog black hole horizon
is present, two of these solutions are real and two are complex
conjugate in the region corresponding to the interior of the
black hole, while all four solutions are real in the region
representing the exterior of the black hole.

Below a certain cutoff frequency ωmax, a Hawking-like
channel is present. In Fig. 16 we plot the flux I out

ω of
rightgoing particles, emitted in the external (right) region of
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FIG. 15. Black-hole-like configuration—single-pole dispersion. Simplified dispersion relation (C1) with a single pole as seen from the
comoving frame. Only the optical branch is shown. Positive (negative) laboratory frequency branches are represented by solid (dashed) curves.
The dispersion is plotted on the left (δn = 0.12, left panel, interior of the analog black hole) and on the right (δn = 0, right panel, exterior of
the analog black hole) of a perturbation moving rightward with v = 0.83c in the laboratory frame (see top panel). The black horizontal line
represents a generic frequency for which there are four real solutions in the right region (right panel), two real solutions in the left one (left
panel), and the system shows an analog black hole horizon. In the right panel, the dashed horizontal line indicates the maximum frequency for
which this behavior occurs. Modes are labeled with the notation introduced in Sec. II and their propagation direction is indicated by arrows.

the analog black hole, and the corresponding energy flux f out
ω

on this channel. The flux of particles diverges as 1/ω for
ω → 0, while the flux of energy is constant as predicted for a
thermal emission. This agreement with the original Hawking’s
prediction in this simplified situation could be expected as
the analogy with black hole physics is exact in the low-
frequency/long-wavelength limit. Consequently, in materials
where the low-frequency pole in the infrared domain is not
present and the only poles are in the ultraviolet (for instance in
diamond [27]), it should be possible to experimentally assess
the thermal nature of Hawking radiation.

Comparison of these results with the predictions for the
full Sellmeier dispersion discussed in Sec. IV points out the
crucial role of the low-frequency pole in the infrared domain,
that prevents the identification of an analog geometry in the
optical frequency range. This is the physical reason for the
strongly modified spectrum with respect to the simpler forms
of subluminal dispersion relations considered, for example, in
Refs. [4,18]. Of course, also in this case spontaneous emission
is still present in horizonless configurations but with a strongly
nonthermal spectrum, as found in an analog model based on
Bose–Einstein condensates [33].
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FIG. 16. Black-hole-like configuration—single-pole dispersion. Flux of rightgoing particles emitted in the external region of the analog
black hole (left panel) I out

ω and the corresponding energy flux (right panel) f out
ω , as seen from the comoving reference frame, for a black hole

horizon configuration as sketched in Fig. 15 with a simplified single-pole dispersion relation of the form of Eq. (C1). Parameters v = 0.83c

and ε = 0.3, yielding via Eq. (80) a refractive index jump of δn = 0.12 for optical frequencies.
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