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Collective dynamics of vortices in trapped Bose-Einstein condensates
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We have calculated collective-mode spectra for three-dimensional, rotating Bose-Einstein condensates in oblate
harmonic traps using the microscopic Bogoliubov–de Gennes field theory. For condensates with Nv vortices, Nv

Kelvin-Tkachenko-mode branches are obtained. The features of these modes are compared with those predicted
by a classical point-vortex model. We have created movies to visualize the motion of the vortices corresponding
to the Kelvin-Tkachenko waves.
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I. INTRODUCTION

Vortical flows are among the most fascinating realizations
of hydrodynamics. In equilibrium, an isolated vortex filament
often settles into the shape of a straight line. Perturbations
to this equilibrium cause helical vortex-displacement waves
to propagate along the length of the vortex filament. These
excited states of vortices are known as Kelvin waves, named
after Lord Kelvin who derived a dispersion relation for such
vortex excitations [1]. Pitaevskii predicted that similar vortex
excitation modes exist in superfluids [2]. Kelvin waves of
quantized vortices have been observed both in superfluid
helium [3] and in trapped atomic Bose-Einstein condensates
[4]. However, measurement of the long-wavelength superfluid
kelvon dispersion relation remains an experimental challenge.

For two or more vortex filaments, the stability of different
vortex configurations becomes a matter of importance. Al-
though rarely realized in classical hydrodynamical systems,
the quantization of circulation in quantum systems, together
with energetic considerations, leads to the emergence of stable
vortex-lattice configurations in quantum liquids. Consider-
ing equilibrium states of flux vortices in superconductors,
Abrikosov predicted them to be arranged in a triangular
lattice structure [5], corresponding to the most efficient way of
packing cylinders. In addition to superconductors, triangular
Abrikosov vortex lattices also emerge in rotating scalar
superfluids [6,7]. For vector superfluids more exotic lattice
structures appear [8–14].

The stability of multivortex configurations against perturba-
tions was addressed in the classical context by Thomson who
studied the stability of three through seven vortices arranged
in a single-orbital-ring pattern [15]. Havelock extended this
result, finding the seven-vortex case to be marginally stable,
having an excitation mode with precisely zero frequency
(modes with negative frequencies corresponding to instabil-
ities), further showing that an arbitrary number of vortices in
a ring configuration can be stabilized by adding a sufficiently
strong vortex in the center of the ring [16]. An exhaustive
analysis of the transverse normal modes of finite vortex
arrays and their stability was presented by Campbell [17].
Tkachenko studied the stability of an infinite triangular vortex
lattice in a superfluid helium and predicted the existence
of a transverse normal mode oscillation now known as
Tkachenko wave [18]. Due to the end-cap effects in rotating
superfluid-helium systems, the modes calculated by Campbell
[17] did not facilitate a quantitative comparison with the

photographic movies of few-vortex excitation modes observed
by Yarmchuck and Packard [19].

The experimental realization of dilute-gas Bose-Einstein
condensates [20–22] opened up the possibility of controllably
creating and imaging individual quantum vortices [23] and
vortex lattices [24–27] and of studying the normal-mode
oscillations of such vortex arrays [7]. The vortex precession
observed in the experiment by Anderson et al. may be viewed
as fundamental Kelvin-wave motion of a vortex in a Bose-
Einstein condensate [28]. Bretin et al. excited a Kelvin mode of
higher axial wave number by exploiting its resonant coupling
to the quadrupole mode of the condensate [4]. Tkachenko
waves were created by Coddington et al. in rapidly rotating
vortex lattices [29]. Smith et al. observed a gyroscopic tilting
mode of a vortex array [30] which has one axial node and
belongs to the common Kelvin-Tkachenko-mode branch [31].
Recently, Weiler et al. [32] observed the dynamics of vortex
dipoles and Freilich et al. applied continuous imaging methods
to obtain trajectories of such vortex-antivortex dipoles [33]. In
three-dimensions such vortex dipoles may break into vortex
loops via the Crow instability [34–37]. Similar techniques
could be used to experimentally discover the complete set
of low-lying collective Kelvin-Tkachenko-mode branches of
few-vortex arrays.

Here we calculate the low-lying normal modes of oblate,
three-dimensional, Bose-Einstein condensates hosting up to
19 vortices, using the microscopic Bogoliubov–de Gennes
theory. This model fully accounts for the internal structure
of the vortex cores and the coupling of vortex motion to
the compressional sound waves. We solve the equations
governing the three-dimensional excitation modes of such
vortex arrays without forcing any symmetries in the calcu-
lations. The Kelvin-Tkachenko mixed modes of few-vortex
single-orbital arrays for three-dimensional prolate condensates
were calculated in [31]. Here we extend those results to oblate
systems with vortex lattices having up to three concentric
vortex orbitals.

II. MODEL

We employ the Bogoliubov–de Gennes (BdG) wave func-
tion formalism to calculate the excited states of the three-
dimensional harmonically trapped rotating Bose-Einstein
condensates whose multiply connected ground-state wave
function φ(r) contains Nv single quantum vortices. This
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amounts to solving the eigenvalue problem

(L(r) − μ gφ2(r)

−gφ∗(r)2 −L∗(r) + μ

)(
uq(r)

vq(r)

)
= h̄ωq

(
uq(r)

vq(r)

)
, (1)

where uq(r) and vq(r) are the complex-valued quasiparticle
wave functions labeled by q, ωq are the corresponding
eigenfrequencies, and the chemical potential μ = 〈L(r) −
g|φ(r)|2〉, where L(r) is a single-particle operator defined in
Eq. (5) and g is a coupling constant. The numerical challenges
encoded in Eq. (1) are largely due to the near-singular spectrum
of the BdG operator and the fact that for three-dimensional
systems the matrix representation of Eq. (1) becomes very
large. For single-vortex lines, cylindrical symmetry is often
deployed to reduce the computational cost of solving Eq. (1)
[38,39]. However, when more than one vortex is present in
the system, the cylindrical symmetry of the ground state is
lost and one has to solve the full three-dimensional problem,
which allows correct treatment of the axial structure of the
vortex modes. We have used a finite-element discrete-variable
representation [40,41] to obtain a sparse matrix representation
for the BdG operator of this three-dimensional system and
have used a parallelized Arnoldi iteration [31,42] to solve the
eigenvalue problem.

The dynamics of the calculated collective modes is visu-
alized by tracking the evolution of the perturbed condensate
density |φq(r,t)|2 as a function of time t , where [43]

φq(r,t) = [φ(r) + pδφq(r,t)]e−iμt/h̄ (2)

and the perturbation caused by the excitation of the collective
mode q is

δφq(r,t) = uq(r)e−iωq t + v∗
q (r)eiωq t . (3)

The population of the quasiparticle excitation mode is con-
trolled by the number p in Eq. (2). We have used p = 0.3 in
this paper.

Prior to solving Eq. (1) we must obtain the rotating ground-
state wave function φ(r) by solving to high accuracy the Gross-
Pitaevskii equation

[L(r) − g|φ(r)|2 − μ]φ(r) = 0, (4)

where the operator

L(r) = −h̄2∇2

2m
+ Vext(r) + 2g|φ(r)|2 − �Lz (5)

and the constant g = 4πh̄2a/m determines the strength of
s-wave interactions between particles of mass m in terms of the
scattering length a. The particles are confined by an external
harmonic potential

Vext(r) = m
(
ω2

⊥r2 + ω2
zz

2
)/

2 (6)

with transverse ω⊥ and axial ωz frequencies. The system is
rotated at an angular frequency �, and the z component of the
orbital angular momentum operator is Lz = −ih̄(x∂y − y∂x).
The normalization of the wave function,

∫
V

|φ(r)|2dr = N ,
determines the number of particles N in the system. Here we

consider N ≈ 3 × 104 87Rb atoms confined in a harmonic trap
with an axial trap frequency ωz = 2π × 100 Hz and an aspect
ratio ωz/ω⊥ = √

8. The dimensionless interaction parameter
gN = 1000h̄ω⊥a3

0 , where a0 = (h̄/mω⊥)1/2.

III. KELVIN-TKACHENKO MODES

To facilitate the discussion of the collective vortex dis-
placement modes, the corresponding ground states φ(r) need
to first be specified. Figure 1 shows condensate density
isosurfaces viewed along the rotation axis for six different
vortex systems, calculated using Eq. (4). The reduced external
rotation frequency �′ = �/ω⊥ and the expectation value of
the reduced orbital angular momentum L′ = 〈Lz〉/(Nh̄) are
marked in the upper and lower right corners of each frame,
respectively. The rotation causes the condensate to expand
radially due to the centrifugal effect. Simultaneously the cloud
becomes flatter in the axial direction. This centrifugal effect
is fairly small in the single-orbital cases (a)–(c) but becomes
prominent for the two- (d) and (e) and three- (f) orbital vortex
arrays. Although the superfluid circulation of the vortices is
quantized in integer multiples of h/m, the orbital angular
momentum per particle 〈Lz〉/N is not an integer multiple of
h̄ and hence the quantization of orbital angular momentum is
not exact despite the topological discreteness of the vortices. In
contrast, for axisymmetric multiquantum vortices the orbital
angular momentum is quantized in integer units [44].

A. General considerations

Let us first restrict our discussion to the subset of modes
(Nv,nz = 0), which have no axial nodes. For such modes all
vortices remain straight and parallel to each other and the
vortex dynamics is effectively two-dimensional, although the
excitation frequencies do depend on the full three-dimensional
structure of the condensate. Irrespective of the number of
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FIG. 1. (Color online) Ground states of a Bose-Einstein conden-
sate in rotating harmonic traps. Each plot is a density isosurface
viewed along the rotation axis. The states (a)–(f), respectively
accommodating 1, 2, 3, 7, 12, and 19 vortices, are being rotated at
the respective angular frequencies �′ = �/ω⊥ = 0.45, 0.495, 0.497,
0.58, 0.69, and 0.79. The expectation values of the orbital angular
momentum per particle L′ = 〈L〉/(h̄N ) of these ground states are
0.97, 1.8, 2.3, 4.2, 6.2, and 9.2 respectively.
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vortices Nv > 0 in the ground state, two vortex modes, which
we refer to as (C) and (T), always appear in these systems.

The simplest vortex-displacement mode shared by all
vortex configurations is the common mode or center-of-mass
excitation (C) of the vortices, in which the whole vortex array
executes retrograde circular motion, in the rotating frame of
reference, around the trap center as a rigid body. Here we
have deviated slightly from the terminology of Campbell [17].
By the common mode we refer to the fact that the vortex
motion is common to all vortices in a single mode, whereas
Campbell uses the term common mode to refer to the fact
that similar vortex modes exist for all vortex configurations
irrespective of the number of vortices in the system. Apart
from the obvious difference in excitation energy, the (C) mode
may appear similar to the usual counter-rotating dipole mode,
in which the vortex lattice stays stationary and the condensate
density executes circular motion around the trap center. In
contrast, in the vortex common mode (C), which exists only
for Nv 
= 0, the lattice rotates with respect to the trap and the
stationary condensate.

The second universal collective excitation is the transverse
Tkachenko mode (T), which typically has the lowest excitation
energy in the system and reveals itself as an azimuthal torsional
oscillation of the vortex lattice [18,29,31,45–57]. In this
mode, the individual vortices travel (in the rotating frame of
reference) along elliptical periodic orbits around their own
equilibrium positions, their combined motion resulting in the
collective mode of the whole vortex lattice.

In addition to these two universal vortex-displacement
modes, for systems with at least two concentric vortex orbitals
Campbell [17] finds “quadratic” (Q) modes in which the
central single vortex or cluster of vortices executes rigid-body
oscillation while the vortices in the outermost orbital are able
to move relative to each other. There are two different quadratic
(Q) modes corresponding to the opposite sense of rotation of
the central vortex cluster. Further, following the notation of
Campbell [17] we label the modes for which the central vortex
remain stationary as rational (R) modes.

We observe that a generic collective vortex mode can be
constructed by first grouping the vortices into subarrays and
then considering the motion of the vortices in each subarray
as an independent collective mode. The vortex motion of the
whole lattice is then constructed as a superposition of the
collective modes of the subarrays. This is further illustrated at
the end of the Sec. III.

The underlying ground-state vortex lattice has sixfold
symmetry, which is reflected by the n-fold symmetry of the
Bogoliubov modes [55]. Furthermore, each Kelvin-Tkachenko
branch can be uniquely labeled using a set of Nv vortex-
displacement phase shifts �i for the vortices [31]. However
this, like any means of uniquely identifying the individual
modes, quickly becomes cumbersome for large numbers of
vortices.

We also note that the orbital motion of a single vortex
around the trap center admits three equivalent descriptions. It
can equally be viewed as the long-wavelength axially nodeless
nz = 0 Kelvin wave, the single-vortex Tkachenko wave, or the
rigid-body common mode of the vortex lattice with only one
vortex.

TABLE I. Axially nodeless nz = 0 excitation frequencies ωq of
vortex configurations with Nv vortices. Tkachenko (T), common (C),
quadratic (Q), and rational (R) modes are marked by the respective
labels. See Supplemental Material for the dynamics of each tabulated
mode [58].

Nv Mode ωq (ω⊥) Label Nv Mode ωq (ω⊥) Label

1 1 0.223 T,C 9 0.284
10 0.329

2 1 0.157 T 11 0.394
2 0.202 C 12 0.420

3 1 0.068 T 19 1 0.020 C
2 0.143 2 0.022 T,R
3 0.280 C 3 0.079 R

4 0.139 R
7 1 0.000 T,R 5 0.157 Q

2 0.048 C 6 0.200 Q
3 0.146 R 7 0.210 R
4 0.213 R 8 0.258 R
5 0.236 Q 9 0.260 R
6 0.263 Q 10 0.265
7 0.329 R 11 0.300 R

12 0.307
12 1 0.009 T 13 0.360

2 0.026 C 14 0.363 R
3 0.101 15 0.380 R
4 0.150 16 0.394
5 0.180 Q 17 0.418
6 0.222 Q 18 0.498
7 0.266 19 0.501
8 0.268

B. Details of vortex modes

Table I lists the frequencies of the calculated axially node-
less nz = 0 vortex displacement modes for vortex numbers
Nv = 1, 2, 3, 7, 12, and 19. The Kelvin-Tkachenko mode
branches are sorted according to increasing energy of the
lowest mode in each branch and are referred to by integers.
The pure Tkachenko modes (T), common modes (C), quadratic
modes (Q), and rational modes (R) are labeled in the table. We
have produced a movie featuring the collective dynamics of
the vortices for each tabulated mode; see the Supplemental
Material [58].

The motion of Nv vortices in two dimensions can be
approximated using a classical point-vortex model [59,60]

i	v

∂zv

∂t
= ∂H

∂zv

, (7)

where zv = xv + iyv are complex functions of the spatial
vortex coordinates xv and yv , 	v are the strengths of the vor-
tices, and H = −∑

v 
=η 	v	η ln(|zv − zη|)/4π is the potential
driving the vortex motion when there are no boundaries. For
confined systems a more general form of H is used. This is
a set of Nv first-order differential equations. Seeking small
perturbations to the vortex positions leads to an Nv × Nv

matrix equation with Nv eigenvalues corresponding to the Nv
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normal modes of the vortex system. Splitting Eq. (7) into two
real-valued equations

	vẋv = ∂H/∂yv, 	vẏv = −∂H/∂xv (8)

yields a system with 2Nv eigenmodes, only half of which
are linearly independent, the other half being related to the
former by a simple rotation [17]. From Eqs. (8) it can be seen,
by associating xv and yv with the canonical coordinate and
momentum of a Hamiltonian system, that the phase space of
this two-dimensional (2D) vortex system corresponds to that
of an equal number of 1D massive particles. For a Newtonian
point-mass particle, the resultant force acting on it is propor-
tional to the acceleration of the particle and therefore in two
dimensions a system of Np particles has 2Np normal modes.
However, here the magnus force, which drives the motion of a
vortex, is proportional to the velocity and therefore the vortex
system has only Nv independent low-lying normal modes.

Equation (8) can also be used to reproduce the vortex
motion of the axially nodeless Kelvin-Tkachenko collective
modes by appropriately choosing the vortex potential and the
initial vortex positions. However, the resulting point-vortex
dynamics of this chaotic Hamiltonian dynamical system is
highly sensitive to the initial vortex locations. It therefore
appears that these few-vortex superfluids may be particularly
useful systems for studies of quantum chaology [61] and,
in particular, for the study of the role of wave function
phase singularities to the behavior of quantum systems
whose classical counterparts exhibit chaos. The point-vortex
model was recently used to obtain quantitative agreement
with experimental observations for the case of a single
vortex-antivortex pair in a harmonically trapped Bose-Einstein
condensate [62,63].

1. Single-orbital modes

The Kelvin-Tkachenko modes of one-, two-, and three-
vortex single-orbital systems are qualitatively equivalent
with those obtained for elongated ωz/ω⊥ = 0.2 condensates
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FIG. 2. (Color online) Instantaneous density isosurfaces of the
condensate with seven vortices, perturbed by the different lowest
vortex-displacement modes. The view is along the rotation axis.
The excitation frequency ω′, expressed in units of the transverse
trap frequency, of each perturbing mode is indicated in the upper
right-hand corner of each frame. The discrete rotation symmetries of
these modes are inherited from the sixfold symmetry of the triangular
equilibrium vortex lattice. The central vortices in (f) and (g) gyrate in
the opposite directions [see Supplemental Material [58]]. The number
in the bottom of each frame corresponds to the mode label in Table I.

7μm

9μm

FIG. 3. (Color online) Instantaneous density isosurface of a
condensate excited in a first axial nz = 1 Kelvin-Tkachenko mode
corresponding to the mode branch 1 of the seven-vortex system
in Table I. The orbital vortices are symmetrically tilted toward the
central vortex. For the full dynamics of this mode we refer to the
Supplemental Material [58].

[31]. Briefly, the single-vortex system has only one Kelvin-
Tkachenko-mode branch corresponding to the Kelvin waves
propagating along the axis of the quantum vortex [64–67]. The
varicose vortex waves [68] do not involve the motion of the
vortex phase singularities and are not discussed further here.
The two-vortex system has two mode branches corresponding
to the in-phase (C) and out-of-phase (T) motions of the two
vortex filaments. In addition to the Tkachenko and common
modes, the three-vortex system has a mode branch with 2π/3
phase shift between each pairing of vortices [19,31]. Both the
axially nodeless nz = 0 and first axially excited states nz = 1
of the single-orbital vortex systems are included in the videos
in the Supplemental Material [58].

Using the notation (Nv , mode branch, ωq/ω⊥) the first
axially excited nz = 1 Kelvin-Tkachenko modes have fre-
quencies (1,1,1.532), (2,1,1.536), (2,2,1.658), (3,1,1.600),
(3,2,1.690), and (3,3,1.605). The frequencies of these modes
are approximately half of the harmonic-oscillator level spacing
in the axial direction, ωz/2 = √

2ω⊥. By tightening the trap
sufficiently in the axial direction, practically all axial Kelvin-
Tkachenko modes can be suppressed [69]. Dynamics of the
modes for the four-vortex system were presented in [31].
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0.64 1.000.82

τ =(a)
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τ =
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FIG. 4. (Color online) Snapshots of the time evolution of the
condensate with 19 vortices and perturbed by the rational mode 14
in Table I. The times τ marked in the frames (a)–(f) are in units of
2π/ωq .
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(a) (b)

FIG. 5. (Color online) Two different decompositions of the same
collective mode of a 19-vortex array into collective modes of
subarrays: (a) six three-vortex modes; (b) three seven-vortex modes.

2. Multiorbital modes

The seven-vortex system is special. Of all stable two-orbital
vortex arrays it has the smallest number of vortices. It is
also known that seven classical vortices distributed along a
single-ring pattern is the marginally stable case such that any
higher number of vortices will be unconditionally unstable
[15,16]. Figures 2(a)–2(g) show snapshots of the condensate
perturbed by each of the Nv = 7 different axially nodeless
nz = 0 Kelvin-Tkachenko modes. The excitation frequency of
these modes is marked in the upper right corner of each frame.
Frame (a) is the common (C) mode, (e) is the Tkachenko (T)
mode, (f) and (g) are the two quadratic modes (Q), and (b)–(d)
are the two rational (R) modes; see Table I.

Figure 3 shows a density isosurface of a condensate per-
turbed by the lowest axially excited Kelvin-Tkachenko mode
corresponding to the same branch as the mode in Fig. 2(e)

(cf. Nv = 7, mode 1 in Table I). Here the central vortex remains
straight while the other vortices are tilted, performing gyro-
scopic motion about their respective equilibrium positions. For
the characterization of the collective vortex modes with 12 and
19 vortices we refer the reader to the movies included in the
Supplemental Material [58]. Figure 4 illustrates one such mode
for the case of a 19-vortex, three-orbital, configuration (Nv =
19, mode 14 in Table I). Figures 4(a)–4(f) show snapshots
of the condensate density isosurface perturbed by this mode
for times τ = {0.15,0.33,0.58,0.64,0.82,1.00} × 2π/ωq . The
vortex motion in this mode can be broken down to six
equivalent three-vortex clusters [see Fig. 5(a)], each executing
a three-vortex collective motion (Table I, Nv = 3, mode 2)
while the central vortex remains stationary. Alternatively, it
can be viewed as a superposition of three Tkachenko modes
(Table I, Nv = 7, mode 1), the 12 vortices in the outermost
orbital being divided into two interlaced groups, the inner
six-vortex orbital forming the third subarray, and the central
vortex being shared by all three subarrays [see Fig. 5(b)].

IV. EXCITATION SPECTRA

Figures 6(a)–6(f) show the frequencies of the low-lying
modes as functions of their orbital angular momentum relative
to the condensate ground state, for the systems with Nv =
1, 2, 3, 7, 12, and 19 vortices, respectively. The Kelvin-
Tkachenko modes listed in Table I are contained within the
frequency intervals marked in each frame. The rotonlike
minima at high angular momenta seed the nucleation of
additional vortices to the system when they become resonant
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FIG. 6. (Color online) Calculated low-lying excitation spectra of the respective ground states displayed in Fig. 1. The vertical intervals
mark the energy range of the lowest vortex-displacement modes. The center-of-mass (Kohn) mode is singled out using a square marker. For
every frame there exists a zero mode corresponding to the condensate of atoms. In (d) there is an additional zero mode related to the broken
continuous rotation symmetry of the ground state.
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FIG. 7. (Color online) Excitation frequencies ωq of the lowest
Tkachenko modes (filled circles) and the lowest common modes
(squares) as functions of the external trap rotation frequency �. The
inset shows the energy per vortex associated with the rotation of the
trap as a function of the trap rotation frequency.

with the condensate as the external rotation frequency is
increased [44,70,71]. These “hanging” modes are shifted to
higher angular momenta as the radial extent of the condensate
and the number of vortices in the system increases. The center-
of-mass Kohn mode always occurs at frequency ω⊥ − � and is
singled out in the figures using square markers to differentiate
it from the Kelvin-Tkachenko waves. Each spectrum also
contains a zero mode, which corresponds to the Bose–Einstein
condensate of atoms. In Fig. 6(d) there is an additional zero
mode [72], shown also in Fig. 7 where we have plotted the
lowest Tkachenko modes (T) marked with circles and the
lowest common modes (C) marked with squares, as functions
of the rotation frequency �. The frequency of the common
mode monotonically decreases with increasing value of �. The
frequency of the Tkachenko mode first steeply decreases for
single-orbital vortex states and then increases for multiorbital
states. In the limit � → ω⊥ the frequency approaches zero
[29,52]. The inset in Fig. 7 shows the rotation energy per
vortex �Lz/Nv as a function of the trap rotation frequency �.
The minimum in this curve is correlated with the excitation
frequency of the Tkachenko mode. Such a minimum in the
dispersion relation for situations where the system size is
comparable to the intervortex spacing has not been predicted
by continuum theories, which are valid in the limit of large
vortex lattices. The Tkachenko mode with zero oscillation
frequency implies that this system possesses a doubly degen-
erate rotating ground state and a finite ground-state entropy at
T = 0, unless quantum fluctuations are sufficient to lift this

degeneracy. The stability of this zero mode against thermal
and quantum fluctuations could be addressed experimentally
or by using dynamical finite-temperature methods [73].

The observed two zero modes suggests the possibility of
coexistence of two Bose-Einstein condensates in the system.
The first one results from the spontaneous U(1) gauge sym-
metry breaking and is the Bose-Einstein condensate of atoms.
The second zero-energy quasi-particle mode appears due to the
continuous SO(2) rotation symmetry breaking. Macroscopic
population of such Majorana-Nambu-Goldstone bosons would
correspond to a Bose-Einstein condensate of Tkachenko
waves. Furthermore, for a single-vortex system it might be
possible to create a condensate of kelvons using suitable
trapping parameters. In rotating vector condensates it may
be possible to observe further ground-state degeneracies such
as simultaneous condensates of atoms, magnons, and kelvons.

V. DISCUSSION

In conclusion, we have calculated the low-lying elemen-
tary excitation modes for rotating Bose-Einstein condensates
containing up to 19 singly quantized vortex filaments, us-
ing the microscopic Bogoliubov–de Gennes theory. For Nv

vortices in the system, the spectrum contains Nv low-lying
Kelvin-Tkachenko collective mode branches. We have created
movies of these excitation modes, showing the dynamics of
the vortices when these collective modes are populated. In
agreement with the classical point-vortex model, for every
vortex configuration we find two universal modes. These are
the fundamental Tkachenko mode and a vortex-lattice center-
of-mass common mode. For configurations with more than
one concentric orbital of vortices, we also find two quadratic
modes for which the vortices inside the outermost orbital move
together as a rigid body. In addition, several rational modes,
for which the central vortex remains stationary, are found.

These Kelvin-Tkachenko modes could be experimentally
observed using the existing experimental cold-atom technolo-
gies. An interesting future direction is to investigate to what
extent the physics of two-dimensional quantum turbulence can
be understood in terms of nonadiabatic collective motion of
vortices [74]. For the employed parameters the fundamental
Tkachenko mode of the system with seven vortices has a zero
oscillation frequency [72]. Such a zero mode may be inter-
preted as signaling Bose-Einstein condensation of Tkachenko-
wave quanta in the system. For other studied vortex configura-
tions this Majorana-Nambu-Goldstone mode is found to have
finite excitation frequency, lifting the degeneracy observed for
the seven-vortex ground state. Further studies of the spectra
of slowly rotating Bose-Einstein condensates are needed to
investigate the robustness of the observed minimum in the
excitation frequency of the lowest Kelvin-Tkachenko mode.
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[10] Ü. Parts, J. M. Karimäki, J. H. Koivuniemi, M. Krusius, V. M. H.
Ruutu, E. V. Thuneberg, and G. E. Volovik, Phys. Rev. Lett. 75,
3320 (1995).

[11] T. Mizushima, N. Kobayashi, and K. Machida, Phys. Rev. A 70,
043613 (2004).
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