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Component separation of two-component fermion clouds in a spin-dependent external potential
by spin-density-functional theory
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We investigate the component separation in one-dimensional two-component fermion clouds in a spin-
dependent external potential. The density distributions and the state diagram are studied by means of
spin-dependent density-functional theory. The component separation between spin-up and spin-down atoms
is induced by the interplay of the spin-dependent harmonic confinement and the strong repulsive interaction
between the intercomponents. We find the existence of a threshold repulsive interaction strength above which the
component separation evolves. Different state diagrams are mapped out numerically, from which two regions are
distinguished, i.e., the phase-mixed region with both spin-up and spin-down mixtures in the center of the trap
and the phase-separated region with only spin-up atoms remaining in the center.
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I. INTRODUCTION

Much progress has been achieved recently in the field of
ultracold atomic gases [1], among which the ground state of
one-dimensional (1D) systems of fermionic atoms trapped in
a harmonic trap has been the subject of numerous analytical
and numerical studies [2,3] since fermion gases trapped in
“atomic quantum wires” are realized experimentally [4] and
cooled to temperatures T ∼ 0.1TF, where TF is the Fermi
temperature [5].

A strategy currently used for cooling fermion atomic gases
is sympathetic cooling between the fermions and a second
gaseous component made either of fermions in a different
internal state or of bosons via s-wave collisions [6,7]. At
increasing values of the scattering lengths, the boson-fermion
cloud may undergo demixing [6,8–13]. When the trapping
potentials become component dependent [13,14], due to the
different masses or the magnetic oscillator frequencies [15,16],
the increasing repulsive interaction between the components
will also demix them [17–19]. Locating the onset of incipient
spatial separation, i.e., the component separation point, is
relevant to fermion cooling, since at that point the diminished
overlap between the two clouds will reduce the effectiveness
of the collisional transfer processes.

A great deal of research has touched the topic of 1D atomic
mixtures in optical lattices, modeled by a lattice Hamiltonian
with confining potentials of atoms interacting through a
Hubbard-type term [13,14,17,18], or mixtures in a continuum
space, modeled by a Gaudin-Yang Hamiltonian interacting
through a contact short-range term [16,20]. When detuning
asymmetrically the laser frequencies with respect to the two
hyperfine states [7], or when trapping the two-component
atomic gases of unequal masses, one needs to consider the
confined external potentials to be spin dependent [14,16,17].

Many theories have been tried in understanding the rich
quantum phases in atomic mixtures. The mean-field theory
(reliable at weak interaction) and the Luttinger liquid (valid
asymptotically at small momenta and low energies) have
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predicted the occurrence of component separation, i.e., demix-
ing of the two components in spatial space [6,9,21]. State
diagrams are computed for two-component one-dimensional
quantum gases using density-matrix renormalization-group
techniques [22]. The local density approximation based on
the Bethe-ansatz solution shows that the harmonically trapped
1D mixtures partially demix at strong repulsive interaction
[10,11]. A density-functional theory for the 1D harmonically
trapped Bose-Fermi mixture with repulsive contact interac-
tions was recently used to study the component separation [12].
For two-component fermionic mixtures of the same mass,
a Bethe-ansatz-based spin-density-functional theory (SDFT)
has been successfully used in studying the static and dynamic
properties [3], which is suitable for the whole interaction
range without limitations from the particle number and system
size [23,24]. The purpose of this paper is to use this method to
study the component separation induced by the spin-dependent
external potential.

For a better understanding of the effects of the spin-
dependent external potentials, the repulsive interaction, and
the polarization on the process of demixing at a large range
of parameters, it is essential to have a complete state diagram,
from which one can easily find the optimal parameters to
realize the demixing or to control the cooling efficiency. In
this paper, we study the demixing of the two fermion species
(taking as pseudospins) of the same mass in a continuum space
in the presence of spin-dependent external potentials.

The contents of the paper are arranged as follows. In
Sec. II we introduce the model: an inhomogeneous Gaudin-
Yang Hamiltonian of a contact interaction. Then we briefly
summarize the self-consistent spin-density-functional scheme
used to deal with the inhomogeneous system. In Sec. III
we report and discuss our main numerical results. At last,
a concluding section summarizes our results.

II. INHOMOGENEOUS GAUDIN-YANG MODEL AND
SPIN-DENSITY-FUNCTIONAL THEORY

We consider a two-component Fermi gas with Nf atoms of
same mass m confined inside a strongly elongated harmonic
trap along the x direction. The two species of fermionic
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atoms are assumed to have different pseudospin σ =↑ or ↓
(hyperfine-state label). The number of atoms of spin σ is Nσ

satisfying N↑ + N↓ = Nf . The trapping potential is axially
symmetric and characterized by angular frequencies ω⊥ and
ωσ in the radial and longitudinal directions, respectively, with
ω↓, ω↑ � ω⊥.

The gas is dynamically 1D if the anisotropy parameter
of the trap is much smaller than the inverse atom number,
ω↑/ω⊥, ω↓/ω⊥ � N−1

f . It can thus be described by an
inhomogeneous Gaudin-Yang Hamiltonian,

Ĥ = T̂ + V̂ + Ŵ = − h̄2

2m

∑
σ

∫ +∞

−∞
dx�̂†

σ (x)∂2
x �̂σ (x)

+ g1D

∫ +∞

−∞
dx�̂

†
↑(x)�̂†

↓(x)�̂↓(x)�̂↑(x)

+ 1

2
m

∑
σ

ω2
σ

∫ +∞

−∞
dx�̂†

σ (x)x2�̂σ (x),

(1)

where �̂†
σ (x) [�̂σ (x)] is a field operator that creates (an-

nihilates) a fermion of spin σ at position x, and g1D �
4h̄2asc/(ma2

⊥) (in the limit asc � a⊥) is a parameter that
determines the strength of interparticle repulsions [25]. Here
a⊥ = (h̄/mω⊥)1/2 is the harmonic-oscillator length. The
three-dimensional (3D) scattering length asc can be tuned
easily using a magnetic field [4]. The first term in Eq. (1)
(T̂ ) is the kinetic energy, whereas the second term (V̂)
describes two-body short-range interactions between spin-up
and spin-down atoms. Finally, the third term (Ŵ) is a spin-
dependent parabolic trapping potential.

We define the dimensionless ratio of the spin-up and spin-
down external potential as

γ = ω2
↓

ω2
↑
. (2)

In our study, we assume ω↓ < ω↑ by fixing ω↑ = 1 and thus
0 < γ � 1.

We choose the unit of length as the oscillator length for
the spin-up atoms �↑ = (h̄/mω↑)1/2, and h̄ω↑ as the unit of
energy; the Hamiltonian (1) is governed by the dimensionless
coupling parameter

λ = g1D

�↑h̄ω↑
. (3)

In this work we focus our attention on the interplay of
λ and γ for interatom repulsions (λ > 0) on the local
spin-resolved density, nσ (x) = 〈�̂†

σ (x)�̂σ (x)〉, the total den-
sity n(x) = ∑

σ nσ (x), and the local magnetization ζ (x) =
[n↑(x) − n↓(x)]/2.

For ωσ = 0, the Hamiltonian (1) returns to the homoge-
neous Gaudin-Yang model analytically solvable by means
of the Bethe-ansatz technique [3,26,27] and determined by
the linear density n = Nf /L, by the spin polarization ζ =
(N↑ − N↓)/Nf , and by the interaction strength g1D.

For γ = 1, the Hamiltonian (1) is equivalent to the inhomo-
geneous Gaudin-Yang model in a spin-independent external
potential, which is extensively studied in Refs. [3,20,23].
In this case, the system undergoes the crossover from the

2kF-Friedel to 4kF-Wigner oscillations (with kF the Fermi
wave vector) at a strong interaction strength. However, there
is no component separation, however strong the repulsive
interaction is [23]. The spin-up and spin-down densities are
always locally the same; that is, ζ (x) ≡ 0 or n↑(x) = n↓(x).
At ζ = 1, the system is composed of fully spin-polarized Fermi
gases in a normal phase.

Originally, static density-functional theory (DFT) was
formulated for many-electron systems in the continuous space
of long-range Coulomb interactions. On the other hand, DFT
can be also used in the model system of contact interaction
[3,26,28–31]. In the DFT language, the ground-state spin-
density distributions nσ (x) can be calculated by solving
self-consistently the Kohn-Sham (KS) equation,

[
− h̄2

2m

∂2

∂x2
+ V

(σ )
KS [nσ ](x)

]
ϕα,σ (x) = εα,σ ϕα,σ (x), (4)

with the KS orbital ϕα,σ satisfying

nσ (x) =
Nσ∑
α=1

|ϕα,σ (x)|2. (5)

Here, V
(σ )

KS [nσ ](x) = V
(σ )

H [nσ ](x) + V (σ )
xc [nσ ](x) + V

(σ )
ext (x) is

the spin-dependent effective KS potential, where V
(σ )

H is
the mean-field term V

(σ )
H = g1Dnσ̄ (x) with σ̄ the opposite

spin of σ , V (σ )
xc [nσ ](x) is the exchange-correlation potential

defined as the functional derivative of the exchange-correlation
energy Exc[nσ ] evaluated at the ground-state density profile,
V (σ )

xc (x) = δExc[nσ ]/δnσ (x)|GS, and V
(σ )

ext (x) = mωσx2/2 are
the spin-dependent external potentials. In this paper, we work
in the canonical ensemble by keeping the total number of atoms
constant and varying the number of spin-up and spin-down
atoms in the system, Nσ = ∫

dxnσ (x).
To solve the KS equation (4) together with Eq. (5), the only

term one needs to approximate is the exchange-correlation
functions Exc[nσ ], which is normally done by taking the
local-spin-density approximation (LSDA). In the following we
employ a Bethe-ansatz-based LSDA (BALSDA) functional for
the exchange-correlation potential,

Exc[nσ ] ≈ ELSDA
xc [nσ ]

=
∫

dx n(x) εhom
xc (n,ζ,g1D)

∣∣
n→n(x),ζ→ζ (x) , (6)

where the exchange-correlation energy per particle εhom
xc of the

homogeneous Gaudin-Yang model is defined by

εhom
xc (n,ζ,g1D) = εGS(n,ζ,g1D) − κ(n,ζ ) − εH(n,ζ,g1D). (7)

Here εGS(n,ζ,g1D) is the ground-state energy of the ex-
act Bethe-ansatz solution of the model, εH(n,ζ,g1D) =
1
4g1Dn2(1 − ζ 2) is the mean-field energy, and κ(n,ζ ) =
π2h̄2n2(1 + 3ζ 2)/24m is the noninteracting kinetic energy
[27]. LDA and LSDA are known to provide an excellent
description of the ground-state properties of a variety of
inhomogeneous systems [32]. The Bethe-ansatz-based LDA
or LSDA has been successfully used in calculating the static
and dynamic properties of the systems of contact interactions
[3,26].
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FIG. 1. (Color online) (a) The total ground-state density distributions n(x); (b) spin-resolved densities for spin-up n↑(x); (c) spin-down
n↓(x) atoms; and (d) the local magnetization (in units of �−1

↑ ) as a function of x (in units of �↑) for an unpolarized Fermi gas with N↑ = N↓ = 20
and γ = 1/9. For comparison, the noninteraction case (λ = 0) is also shown in the figure. In (a) and (c), the mean-field results based on the
parametrized energy functional from the second literature in Ref. [3] are indicated by thin black lines.

III. NUMERICAL RESULTS

In the following we study the effects of λ and γ on the
component separation by fixing the total number of fermions
Nf = 40. The ζ is adjusted by varying the corresponding N↑
and N↓. Due to the finite-size nature of the system studied in
this paper, the ζ is restricted to be ζ ∈ [0,0.9].

First, we study the component separation induced by the
repulsive interaction λ for fixed ratio of the spin-dependent
parabolic potentials γ = 1/9. In Figs. 1(a)–1(d), the total
atomic density, the spin-resolved density for spin-down and
spin-up atoms, and the local magnetization are shown, respec-
tively. We illustrate the effects of the repulsive interaction on
the local density distributions and the local magnetization. For
the total density, the effect of the repulsive interaction makes
it lower and broader, as expected. At weak interactions, both
spin-up and spin-down atoms are located in the center of the
trap. It is a phase-mixed (PM) region. With the increasing
repulsive interactions, the density of the spin-up atoms in
a tighter confining potential becomes shallower and higher;
however, it grows at a slow pace with increasing interaction
energy. As a result, spin-down atoms are excluded from
the center of the trap, but in a dramatic way, to decrease

the interaction energy while the potential energy is increased.
The equilibrium density profiles are the result of the com-
petition between these two opposite effects. We show that
there exists a threshold beyond which the total energy is
minimized by a configuration in which the two components
are spatially separated. Accordingly we define the threshold
where spin-down atoms are depleted completely from the
center as the phase-separated (PS) region by requiring n↓(0) �
10−3. Considering that the density in the trap center may
oscillate, we can also define the PS region determined by∫ �x

−�x
dxn↓(x) � 10−3 with �x = 0.1. We have checked that

in this case the phase boundary does not change qualitatively.
In the present case, the onset of the PS region happens at a
threshold interaction strength λc = 8.17.

With increasing λ, the local magnetization ζ (x) in the
central region becomes stronger and stronger. When a PS
region is achieved, the fermion clouds in the trap center are
composed of the fully polarized spin-up fermions. For γ �= 0,
a flat region of ζ (x) is seen in the center of the trap and
two dips are shown at the edges with the excess spin-down
atoms. The increase of the repulsive interaction strength shows
a signature that ζ (x) is more negative at the edges; that is, more
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FIG. 2. (Color online) The 3D plot of the spin-down densities
n↓(x) (in units of �−1

↑ ) as functions of x (in units of �↑) and λ. The
parameters are the same as those in Fig. 1 but with continuously
varying interaction strength in the range [0, [20].

and more spin-down atoms are repelled from the center of the
trap and accumulate at the periphery. For a strong repulsive
interaction where the component separation begins to evolve,
ζ (x) changes from negative to positive with a large slope.

In Figs. 1(a) and 1(c), we also include the mean-field results.
Comparing to the BALSDA scheme, not only the exchange-
correlation energy but also the noninteracting kinetic energy
are treated locally [3]. We find that the mean field gives qual-
itatively the same results as those of BALSDA. However, the
performance of the mean-field scheme at weaker interactions
deteriorates with decreasing particle number where the kinetic
energy processes take place. As a result, the regions close to
the edges of the trap become less accurate. In the system of
spin-dependent external potential, the phase-separation areas
where the densities become small are also those where the
mean field is less accurate.

To have a clear demonstration of how spin-down atoms
are repelled from the center of the trap while increasing the
repulsive interaction, in Fig. 2, the 3D plot of the spin-down
densities n↓(x) is shown as functions of position x and
interaction strength λ. With the increasing of the repulsive
interactions λ, spin-down atoms are depleted gradually from
the center of the trap. Further increasing the interactions, the
two components fully separate, i.e., occupy different regions
of space. The respective density shapes of the spin-up and
spin-down atoms become stable at much stronger interaction
strength. In this example, we find the densities for spin-up and
spin-down atoms remain the same at λ � 20.

To understand the influence of the polarization on the
demixing process, we numerically map out the different state
diagrams in Figs. 3–5. Two regions are seen: the PM region
with spin-up and spin-down mixtures in the center of the trap
and the PS region with only spin-up atoms left in the center. The
crossover to the PS regime is smooth in the present finite-size
system of confined gases. The transition between these two
regimes as functions of the physical system parameters is
explained as follows.

The state diagram as a function of λ and ζ at a fixed ratio
γ = 1/9 is shown in Fig. 3. At a certain polarization ζ , the
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FIG. 3. (Color online) The (λ,ζ ) state diagram at a fixed ratio
γ = 1/9. As the polarization increases, the fermionic systems under
spin-dependent external potentials undergo a crossover from a PM to
a PS region. The line serves as a guide for the eyes.

system is in a PM region at weak interaction and in a PS
region at strong interaction. When the polarization becomes
larger, the demixing is easier due to more spin-up atoms and
fewer spin-down atoms in the trap, and, consequently, a smaller
threshold value for the interaction strength λc is needed for
component separation. As a result, the phase boundary in the
(λ,ζ ) state diagram is a monotonically decreasing curve.

Now, let us concentrate on the component separation
induced by spin-dependent parabolic potentials and the polar-
ization at fixed strong interaction of λ = 8, which is described
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FIG. 4. (Color online) The (γ,ζ ) state diagram at a fixed strong
repulsive interaction of λ = 8. As the polarization increases, the
fermionic systems in the presence of spin-dependent external po-
tentials undergoes a crossover from a PM to a PS region. The line
serves as a guide for the eyes.
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FIG. 5. (Color online) The (λ,γ ) state diagram with varying
polarizations ζ from ζ = 0 to ζ = 0.7.

in the (γ,ζ ) state diagram in Fig. 4. At a certain polarization
ζ , the system is in a PM region at a larger ratio γ and in a PS
region at a smaller γ (i.e., the bigger difference between the
oscillator frequencies ω↑ and ω↓). Similarly, the polarization
makes the PS state easier, which explains why the phase
boundary monotonically increases. The phase boundaries in
Figs. 3 and 4 can be extended to ζ → 1. However, at ζ = 1
the system is a trivial fully spin-polarized Fermi gas in a normal
phase.

In Fig. 5, at varying polarizations, the (λ,γ ) state diagram is
shown. The region above the curves gives a PS state, while the
one below is a PM state. For a fixed polarization, the smaller
the γ , i.e., the tighter the confinement for spin-up atoms, the
easier it is to deplete the spin-down atoms. As a result, smaller
λc is needed to achieve PS. This is the reason why the phase
boundary is an increasing function of the ratio γ . Compared to
the different polarization, we find that the bigger polarization,
the easier to deplete the spin-down atoms, consistent with what
is described in Fig. 3. Thus, a larger PS region is obtained.

IV. CONCLUSIONS

In summary, by adopting a Bethe-ansatz-based spin-
density-functional method, in this paper we have performed
a detailed numerical study of a 1D Gaudin-Yang model in
a spin-dependent harmonic trap. The interplay among the

repulsive interaction, the spin-dependent harmonic traps, and
the polarization is studied. We find that, for the system in
the spin-dependent external potentials, there exists a threshold
value for the interaction strength beyond which a component
separation occurs with two Fermi components staying in the
different spatial regions. For the system with a weak interaction
strength, upon increasing the trap imbalance, the spin-up
atoms are confined more and more in the center of the trap
and a depletion occurs for the spin-down atoms due to the
increasing interaction energy. With a fixed ratio of the external
potentials γ , when the interaction strength λ is larger than a
threshold value λc, the competition of the interaction energy
and potential energy leads to a phase-demixed region.

For a polarized system but fixed total atoms, we obtained
a (λ,ζ ) state diagram at a fixed γ , a (γ,ζ ) state diagram at a
fixed λ, and a (λ,γ ) state diagram with varying ζ , from which
it is easy to judge in which parameters the system is in a PS
region.

The state diagrams provide the actual range of parameters
about the onset of incipient spatial separation and help us
find optimal parameters to demix the two components. In the
process of sympathetic cooling, we can use it to control the
cooling efficiency since the collision rate is strongly related to
the overlapping region between the two components.

Experimentally, when selectively trapping atoms of the
same species in different hyperfine levels, such as for 6Li-6Li or
40K-40K, with different trap oscillation frequencies, the phase
separation discussed in this paper can be checked with the
density measurement by absorption-imaging the sample of
ultracold atoms and tuning the repulsive interaction strength
by Feshbach resonance. For example, for the case of a
spin-unpolarized 6Li system of 40 particles with axial trap
oscillation frequencies for the spin-down and spin-up species
of 2π × 10 Hz and 2π × 30 Hz, respectively, the PS point will
appear around λ ≈ 8.
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[21] A. L. Subaşi, S. Sevinçli, P. Vignolo, and B. Tanatar, Phys. Rev.
A 79, 063632 (2009); T. N. De Silva and E. J. Mueller, ibid.
73, 051602(R) (2006); M. Haque and H. T. C. Stoof, ibid. 74,
011602(R) (2006).

[22] G. Roux, E. Burovski, and T. Jolicoeur, Phys. Rev. A 83, 053618
(2011).

[23] G. Xianlong, Phys. Rev. A 86, 023616 (2012).
[24] J.-J. Wang, W. Li, S. Chen, G. Xianlong, M. Rontani, and M.

Polini, Phys. Rev. B 86, 075110 (2012).
[25] M. Olshanii, Phys. Rev. Lett. 81, 938 (1998); T. Bergeman, M. G.

Moore, and M. Olshanii, ibid. 91, 163201 (2003).
[26] R. J. Magyar and K. Burke, Phys. Rev. A 70, 032508 (2004);

Phys. Rev. B 79, 195127 (2009).
[27] M. Gaudin, Phys. Lett. A 24, 55 (1967); C. N. Yang, Phys. Rev.

Lett. 19, 1312 (1967).
[28] O. Gunnarsson and K. Schönhammer, Phys. Rev. Lett.

56, 1968 (1986); K. Schönhammer and O. Gunnarsson, J.
Phys. C 20, 3675 (1987); Phys. Rev. B 37, 3128 (1988);
K. Schönhammer, O. Gunnarsson, and R. M. Noack, ibid. 52,
2504 (1995).

[29] N. A. Lima, M. F. Silva, L. N. Oliveira, and K. Capelle, Phys.
Rev. Lett. 90, 146402 (2003); V. V. França, D. Vieira, and
K. Capelle, New J. Phys. 14, 073021 (2012).

[30] S. Schenk, M. Dzierzawa, P. Schwab, and U. Eckern, Phys. Rev.
B 78, 165102 (2008); C. Verdozzi, Phys. Rev. Lett. 101, 166401
(2008); M. Dzierzawa, U. Eckern, S. Schenk, and P. Schwab,
Phys. Status Solidi 246, 941 (2009).

[31] D. Vieria, Phys. Rev. B 86, 075132 (2012).
[32] G. F. Giuliani and G. Vignale, Quantum Theory of the Elec-

tron Liquid (Cambridge University Press, Cambridge, 2005);
G. Vignale and W. Kohn, in Electronic Density Functional
Theory, edited by J. Dobson, M. K. Das, and G. Vignale (Plenum,
New York, 1996).

023628-6

http://dx.doi.org/10.1038/nature09393
http://dx.doi.org/10.1038/nature09393
http://dx.doi.org/10.1103/PhysRevLett.90.170403
http://dx.doi.org/10.1088/0256-307X/28/1/010302
http://dx.doi.org/10.1103/PhysRevA.79.023623
http://dx.doi.org/10.1103/PhysRevA.79.023623
http://dx.doi.org/10.1103/PhysRevA.84.023626
http://dx.doi.org/10.1103/PhysRevA.77.013605
http://dx.doi.org/10.1103/PhysRevLett.99.080403
http://dx.doi.org/10.1103/PhysRevLett.99.080403
http://dx.doi.org/10.1103/PhysRevLett.99.230402
http://dx.doi.org/10.1103/PhysRevLett.99.230402
http://dx.doi.org/10.1103/PhysRevLett.91.150403
http://dx.doi.org/10.1103/PhysRevA.73.021602
http://dx.doi.org/10.1103/PhysRevA.73.021602
http://dx.doi.org/10.1016/j.aop.2005.11.017
http://dx.doi.org/10.1103/PhysRevA.85.013608
http://dx.doi.org/10.1103/PhysRevA.85.013608
http://dx.doi.org/10.1103/PhysRevA.85.053630
http://dx.doi.org/10.1103/PhysRevA.75.013612
http://dx.doi.org/10.1103/PhysRevLett.105.095301
http://dx.doi.org/10.1103/PhysRevLett.105.095301
http://dx.doi.org/10.1103/PhysRevA.76.013604
http://dx.doi.org/10.1103/PhysRevA.78.013632
http://dx.doi.org/10.1103/PhysRevA.85.063608
http://dx.doi.org/10.1103/PhysRevA.85.063608
http://dx.doi.org/10.1126/science.285.5434.1703
http://dx.doi.org/10.1103/PhysRevA.83.033608
http://dx.doi.org/10.1103/PhysRevA.83.033608
http://dx.doi.org/10.1103/PhysRevA.78.013613
http://dx.doi.org/10.1103/PhysRevA.81.013628
http://dx.doi.org/10.1103/PhysRevB.76.125107
http://dx.doi.org/10.1103/PhysRevA.79.051604
http://dx.doi.org/10.1103/PhysRevA.79.051604
http://dx.doi.org/10.1103/PhysRevA.69.043603
http://dx.doi.org/10.1103/PhysRevA.69.043603
http://dx.doi.org/10.1103/PhysRevLett.98.070402
http://dx.doi.org/10.1103/PhysRevLett.98.070403
http://dx.doi.org/10.1103/PhysRevA.78.033612
http://dx.doi.org/10.1103/PhysRevA.79.063632
http://dx.doi.org/10.1103/PhysRevA.79.063632
http://dx.doi.org/10.1103/PhysRevA.73.051602
http://dx.doi.org/10.1103/PhysRevA.73.051602
http://dx.doi.org/10.1103/PhysRevA.74.011602
http://dx.doi.org/10.1103/PhysRevA.74.011602
http://dx.doi.org/10.1103/PhysRevA.83.053618
http://dx.doi.org/10.1103/PhysRevA.83.053618
http://dx.doi.org/10.1103/PhysRevA.86.023616
http://dx.doi.org/10.1103/PhysRevB.86.075110
http://dx.doi.org/10.1103/PhysRevLett.81.938
http://dx.doi.org/10.1103/PhysRevLett.91.163201
http://dx.doi.org/10.1103/PhysRevA.70.032508
http://dx.doi.org/10.1103/PhysRevB.79.195127
http://dx.doi.org/10.1016/0375-9601(67)90193-4
http://dx.doi.org/10.1103/PhysRevLett.19.1312
http://dx.doi.org/10.1103/PhysRevLett.19.1312
http://dx.doi.org/10.1103/PhysRevLett.56.1968
http://dx.doi.org/10.1103/PhysRevLett.56.1968
http://dx.doi.org/10.1088/0022-3719/20/24/010
http://dx.doi.org/10.1088/0022-3719/20/24/010
http://dx.doi.org/10.1103/PhysRevB.37.3128
http://dx.doi.org/10.1103/PhysRevB.52.2504
http://dx.doi.org/10.1103/PhysRevB.52.2504
http://dx.doi.org/10.1103/PhysRevLett.90.146402
http://dx.doi.org/10.1103/PhysRevLett.90.146402
http://dx.doi.org/10.1088/1367-2630/14/7/073021
http://dx.doi.org/10.1103/PhysRevB.78.165102
http://dx.doi.org/10.1103/PhysRevB.78.165102
http://dx.doi.org/10.1103/PhysRevLett.101.166401
http://dx.doi.org/10.1103/PhysRevLett.101.166401
http://dx.doi.org/10.1002/pssb.200881554
http://dx.doi.org/10.1103/PhysRevB.86.075132



