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We study a system of polar fermions in a two-dimensional optical lattice and show that the multiband
Fermi-Hubbard model is necessary to discuss its properties. We take into account both onsite and long-range
interactions between different bands, as well as occupation-dependent inter- and intraband tunnelings. For
strong-enough dipolar interactions we predict the appearances of phases such as multiband crystals, smectic
metal, and exotic p-wave supersolids.
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I. INTRODUCTION

Creation of ultracold heteronuclear molecules opens the
path towards experimental realization of strongly interacting
dipolar many-body systems. Depending on the constituent
atoms, in moderate electric field these molecules can have
a large dipole moment of 1 D in their vibrational ground
states [1–4]. In particular, fermionic molecules in the presence
of an optical lattice can be used to simulate various quantum
phases, such as quantum magnetism and phases of t-J -like
models [5–7], various charge density wave orders [8,9],
bond-order solids [10], and so on. One should also stress
that in the strongly correlated regime, in both bosonic and
fermionic systems, the standard descriptions of single-band
Hubbard model ceases to be valid. The effect of nonstandard
terms become important, leading to novel phases like pair
superfluidity and so on [11–16].

While most of the works have been dealing with higher
bands concentrated on bosonic systems, in this paper, we
study dipolar fermions confined in a 2D optical lattice Vlatt =
V0[sin2(πx/a) + sin2(πy/a)] + m�2

2 z2, where V0 is the lattice
depth, a is the lattice constant, m is the mass of the molecule,
and � is the frequency of harmonic potential in the z direction.
n is the fermion filling in the lattice. The dipoles are polarized
along the direction of harmonic trapping. Usually, at low
temperature and for low tunneling, the phase diagram consists
of different crystal states whose structure depends on the filling
n [8]. In this paper, we derive a Fermi-Hubbard model for
dipolar fermions, including the effects of higher bands. We
show that, even for moderate dipolar strength, it is necessary to
take into account the excitations along the z direction. Simulta-
neously, in this regime, the interaction-induced hopping along
the lattice is also important. This changes the phases expected
for a so-called spinless Fermi-Hubbard model including only
a single band. We want to point out that, as explained later, our
model is not equivalent to the models with two distinguishable
fermionic species.

Near n � 1/4, we find a spontaneous appearance of non-
Fermi liquid behavior in the form of smectic metallic phase.
Near n � 1/2, we find that the system can be mapped to an
extended pseudo-spin-1/2 Hubbard model with a different
emergent lattice configuration. We find a regime where chiral
p-wave superconductivity emerges through a Kohn-Luttinger
(KL) mechanism with a transition temperature Tc of the order

of tunneling, the temperature where tunneling becomes likely.
This gives rise to an exotic supersolid, with the diagonal
long-range order provided by the checkerboard pattern of the
lower orbital fermions, while the superfluidity originating from
the fermions in the higher band.

The paper is organized as follows: In Sec. II we have
introduced a multiorbital model to describe dipolar fermions
in optical lattices. We then discuss quantitatively the con-
tributions of different parameters present in the model. In
Sec. III we have described the energy contribution of different
crystal structures in the limit of vanishing tunneling. We also
compare the corresponding energies of such crystal states
without taking into account the higher bands and show that it
is necessary to take into account the higher band contributions
for experimentally realizable parameters. In Sec. IV, we have
investigated the ground-state properties for filling greater than
1/4. We find that due to the higher band-occupation-dependent
tunneling contributions, within a certain parameter regime,
there is a spontaneous formation of the smectic-metal phase,
along with stripelike phases. In Sec. V we describe the ground-
state structures for n � 1/2. We find that the higher-band
tunneling can give rise to sublattices which further can give rise
to p-wave superfluidity. In Sec. VI we present our conclusions
followed by acknowledgments in Sec. VII.

II. MODEL

The Hamiltonian for the dipolar fermions in the second
quantized form reads

H =
∫

d3r�†(r)H0�(r)

+ 1

2

∫
d3r d3r ′�†(r)�†(r ′)V(r − r ′)�(r ′)�(r), (1)

where �(r) is a spinless fermion field operator satis-
fying anticommutation relations {�(r),�†(r ′)} = δ(r − r ′)
and {�(r),�(r ′)} = 0. In the units of recoil energy ER =
π2h̄2/(2ma2), the lattice confinement in the z direction is
characterized by the dimensionless parameter κ = h̄�/(2ER),
and the single-particle Hamiltonian becomes H0 = −∇2 +
Vlatt(r)/ER . The long-range interaction potential reads V(r) =
D(1/r3 − 3z2/r5), where D = 2πmd2/(h̄2a) is a dimension-
less dipolar strength, related to the electric dipolar moment
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d. For KRb molecules with a dipole moment of 0.5 D
confined in the optical lattice with a = 345 nm [17] one
gets D = 8.6, whereas, for similar lattice parameters, LiCs
molecules can have a dipole moment of ∼5 D with D ∼ 100.
We decompose the field operator in the basis of Wannier
functions in the x and y directions and of harmonic oscillator
eigenstates in the z direction. For convenience, we introduce
the orbital index σ = {pml} denoting p, m, and l excitations
in the x, y, and z directions, respectively. In this basis the
field operator �(r) = ∑

i,σ âiσWiσ (r), where Wiσ (r) is the
single-particle wave function in orbital σ localized on site
i = ixex + iyey (ex and ey are unit vectors in the proper
directions). Fermionic operator âiσ annihilates particle in
this state. They satisfy fermionic anticommutation relations,
{âiσ ,â

†
jσ ′ } = δσ,σ ′δij . The Hamiltonian can be rewritten in

the following Hubbard-like form H = ∑
σ H(1)

σ + ∑
σσ ′ H(2)

σσ ′ ,
where

H(1)
σ = Eσ

∑
i

n̂iσ + Jσ

∑
{i j}

â
†
iσ â jσ , (2a)

H(2)
σσ ′ = Uσσ ′

∑
i

n̂iσ n̂iσ ′ +
∑
i �= j

Vσσ ′(i − j )n̂iσ n̂ jσ ′

+
∑
{i j}

∑
σ ′′

T σ ′′
σσ ′(i − j )â†

iσ n̂iσ ′′ â jσ ′ . (2b)

Parameters Eσ and Jσ come from the single-particle Hamil-
tonian and denote single-particle energy and nearest-neighbor
tunneling in orbital σ , respectively. The interparticle inter-
action has three contributions to the Hamiltonian (2b) as
follows: (i) the onsite interaction energy of fermions occupying
different orbitals σ and σ ′ of the same site Uσσ ′ , (ii) the
long-range interaction energy of fermions occupying orbitals
σ and σ ′ of different sites Vσσ ′(i − j ), and (iii) the tunneling
from orbital σ ′ at site j to the orbital σ at site i induced by
the presence of an additional fermion at site i in orbital σ ′′
denoted by T σ ′′

σσ ′(i − j ). Without the loss of generality we can
set Es = 0.

The Hamiltonian (2) is very general. To get a physical
understanding of its properties, we start by examining the
properties of density-density interactions. We calculate the
interactions between a few of the lowest bands: s = {000},
px = {100}, py = {010}, pz = {001}, pxz = {101}, and pyz =
{011}. We find that the onsite interactions Us,px

= Us,py
are

always repulsive. This means that putting two fermions in s and
px or py orbitals simultaneously is energetically unfavorable.
Remarkably, we find that Us,pz

is always negative. This
surprising attraction stems from the presence of the fermionic
exchange term and the shape of the dipolar interactions
(see Appendix A). The negativity of Us,pz

cannot be solely
explained by the attractive nature of the dipolar interaction
separated along the z direction. It comes from the fact that the
indistinguishable fermions occupy two orbitals in the same
site. Therefore, it is not present in models with two different
species as well as dipolar bosons. For higher orbitals, we find
that |Us,pz

| � |Us,pxz
| = |Us,pyz

|. As Us,pz
is negative, we look

into the κ-D parameter space to investigate the breakdown of
single-band approximation since two particles can occupy the
same site. This behavior is controlled by the onsite energy
cost � = Ez + Us,pz

, where the energy gap between the s
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FIG. 1. (Color online) (a) We plot � as a function of lattice
confinement κ for different values of lattice depth V0 and dipolar
strength D = 8. The black solid line, red dashed line, and blue dash-
dotted lines correspond to V0 = 12ER , 8ER , and 6ER , respectively.
(b) Here we plot � as a function of dipolar strength D for different
values of lattice confinement κ and lattice depth V0 = 8ER . The black
solid line, red dashed line, and blue dash-dotted lines correspond to
κ = 9, 7, and 5, respectively.

and pz orbitals is given by Ez = h̄�. In Fig. 1(a), for a fixed
dipolar strength D = 8, we see that � becomes negative when
the lattice confinement κ goes below some critical value. In
Fig. 1(b), we plot � as a function of dipolar strength D and we
see that, above some critical dipolar strength D, � becomes
negative. This value of the critical D also decreases as the
lattice confinement κ goes down. This also suggests that for
low κ , the single-band approximation will break down even
for lower dipolar strength D. In Fig. 2(a), we plot the various
interaction strengths among different bands as a function of
lattice confinement κ . We note that, in addition for long-range
interactions, we find that Vs,s(i) > Vs,pz

(i) > Vpz,pz
(i) > 0.

This results in the breaking of the single-band approximation
due to presence of the pz orbital. Thus, it is important to take
into account at least the s and pz orbitals to describe the dipolar
fermions.
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FIG. 2. (Color online) Parameters of the Hamiltonian for V0 =
8ER as functions of the lattice confinement κ . (a) Onsite interaction
−Us,pz

DER
(blue solid line, -1-) and nearest-neighbor long-range interac-

tions Vs,s (ex )
DJs

(solid black line, -2-), Vs,pz (ex )
DJs

(dashed black line, -3-),

and Vpz,pz (ex )
DJs

(dotted black line, -4-). The red line (-5-) shows the

ratio Vpz,pz
(2ex)/T

‖
eff . (b) Magnitudes of the induced tunneling terms

T s
pz,pxz

(ex )

DJs
(black solid line, -1-),

T s
s,px

(ex )

DJs
(red solid line, -2-), and

T s
pz,pz

(ex )

DJs
(blue solid line, -3-). The dashed black line (-4-) denotes the

ratio T
‖

eff/Js for D = 10.
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We next discuss the role of the interaction-induced tunnel-
ings in Hamiltonian (2). Counterintuitively the most important
contribution does not come from the induced tunneling in the
pz band (T s

pz,pz
(ex)) but from the interband tunneling which

changes the pz orbital to the pxz and pyz ones (T s
pz,pxz

(ex)).
Note that this interband tunneling is absent for usual single-
particle tunneling as the Wannier states of different orbitals
belongs to different Bloch bands [18]. From properties of p

orbital states it follows that T s
pz,pxz

(−ex) = −T s
pz,pxz

(ex). The
relation of this term to other interaction-induced tunnelings
is shown in Fig. 2(b). From the above analysis we introduce
a simplified, but realistic, model of polar Fermi molecules
confined in a 2D optical lattice by taking into account effects
of interactions between orbitals σ ∈ {s,pz,pxz,pyz}. As we
show later, the effect of {pxz,pyz} orbitals can result in strong
long-range tunneling which is absent in the usual tight-binding
models. Thus, the effect of orbitals higher in energy can,
additionally, give rise to new processes which cannot be taken
into account by renormalization of the parameters.

At this point let us note that our model shines a light
on the various spin-Hamiltonian simulators created via polar
molecules in optical lattices [5–7]. The standard way of
treating such a systems is to rewrite a Hamiltonian as an
effective spin model under the assumption that each lattice site
can be occupied at most by one molecule. This simply means
that one neglects the interaction between two indistinguishable
particles at the same site. From our analysis, it follows that this
assumption definitely breaks down when � = Ez + Us,pz

< 0,
which is controlled by the dipolar strength D, optical lattice
depth V0, and trapping frequency �, as plotted in Figs. 1(a)
and 1(b). As one increases the lattice depth or dipolar strength,
the trapping frequency in the z direction � must be increased to
prevent the breaking of the single-band approximation. This
observation limits the parameter regimes accessible for the
models used in Refs. [5–7].

III. CLASSICAL GROUND STATE OF THE SYSTEM

To find the ground state of the system for a given filling,
we first look for the classical crystal states in the limit of
vanishing tunneling. Such an approach is valid as long as the
excitation energies of the crystal state are much larger than
the tunneling. To find the lowest-energy classical crystal states
we follow the strategy described in Refs. [19,20]. Without the
higher orbital effects, at most one fermion can occupy a given
site. The corresponding Hamiltonian reads

HI =
∑
i �= j

Vss(i − j )n̂is n̂ js (3)

with the dipolar interaction in the s band Vss(i − j ) = Vss/

|i − j |3.
By taking the orbital effects into account, the corresponding

Hamiltonian is defined in Eq. (2),

HII = Eσ

∑
i

n̂iσ +
∑

σ

Uσσ ′
∑

i

n̂iσ n̂iσ ′

+
∑
σ,σ ′

∑
i �= j

Vσσ ′(i − j )n̂iσ n̂ jσ , (4)

where σ denotes the s and pz orbital fermions.
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FIG. 3. (Color online) Pictorial diagram of the different checker-
board lattices for n = 1/3. The blue spheres denote s-orbital fermions
and the smaller black spheres denote pz orbital fermions. (a) Ground-
state crystal phase of Hamiltonian (3). (b) A 1/4 checkerboard
lattice of s-band fermions and extra pz fermions with density 1/12.
(c) Density-wave structure of the effective bosons with filling
nb = 1/6 corresponding to the ground-state structure of the Hamil-
tonian (5). (d) The energies E3A (thick solid line), E3B (dashed line),
and E2C (thin solid line) as functions of the trap frequency h̄�/2ER

for dipolar strength D = 10.

We now consider the situation where each occupied site
contains two fermions. In this case, we can define a corre-
sponding hard-core bosonic operator at site i as b̂

†
i = s

†
i p

†
zi

and b̂i = pzi si and the bosonic number operator n̂b
i = b̂

†
i b̂i .

Subsequently, we can write an effective bosonic Hamiltonian
as

HIII = �
∑

i

n̂b
i +

∑
i �= j

∑
σ,σ ′

Vσσ ′(i − j )n̂b
i n̂

b
j , (5)

where σ,σ ′ = s,pz and � is the energy cost of having a
composite boson as defined before. Equation (5) is similar to
the bosonic dipolar system with a modified dipolar interaction
and can simulate the crystal phases of dipolar bosons [21].

For concreteness, we first specifically choose n = 1/3.
At filling n = 1/3 the ground state of the single-band
Hamiltonian (3) forms a crystal structure in accordance with
Ref. [8] and it is shown in Fig. 3(a). Its energy is E3a . In
the current paper, we analyze other structures as a ground
states corresponding to the full Hamiltonian (4) from general
arguments given in Refs. [19,20]. Two other structures can
form the lowest-energy states and are presented in Figs. 3(b)
and 3(c) with corresponding energies E3b and E3c. In the 3b

structure the s-band fermions form a 1/4 crystal structure
and the remaining 1/12 p-orbital fermions occupy already-
occupied sites. The third possible ground-state candidate
Fig. 3(c) comes from the effective bosonic Hamiltonian (5)
at filling nb = 1/6. The energies of the three structures are
plotted as functions of the harmonic trapping frequency for a
dipolar strength D = 10 [Fig. 3(d)]. We find that the energy of
the structure 3a is almost insensitive to the trapping frequency
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FIG. 4. (Color online) Pictorial diagram of the different checker-
board lattices for n = 2/3. The blue spheres denote s-orbital fermions
and the smaller black spheres denote pz orbital fermions. (a) Ground-
state crystal phase of Hamiltonian (3). (b) A 1/2 checkerboard
lattice of s-band fermions and extra pz fermions with density 1/6.
(c) Density-wave structure of the composite bosons with filling
nb = 1/3 corresponding to the ground-state structure of the Hamil-
tonian (5). (d) The energies E3A (thick solid line), E3B (dashed line),
and E3C (thin solid line) as functions of the trap frequency h̄�/2ER

for dipolar strength D = 8.

�. Moreover, the structure is the lowest-energy state (the
true ground state of the system) only for large-enough �

(h̄� � 14.5ER for studied case). For lower trap frequencies
we find that structure 3b (13.2ER � h̄� � 14.5ER) or 2c

(h̄� � 13.2ER) becomes a ground state of the system. We
have also checked that, for filling factors between n = 1/4
and n = 1/3, the energy of the configuration 3b is lower
than the energy of the phase-separated structures predicted
for single-band models [8].

Similarly, we also can infer the ground-state structures at
filling n = 2/3 as the situation is very similar to the filling
n = 1/3 due to particle-hole symmetry. The ground state
of the single-band Hamiltonian (3) shown in Fig. 4(a) with
corresponding energy E4a is a true ground state of the system
only for large-enough �. For lower confinement κ the ground
state is (i) a 1/2 checkerboard s-band crystal with p-band
fermions (with density 1/6) moving on the occupied sites
[energy E4b and Fig. 4(b)] or (ii) a nb = 1/3 stripe structure
of composite bosons [energy E4c and Fig. 4(c)] [21]. Similar
results are also obtained for other filling fractions, namely
n = 1/4,1/2,3/4. For these filling fractions we also find that
below a certain critical trapping strength �, for critical D, it
is important to take into account the excited trap states.

We next discuss the effect of s-fermion tunneling on the
ground-state structures obtained for 1/3 filling. For the 1/3
crystal in Fig. 3(a), s-orbital tunneling can displace a molecule
from their classical state with excitation energy ∼1.7Vss 	 Js

for D = 10. Thus, such excitations will be localized and will
not melt the 1/3 crystal. Similarly for the structure in Fig. 3(a),
the s-orbital fermions for a 1/4 crystal with the corresponding
excitation energy is given by ∼ 0.3Vss 	 Js for D = 10.

Therefore, such states are stable with respect to s-orbital
tunneling. We also note that for the structure 3c, within
the bosonic subspace, tunneling can arise in second-order
processes and it is much lower than the binding energy of
the bosons. The stability of structures like 3b with respect to
pz-orbital fermions will be discussed in the following sections.

IV. GROUND-STATE STRUCTURES NEAR n � 1/4

In this section we will look into the properties of the ground
states near n = 1/4 filling. We show that the presence of higher
orbitals not only changes the ground-state crystal structures,
it also fundamentally changes the properties of such states.
Specifically, we show that new forms of matter, like the smectic
metal phase, can spontaneously form due to the effect of higher
orbitals.

Here we consider the case when � > 0 and, therefore,
for low filling all fermions occupy only the s-orbital states.
For filling n = 1/4 and large-enough D (�3) there is a
nonvanishing single-particle excitation gap and the system
is in the s-band insulator state [denoted by blue spheres in
Fig. 5(a)] [8]. Situation changes dramatically for higher
fillings. It can be simply understood using energy arguments.
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FIG. 5. (Color online) Pictorial diagram of the different checker-
board lattices. The solid blue and open red spheres denotes s-orbital
fermions and the smaller black sphere denotes pz orbital fermions.
(a) Checkerboard lattice at n = 1/4 filling. The pz fermions will move
with effective tunneling T

‖
eff (arrow 1) only along the shaded region,

making a stack of 1D chains. Interaction between neighboring p-band
fermions is equal to Vpz,pz

(2ex) (arrow 2). (b) Scaling dimensions η1

(solid line) and η2 (dashed line) as functions of the total density n for
D = 10 and h̄� = 14ER . (c) Checkerboard lattice at n = 1/2. The
blue and thick red lines constitute two different sublattices. They are
not coupled via tunneling processes since the tunneling T ⊥

eff (arrow 3)
is much smaller than T

‖
eff .
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The energy cost of putting additional particles in the vacant
site is given by Evac = Vs,s(ex) + 2Vs,s(ex + ey) + · · · . In
contrast, the cost of putting additional particles to the pz orbital
of an occupied site is Eocc = � + 2Vs,pz

(2ex) + · · · . For D

larger than some critical strength one finds that Eocc < Evac.
As an example, such conditions are fulfilled for V0 = 8ER ,
D = 10, and h̄� � 14ER . Consequently, additional particles
start to fill the pz band of previously occupied sites. In this
scenario, energy-conserving dynamics of the system comes
from the second-order processes involving tunneling to the
next occupied site [along the x direction in Fig. 5(a)]. To the
leading order, this effective tunneling is given by

T
‖

eff ≈ T s
s,pz

(ex)2
/

(|Us,pz
| + Ex). (6)

As pz fermions only exist with another s fermion in the same
site, the pz fermions can tunnel (with T

‖
eff) along one direction

chosen by the insulator checkerboard geometry in s band, in
our case along ex [Fig. 5(a)]. Along ey , on the other hand, there
is no s-orbital fermion where a pz fermion can hop directly or
by use of a second-order process without going to an higher en-
ergy state. Thus, the movement of the pz fermions is confined
only to along ex . Thus, the resulting system can be thought
as stacks of one-dimensional chains or stripes placed along
ey without interchain tunnelings [22]. The effective Hamil-
tonian governing the pz fermions can be written as H1D =
T

‖
eff

∑
l

∑
〈ij〉 ĉ

†
l,i ĉl,j + Hintra + Hinter with intrachain Hamil-

tonian Hintra = ∑
l

∑
i,j Vintra(i,j )ĉ†l,i ĉl,i ĉ

†
l,j ĉl,j and inter-

chain Hamiltonian Hinter = ∑
l,l′

∑
i,i ′ Vl,l′ (i,i ′)ĉ

†
l,i ĉl,i ĉ

†
l′,i ′ ĉl′,i ′ ,

where ĉ
†
l,ix

and ĉl,ix are creation and annihilation opera-
tors of pz fermions on the s-fermion-occupied site i on
chain l. The intrachain and interchain interactions are given
by Vintra(i,j ) = Vpz,pz

([i − j ]ex) and Vl,l′ (i,i ′) = Vpz,pz
([i −

i ′]ex + [l − l′]ey), respectively.
The ground-state structure of this coupled-chain system is

investigated by introducing the bosonized fields φl,R/L related
to the Fermi operator ĉl,i rewritten in the continuum limit as
ĉl,i → �l,L(x) + �l,R(x) [23,24]. Near the left and right Fermi
momenta ±k̃1, we can write �l,R/L(x) = FR/L exp[±ik̃1x −
iφl,R/L(x)]/

√
2πε, where ε is a cutoff length and FR/L are

Klein factors. The Fermi momentum is given by the density
of pz fermions which, in terms of total density n, reads
k̃1 ≈ (4n − 1)π . By writing the bosonized phase field θl(x) =
[φl,L(x) − φl,R(x)]/2

√
π in terms of its Fourier transform

θqy
(x) along ey , the Lagrangian for the system reads

L =
∫ π

−π

dqy

2π

K(qy)

2

[
1

v(qy)

(
∂θqy

∂t

)2

− v(qy)

(
∂θqy

∂x

)2 ]
.

(7)

The interaction parameter K(qy) and sound velocity v(qy)
are determined by the details of the dipolar interactions (see
Appendix C).

Interchain interactions induce additional charge-density
wave (CDW) perturbation, LCDW = LCDW,1 + LCDW,2 + · · · ,

with

LCDW,1 = 1

u

∑
N

Vpz,pz
((2N + 1)ex + 2ey) cos[(2N + 1)k̃1]

×
∑

l

cos[2
√

π (θl − θl+1)], (8a)

LCDW,2 = 1

u

∑
N

Vpz,pz
(2Nex + 4ey) cos[(2N )k̃1]

×
∑

l

cos[2
√

π (θl − θl+2)]. (8b)

Here LCDW,L is the CDW coupling between two chains with
distance L = 1,2, . . . . Consequently, following Ref. [25], the
scaling dimension of the CDW operator is given by ηL =
2
∫ π

−π

1−cos Lqy

K(qy )
dqy

2π
. When ηL > 2 for all L, the CDW operator

is irrelevant. The stable phase then has properties similar
to a 1D Luttinger liquid with low-energy bosonic collective
excitations. This state preserves the smectic symmetry θl →
θl + αl , with αl constant on each chain. This phase is known
as the smectic-metal phase [23] as there is metallic behavior
along the chain with an insulating density wave order along
the transverse direction. This phase is a peculiar example of
the spontaneous emergence of non-Fermi liquid behavior in
two-dimensional Fermi systems. In contrast, when ηL < 2,
then pz fermions becomes unstable towards formation of stripe
crystals. In Fig. 5(b) we plot η1 and η2 as functions of total
density n for D = 10 and h̄� = 14ER . It is clear that for
1/4 < n < nc there is a smectic-metallic phase while, for
n > nc, the system goes to a stripe-crystal phase. We have
checked ηL to L = 4 and all reside between η1 and η2.

V. GROUND-STATE STRUCTURES NEAR n � 1/2

In this section let us discuss the case of filling n = 1/2
where, for low dipolar strength D, due to the same reasons
as before, fermions will occupy only the s band and the
ground state of the system is the checkerboard insulator (see
Appendix C), as denoted by the solid blue and open red
spheres in Fig. 5(b). To look for properties of the system with
additional particles, we define the deviation from half-filling
δn = n − 1/2 and we introduce the corresponding chemical
potential μ(δn). From energy arguments we find that two
scenarios can occur. The additional fermion (i) occupies a
vacant site with energy cost Evac = 4Vs,s(ex) + 8Vs,s(2ex +
ey) + · · · or (ii) it goes to the pz orbital of an occupied site with
energy cost Eocc = � + 4Vs,pz

(ex + ey) + Vs,pz
(2ex) + · · · .

Consequently, in the second scenario (when Eocc � Evac),
all extra fermions will occupy the pz orbitals of the already
occupied sites. As an example, such conditions are fulfilled
for V0 = 8ER , D = 8, and h̄� � 10ER . In such a case,
δn corresponds to the filling of pz band fermions. The
parallel tunneling of the pz fermions between the occupied
sites will again arise from the second-order processes (6).
Moreover, tunneling to the diagonally occupied site T ⊥

eff ≈
−[Js − T s

pz,pz
(ex)]2/|Us,pz

|, for D ∼ 8 it is 400 times smaller

than T
‖

eff . Consequently, fermions in the pz orbitals can move
in independent square sublattices [either the thick red or
blue sublattice shown in the Fig. 5(b)]. Note that fermions
cannot tunnel between different sublattices. Thus, we can
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describe the system of the pz fermions in the blue (thick red)
lattice as pseudo-spin-up (-down). By introducing operators
ĉis , where s ∈ {↑,↓}, the effective Hamiltonian can be written
as Heff = T

‖
eff

∑
s

∑
{i j} ĉ

†
is ĉ js + Hint with

Hint = V↑↑
∑

s

∑
{i j}

n̂is n̂ js + V↑↓
∑
[i j ]

n̂i↑ n̂ j↓, (9)

where n̂is = ĉ
†
is ĉis . For convenience we introduce V↑↑ =

Vpz,pz
(2ex) and V↑↓ = Vpz,pz

(ex + ey). Note that now {.} is
understood as a nearest-neighbor in a given sublattice. Nearest
neighbors between different sublattices is denoted by [.]. The
modified lattice constant of the sublattices is ã = 2a. In this
way we are able to study the system properties with the
weak-coupling theory. We investigate the emergence of triplet
superconductivity between the same pseudospin fermions,
arising via the KL mechanism [18] (magnetic instabilities are
discussed in Appendix D). We look for Cooper pairs with chiral
p-wave symmetry. The effective interaction between fermions
in KL mechanism in terms of the scattering momentum
k − k′ = q can be written as

Veff s,s(q) = V↑↑ηq −
∑

p

[(
V 2

↑↑ η2
q + V 2

↑↓ β2
q

)
Qq, p

− 2V 2
↑↑ηqηk− pQq, p − V 2

↑↑ηk′− pηk− pQk+k′, p

]
,

(10)

where Qq, p = f (ε p)−f (ε p−q )
ε p−q−ε p

, f (ε) is the Fermi distri-

bution function, ε p = 2T
‖

eff[cos(qxã) + cos(qyã)] is the
dispersion and ηq = 2[cos(qxã) + cos(qyã)] and βq =
4[cos(qxã/2) cos(qyã/2)]. The summation in (10) comes
from taking into account the second-order terms represented
by diagrams shown in Fig. 6(a). The two terms inside
the first bracket in (10) comes from the top-left diagram
in Fig. 6(a), while the next two terms comes from the
top-right and bottom-left diagrams representing vertex cor-
rections. The last term in (10) comes from the bottom-
right diagram in Fig. 6(a) denoting exchange interactions.
By performing the integration over the momentum in the
limit of T → 0, we finally get antisymmetric part of ef-
fective coupling {Veff(q)}− = −λ(T ,μ)[sin(kxã) sin(k′

x ã) +
sin(kyã) sin(k′

y ã)], where λ(T ,μ) = 2V↑↑ + V 2
↑↑

πT
‖

eff

F1(T ,μ) −

 0

 0.1

 0.2

 0.3

 0.1  0.15  0.2  0.25

T c
/J

s

Fermions density δn

(b)(a)

FIG. 6. (a) Diagrammatic representation of the second-order
contributions in (10). The dashed lines denote interaction and the
solid lines denote fermion propagator. (b) The p-wave superfluid
transition temperature Tc as a function of density n = 1/2 + δn.

V 2
↑↓

πT
‖

eff

F2(T ,μ). Functions F1 and F2 originate in the second-

order corrections and their detailed forms are given in
Appendix E. The point is that, due to the Van Hove singularity
in density of states, function F2 contains a logarithmic
divergence. At the same time, function F1 is analytical due
to the dressing of the density of states. This means that there
always exists a finite critical μ above which the interaction
is attractive and superfluidity appears. From the BCS theory
one can get an estimate of the transition temperature Tc

(derivation is shown in Appendix E). In Fig. 6(b) we plot
the transition temperature Tc as a function of the deviation
δn, for example, the parameters discussed previously. For
δn ∼ 0.22 we get Tc ∼ 0.2Js (∼1 nK). Thus, the ground state
has a checkerboard density pattern due to the fermions in the
s orbital and p-wave superfluid fermions in the pz orbital
at temperature below Tc. This can be considered an exotic
supersolid. In contrast to the two-species models, s and pz

fermions are indistinguishable and, therefore, superfluid and
CBW orders are not independent. This comes from the fact
that onsite coupling Uspz

includes the exchange term between
fermions in the s and pz orbitals. Such a term is not present in
standard two-species models.

VI. CONCLUSIONS

In conclusion, we have derived a generalized Hubbard
model for dipolar fermions in an optical lattice by taking
into account higher orbitals. One important aspect of our
findings is that the single-orbital Hubbard models of dipolar
fermions as used in literature breaks down even for moderate
dipole strengths and realistic trapping potentials. Furthermore,
we have shown that the effect of these higher orbitals leads
to interesting phenomena. Due to the strong interaction-
dependent hopping terms in higher orbitals, these systems
can be described by effective weakly interacting theories. For
particular parameters, near n � 1/4, we found a crossover
to the one-dimensional physics resulting in simultaneous
metallic and density wave properties. For Js 	 Vss(ex), the
s fermion checkerboard order is given by the configuration
in Fig. 2(a). As Js is increased there will be single-particle
and dipole excitations at different regions of the n = 1/4
checkerboard crystal similar to the one considered in Ref. [26]
for Wigner-Hubbard crystals due to Coloumb interaction.
These excitations can induce interchain tunneling at different
regions and the resulting model will be subject of future
study. For other set of parameters, n � 1/2, the system
can be described by a weakly interacting Hubbard model
with pseudospin originating from the lattice geometry. Using
the KL theory, we found a transition to the chiral p-wave
superfluidity due to the pz fermions without destroying the
checkerboard order created by the s fermions.

The parameters used here are experimentally realistic and
for some parameters are even currently accessible. Neverthe-
less, let us note that to apply our theory for real experimental
scenario one should take into account losses induced by
reactivity of the molecules. In our paper we completely neglect
this effect by assuming that the loss rates are much smaller than
the considered tunneling processes. In fact, this is true even for
highly reactive molecules like KRb. As reported in Ref. [27]
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for a lattice depth of ∼25 recoil energy (� ∼ 5) the loss rate in
the p-orbital γ01 is of the order of 5 × 102 s−1. In comparison,
the interaction-induced interorbital tunneling rate T s

pz,pxz
(−ex)

is in the order of 5 × 102 s−1 for D = 8 and � = 5. It means
that the ratio γ /T s

pz,pxz
(−ex) ∼ 1, which can make the system

stable with respect to such tunneling processes.
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APPENDIX A: DERIVATION OF THE PARAMETERS
Us, pz , T s

pz, pz
, AND T s

pz, pxz

In this section we represent the onsite interaction
term Us,pz

and interaction-induced hopping terms T s
pz,pz

and T s
pz,pxz

in terms of the single-particle wave func-
tion Wiσ (r) in orbital σ localized on site i . The orbital
index σ = {pml}, denoting p, m, and l excitations in
the x, y, and z directions, respectively. The s orbitals
then can be written as Wis(r) = wix0(x)wiy0(y)φ0(z), where
wix0(x),wiy0(y) are the lowest-band one-dimensional Wan-
nier functions and φ0(z) is the ground-state wave function
of the harmonic oscillator in the z direction. Similarly,
we can write Wipz

(r) = wix0(x)wiy0(y)φ1(z) and Wipxz
(r) =

wix1(x)wiy0(y)φ1(z). Here wix1(x) is the Wannier functions in
the first band and φ1(z) is the first excited state of the harmonic
oscillator in the z direction. For simplicity we took j = i + ex .
From this we can write various parameters as

Us,pz
=

∫ {
wix0(x)wiy0(y)

}2{
wix0(x ′)wiy0(y ′)

}2

×�1,0(z,z′)V(r − r ′)d rd r ′, (A1a)

T s
pz,pz

(ex) =
∫

wjx0(x)wix0(x)w2
ix0(x ′)

{
wiy0(y)wiy0(y ′)

}2

×�1,0(z,z′)V(r − r ′)d rd r ′, (A1b)

T s
pz,pxz

(ex) =
∫

wjx1(x)wix0(x)w2
ix0(x ′)

{
wiy0(y)wiy0(y ′)

}2

×�1,0(z,z′)V(r − r ′)d rd r ′, (A1c)

�1,0(z,z′) = {φ1(z)}2{φ0(z′)}2 − φ1(z)φ0(z)φ1(z′)φ0(z′).
(A1d)

The integrations over z,z′ can be done analytically using
convolution theorem in the momentum space. Consequently,
in the momentum space we get

V (k⊥)

= F
{∫

�1,0(z,z′)V(r − r ′)dzdz′
}

= 2
√

2πD

lz

[
(klz)

2 −
√

π

2
klz(1 + (klz)

2)erfcx

(
klz√

2

)]
,

(A2)

high density

low density

(a) (b)

1

2

X

Y

FIG. 7. (Color online) (a) Pictorial diagram for n > 1/4. The
blue spheres denote s-orbital fermions and the smaller black spheres
denote pz orbital fermions. The s-orbital fermions constitute the
underlying 1/4 checkerboard structure. The pz fermions move
with the effective tunneling T

‖
eff (arrow 1) only along the shaded

regions. Interaction between neighboring p-band fermions is equal to
Vpz,pz

(2ex) (arrow 2). (b) Density-wave structure at filling δn = 1/4.
The dark and light shadings denote higher and lower density of the
pz fermions, respectively.

where F { . } denotes Fourier transform, k = |k⊥| =√
k2
x + k2

y , lz = (h̄/m�)1/2 is a natural harmonic oscillator
length unit, and erfcx(x) = exp(x2)erfc(x), where erfc(.)
denotes complementary error function. It is important to note
that V (k⊥) is always negative for any k⊥. This explains the
appearance of the attractive onsite interaction for any value of
the confinement along the z direction.

APPENDIX B: LUTTINGER LIQUID
DESCRIPTION FOR n > 1/4

As we explained in the main text, for filling n > 1/4 and
parameters V0 = 8ER , D = 10, and h̄� ∼ 14ER , the ground-
state structure is given by a 1/4 checkerboard structure formed
by s fermions. The pz fermions (with density 4n − 1) move
in the occupied sites along the x direction [Fig. 7(a)]. The
resulting system can be thought as stacks of one-dimensional
chains or stripes placed along y without interchain tunnelings.
The effective Hamiltonian governing the pz fermions can be
written as (see the main text)

H1D = T
‖

eff

∑
l

∑
〈ij〉

ĉ
†
l,i ĉl,j + Hintra + Hinter, (B1a)

Hintra =
∑

l

∑
i,j

Vintra(i,j )ĉ†l,i ĉl,i ĉ
†
l,j ĉl,j , (B1b)

Hinter =
∑
l,l′

∑
i,i ′

Vll′ (i,i
′)ĉ†l,i ĉl,i ĉ

†
l′,i ′ ĉl′,i ′ . (B1c)

The bosonized form of the intrachain Lagrangian reads

Lintra = u

∫ π

−π

dqy

2π

K0

2

{ [
∂θqy

(x)

∂t

]2

−
[
∂θqy

(x)

∂x

]2 }
,

(B2a)
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where the Luttinger liquid parameter

K0 =
[

2πT
‖

eff sin k̃1 + [
Vpz,pz

(2ex) + · · · ](2 − cos 2k̃1)

2πT
‖

eff sin k̃1 + [
Vpz,pz

(2ex) + · · · ] cos 2k̃1

]1/2

,

(B2b)

and the sound velocity

u2 = (
2πT

‖
eff sin k̃1 + [

Vpz,pz
(2ex) + · · · ])2

− [
Vpz,pz

(2ex) + · · · ]2
(1 − cos 2k̃1)2. (B2c)

We next include the bosonized form of the interchain Hamilto-
nian which results in the total Lagrangian L1D = L + LCDW,
where

L = u

∫ π

−π

dqy

2π

K(qy)

2

[
1

v(qy)

(
∂θqy

∂t

)2

− v(qy)

(
∂θqy

∂x

)2 ]
.

(B3)

Here the modified Luttinger parameter is given by

K(qy)

K0
=

[
1 + 4

[
Vpz,pz

(ex + 2ey) + Vpz,pz
(3ex + 2ey) + · · · ] cos(qy) + [

Vpz,pz
(4ey) + · · · ] cos(2qy)

2πT
‖

eff sin k̃f + [
Vpz,pz

(2ex) + · · · ](2 − cos(2k̃f 1))

]1/2

, (B4)

and sound velocity v(qy) = K(qy)/K0. Interchain interactions
induce an additional CDW perturbation, LCDW = LCDW,1 +
LCDW,2 + · · · with

LCDW,1 = 1

u

∑
N

Vpz,pz
[(2N + 1)ex + 2ey] cos[(2N + 1)k̃1]

×
∑

l

cos[2
√

π (θl − θl+1)], (B5a)

LCDW,2 = 1

u

∑
N

Vpz,pz
(2Nex + 4ey) cos[(2N )k̃1]

×
∑

l

cos[2
√

π (θl − θl+2)]. (B5b)

At half-filling, i.e., k̃1 = π/2, we see thatLCDW,1 = 0. It means
that the charge-density wave instability is induced by the next-
nearest neighbor interchain interaction. We checked that this
interaction is much weaker than the tunneling T

‖
eff . It means

that the smectic-metal phase discussed in the paper will be
stable to low-enough temperatures.

APPENDIX C: GROUND-STATE STRUCTURE OF
s-ORBITAL FERMIONS AT n = 1/2

To look into the ground state of s-orbital fermions
at n = 1/2, we express the average density 〈n̂i,s〉 = (1 +
(−1)ix+iy δ)/2, where δ is the order parameter. We also define
the single-particle imaginary time Green functions G(i −
j ,τ ) = 〈T âi,s(τ )â†

j ,s(0)〉, where T denotes time ordering. By
following the procedure described in Refs. [28,29] we find the
following equations for G in the momentum space:

[ω + μ − 2V (1 − δ′)]G1(k,ω) − εkG2(k,ω) = 1, (C1a)

[ω + μ − 2V (1 + δ′)]G2(k,ω) − εkG1(k,ω) = 0, (C1b)

where the kinetic energy εk = 2Js(cos kxa + cos kya),
the effective potential V = ∑

i �=0 Vss(i), and δ′ =
δ(

∑
i∈odd Vss(i) − ∑

0�=i∈even Vss(i))/V . In the position
space G1(i) (G2(i)) is equal to G(i) for ix + iy even (odd).
These mean-field equations for G1 and G2 are similar
to the ones found for the extended Hubbard model, with

a renormalized nearest-neighbor interaction and density
imbalance [28,29]. Then, by solving equations (C1), we find

that, in the strong coupling limit, δ = 1 − 3J 2
s

2V 2
ss (ex ) (δ ∼ 0.98

for D = 8 and h̄� = 10ER). Thus, our assumption of
a checkerboard lattice with alternative sites occupied is
justified.

APPENDIX D: TRANSITION TEMPERATURE FOR
STONER FERROMAGNETISM AND CHARGE-DENSITY

WAVE INSTABILITY OF THE pz FERMIONS FOR n > 1/2

In this section we discuss the appearance of Stoner
ferromagnetism and CDW instability of the pz fermions. To
do this we transform to momentum space and introduce charge
fluctuations ρq = ∑

k,s c
†
k+q,sck,s and spin fluctuations Sq =∑

k,s s c
†
k+q,sck,s operators (s ∈ {↑,↓}). Subsequently, we

rewrite Eq. (4) from the main text in the momentum space
as

Hint = 1

4

∑
q

(2V↑↑ηq + V↑↓βq)ρqρ−q

+ 1

4

∑
q

(2V↑↑ηq − V↑↓βq)SqS−q, (D1)

where ηq = 2[cos(qxã) + cos(qyã)] and βq =
4[cos(qxã/2) cos(qyã/2)]. The system with interactions
described by (D1) can manifest three possible magnetic
instabilities: CDW, spin-density wave (SDW), and
ferromagnetic instability. At δn = 1/4 (each sublattice
is half-filled with pz-orbital fermions), as βq = 0 for
nesting vector qã = (±π,±π ), interaction in the spin
channel becomes repulsive and, therefore, SDW order
is absent. In the spin channel, the onset of an Stoner
ferromagnetism is given by the divergence of susceptibility
with momentum q = (0,0). This condition can be written
as λstχ (0) = 1, where λst = 1

2 [V↑↓β0 − 2V↑↑η0], and
the bare susceptibility χ (0) = limq→0

∫
dp Qq, p with

Qq, p = f (ε p)−f (ε p−q )
ε p−q−ε p

. Here f (ε) is the Fermi distribution

function and ε p = 2T
‖

eff[cos(qxã) + cos(qyã)] is the
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dispersion relation. Consequently, in the limit of T → 0,
χ (0) = ∫

N (ε) ∂εf dε where the two-dimensional density of
states,

N (ε) = K[
√

1 − (ε + μp)2/16T
‖

eff]/2π2T
‖

eff,

with K(.) being an elliptic integral of first kind. Substituting the
density of states we get χ (0) ≈ N (T ). As μ → 0, or density
of pz fermions are near 1/4, due to the logarithmic divergence
of K , the transition temperature for the Stoner ferromagnetism
is given by

Tst ≈ 8T
‖

eff exp

[
−2π2T

‖
eff

λst

]
.

The case V0 = 8ER , around D ∼ 8, λst/2π2T
‖

eff ∼ 0.1, corre-
sponds to a very low Stoner temperature Tst ∼ 10−4T

‖
eff .

We next discuss the checkerboard charge-density wave
structure due to the pz fermions at δn = 1/4. Due to nesting,
each fermionic component will be unstable towards CDW.
In the density channel, the onset of an CDW is indicated
by the divergence of susceptibility with momentum qã =
(π,π ). The condition for pz fermion CDW can be written
as λCDWχ (π,π ) = −1, where

λCDW = 1
4 [2V↑↑η(π,π) + V↑↓β(π,π)] = −2V↑↑,

and the bare susceptibility

χ (π,π ) = lim
q→(π,π),ω→T

∫
dp

f (ε p) − f (ε p−q)

ω − ε p−q + ε p

≈ (ln |8T
‖

eff/T |)2/2π2T
‖

eff . (D2)

Subsequently, the transition temperature to the CDW is given
by TCDW ≈ 8T2,||exp(−π

√
T

‖
eff/V↑↑). For example, when

V0 = 8ER , h̄� = 10ER , and D = 8 we find that TCDW ≈
0.35Js (∼2 nK). One should note that due to the relative shift of
sublattices the resulting density modulation in this phase looks
like stripes rather than the standard checkerboard structure as
shown in Fig. 7(b).

APPENDIX E: DERIVATION OF EFFECTIVE
INTERACTION IN THE TRIPLET CHANNEL

In this section we derive the p-wave interaction from the
Kohn-Luttinger effective interaction in terms of the scattering
momentum q = k − k′. For this purpose we rewrite Eq. (6)
from the original paper

Veff s,s(q) = V↑↑ηq −
∑

p

[(
V 2

↑↑ η2
q + V 2

↑↓ β2
q

)
Qq, p

− 2V 2
↑↑ηqηk− pQq, p − V 2

↑↑ηk′− pηk− pQk+k′, p

]
,

(E1)

where Q p,q = f (ε( p))−f (ε( p−q))
ε( p−q)−ε( p) with f (.) being the Fermi

distribution function.
First, we put the expression of ηq = 2[cos(qxã) +

cos(qyã)] and βq = 4[cos(qxã/2) cos(qyã/2)] back to (E1). As
we are interested in p-wave interaction, after expanding (E1) in
terms of the momenta kx , k′

x ,ky , k′
y , we keep terms proportional

to sin kxã sin k′
x ã + sin kyã sin k′

y ã. In this way we get

{Veff(q)} =
(

2V↑↑ −
∑

p

Qq, p[4(V↑↓)2 − 8(V↑↑)2

×{cos(kxã − pxã) + cos(kyã − pyã)}]
)

× (sin kxã sin k′
x ã + sin kyã sin k′

y ã)

+ 4(V↑↑)2
∑

p

Qq, p(sin kxã sin k′
x ã sin2 pxã

+ sin kyã sin k′
y ã sin2 pyã), (E2)

where q = k − k′. By converting sums to integrals
in (E2) we have to compute terms of the form

∫
d pQq, p,∫

d p sin2 pxabQq, p, and
∫

d p cos pxabQq, p. In the limit
of vanishing temperature T → 0 we approximate all
integrals

∫
d pG( p) f (ε( p))−f (ε( p−q))

ε( p−q)−ε( p) ≈ ∫
Neff(ε,μ)∂εf dε for

arbitrary function G( p). The effective density of states
reads Neff(ε,μ) = ∫

dkG(k)δ(ε − εk). We see that the only
first term inside the third bracket in (E2) is not dressed
by cos(pxã) or sin(pxã). Hence, the effective density
of states for this term contains Van Hove singularity.
All other terms with in (E2), due to the dressing by
cos(pxã) or sin(pxã), are analytic. For convenience,
we reexpress {Veff(q)}− = −λ(T ,μ)[sin(kxã) sin(k′

x ã) +
sin(kyã) sin(k′

y ã)], where λ(T ,μ) = 2V↑↑ + V 2
↑↑

πT
‖

eff

F1(T ,μ) −
V 2

↑↓
πT

‖
eff

F2(T ,μ). The functions F1 and F2 are given by

F1 = 4

π
F (1 − (T + |μ|)2/(4T

‖
eff)

2), (E3a)

F2 = 2

π
K([1 − (T + |μ|)2/(4T

‖
eff)

2), (E3b)

where F (x) = E(x) − (1 − x)K(x) with K(.) being the ellip-
tic integral of the first kind and E(.) is the elliptic integral of
the second kind. Then we can write the BCS equation for the
transition temperature Tc as [30]

VpNeff(0,μ) log

∣∣∣∣(1 −
[

μ

4T
‖

eff

]2)1/2 4T
‖

eff

Tc

∣∣∣∣ = 1, (E4)

where the effective density of state is given by

Neff(ε,μ) =
∑

k

δ(ε + μ − εk) sin2(kxab)

≈ F [1 − (ε + |μ|)2/(4T
‖

eff)
2]/π2T

‖
eff . (E5)

As discussed in the main text, the ground state has a
checkerboard density pattern due to the s fermions and p-wave
superfluid pz fermions at temperature below Tc. From previous
section, we see that at δn = 1/4 (half-filled pz fermions for
the red and blue lattices), the transition temperatures for the
pz fermion CDW and pz fermion superfluidity are similar.
This will result in a competition or coexistence between both
instabilities for the pz orbital fermions. A detailed account of
such scenario is beyond this scope of this paper.
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