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Bose-Einstein condensates in spin-orbit-coupled optical lattices: Flat bands and superfluidity
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Recently spin-orbit (SO)-coupled superfluids in free space or harmonic traps have been extensively studied,
motivated by the recent experimental realization of SO coupling for Bose-Einstein condensates (BEC). However,
the rich physics of SO-coupled BEC in optical lattices has been largely unexplored. In this paper, we show that in
a suitable parameter region the lowest Bloch state forms an isolated flat band in a one-dimensional SO-coupled
optical lattice, which thus provides an experimentally feasible platform for exploring the recently celebrated
topological flatband physics in lattice systems. We show that the flat band is preserved even with the mean-field
interaction in BEC. We investigate the superfluidity of the BEC in SO-coupled lattices through dynamical and
Landau stability analysis, and show that the BEC is stable on the whole flat band.
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I. INTRODUCTION

Flat bands possess macroscopic level degeneracy because
of their flat energy dispersion. They play a crucial role in
important physical phenomena such as fractional quantum
Hall effects where a large magnetic field applied on a
two-dimensional electron gas induces flat Landau levels [1].
The flat band physics is also greatly enriched recently by
studying various lattice models where flat bands can be
generated through geometrical frustration of hopping [2,3]
(e.g., kagomé lattice), the destructive interference between
nearest-neighbor and higher-order tunnelings (such as next-
nearest neighbor) [4–6], or the p-orbital physics [7]. In
particular, isolated flat bands in lattices with nontrivial topo-
logical properties have attracted much attention in condensed
matter physics for their applications in engineering frac-
tional topological quantum insulators [8–14] without Landau
levels.

However, most previous lattice models for generating flat
bands involve either high-orbital bands or high-order tunnel-
ings, which are generally very challenging in experiments. In
this paper, we propose an experimentally feasible route for
generating isolated flat bands using cold atoms in spin-orbit
(SO)-coupled weak optical lattices. Our work is motivated
by the recent experimental realization of SO coupling for
BEC [15], which opens a completely new avenue for exploring
SO-coupled superfluids [16]. In particular, SO-coupled BEC
and degenerated Fermi gases in free space and harmonic
traps have been extensively investigated recently [17–39].
However, ultracold atoms in SO-coupled optical lattices have
been largely unexplored [40]. We show that the combination
of SO coupling, Zeeman field, and optical lattice potential
can yield isolated flat bands where topological properties may
originate from the SO coupling [41,42]. In regular optical
lattices, the minimum of the lowest Bloch band locates at the
center of the first Brillouin zone (BZ), while the maximum
locates at the edge [43]. In SO-coupled optical lattices,
the minimum may locate at the edge and the peak at the
center. The height of the central peak can be reduced with
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increasing Zeeman field, leading to decreasing bandwidth
and flat bands in a certain parameter region. We note that
such flat band dispersion has been observed very recently in
experiments in SO-coupled optical lattices using 6Li Fermi
atoms [44].

We first investigate a single atom in a one-dimensional (1D)
SO-coupled weak optical lattice to illustrate the mechanism
for generating isolated flat bands. The atom-atom interaction
in BEC is then taken into account using the mean-field
Gross-Pitaevskii (GP) equation [45]. The nonlinear interaction
reduces the band flatness, but does not fully destroy the
isolated flat bands. The combination of nonlinear interaction
and flat bands may lead to rich and interesting physics. In
particular, the instability of the nonlinear Bloch waves is
very important because it directly relates to the breakdown
of superfluidity of the BEC [46–56]. In SO-coupled optical
lattices, the nonzero momentum of the energy minimum of
the lowest Bloch band and the existence of flat bands make
their stability very different from regular optical lattices. For
instance, the nonlinear Bloch waves can be stable in the whole
BZ in the flat band region.

The rest of the paper is organized as follows. In Sec. II, we
present the flat band structure in SO-coupled optical lattices.
In Sec. III, we discuss the effects of mean-field interactions
and analyze the stability of the BEC in SO-coupled optical
lattices. Sec. IV is the conclusion.

II. FLAT BANDS IN SO-COUPLED OPTICAL LATTICES

We consider a BEC confined in a 1D optical lattice potential
V0 sin2(kLx) along the x direction with V0 as the lattice
depth. In experiments, the lattice potential can be created
by a standing wave formed by two lasers propagating along
different directions [52] (see Fig. 1). The effective wave
vector of the lattice is kL = 2π sin(θL/2)/λL, where λL is the
wavelength of the lasers and θL is the angle between two lasers.
The SO coupling for BEC has been realized in experiments
using two counterpropagating Raman lasers [15], yielding the
single-particle Hamiltonian

H0 = p2

2m
+ γpσz + �σx, (1)
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FIG. 1. (Color online) Laser setup for implementing 1D SO-
coupled optical lattices. �1 and �2 are the Rabi frequencies of the
Raman lasers for generating SO coupling. The other two laser beams
generate the optical lattice.

where p is the atom momentum along the x direction, and σ is
the Pauli matrix. The SO-coupling strength γ = h̄kR/m with
kR = 2π sin(θR/2)/λR , λR is the wavelength of the Raman
lasers, and θR is the angle between Raman beams. � is the Rabi
frequency and acts as a Zeeman field. The units of the energy
and length are chosen as the recoil energy 2EL = h̄2k2

L/m

and 1/kL, respectively, for the numerical calculation. Under
these units, the single-particle Hamiltonian is dimensionless
with γ = kR/kL = sin(θR/2)λL/ sin(θL/2)λR and the optical
lattice potential V0 sin2(x).

Without optical lattice potentials, the single-particle Hamil-
tonian H0 has two SO energy bands μ±(k) [shown in Fig. 2(a)]
due to the lift of the spin degeneracy by the SO and Zeeman
field. A gap 2� between these two bands is opened at k = 0
by the Zeeman field �. In the lower band, there are two energy
minima at kmin = ±

√
γ 2 − �2/γ 2 and one peak at k = 0.

With increasing �, the distance between two kmin shrinks,
and the height of the central peak decreases. At a critical value
�c = γ 2 and beyond, two kmin merge to one point at kmin = 0,
and the central peak vanishes.

In the presence of periodic lattice potentials [i.e., consider
the Hamiltonian H0 + V0 sin2(x)], the eigenenergies of the
single-particle Hamiltonian form the Bloch energy bands [43].
To generate an isolated flat band, it is necessary to reduce
the energy at both the edge and the center of the first BZ
with respect to the band minimum, which can be realized
through a combination of SO coupling, Zeeman field, and
lattice potential. Specifically, the periodic lattice potential can
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FIG. 2. (Color online) Illustration of the formation of isolated flat
bands. (a) Energy dispersion μ±(k) of the single-particle Hamiltonian
H0. The vertical solid (or dashed) lines correspond to the edges of
the first BZ. (b) Lowest band for γ < 1. The gray arrow indicates the
suppression of the central peak with increasing �. (c) The formation
of the lowest band for γ � 1. The solid (green) line is μ−(k), while
the dotted lines are μ−(k ± 2).

open an energy gap at the edge of the first BZ, which lowers
the energy difference between the edge and the band minimum
(denoted as h). When the original band minimum is close to the
edge, the band edge becomes the band minimum (i.e., h = 0).
On the other hand, the height of the central peak decreases
with increasing �. The bandwidth should be determined by
the larger value of h and the central peak height.

The flat band generation mechanism is slightly different in
two different regions: γ < 1 and γ � 1. For γ < 1, kmin = γ

at � = 0 is within the first BZ [Fig. 2(b)]. If γ is close to
1, h should be zero and the bandwidth is determined by
the central peak height, which can be greatly reduced with
increasing �. Therefore the lowest band could be very flat
for a certain parameter region. However, if γ is much smaller
than 1, h becomes a large value, and the width of the lowest
band cannot be squeezed to the flat region. For γ � 1, kmin

of H0 lays outside of the first BZ. In this case, the lowest
band is formed through folding the energy spectrum into the
first BZ [i.e., shift the energy band of H0 by a lattice vector;
see Fig. 2(c)]. The band minima now locate at kmin ∓ 2, and
the physics is similar to that in γ < 1. However, there is one
major difference between γ � 1 and γ < 1. For γ � 1, the
minimum of the lowest band first shift towards the edge of
the first BZ when � increases from 0. Therefore at a certain
range of �, the band minimum always stays at the band edge
and the flat band can be realized by suppressing the central peak
with increasing �. We emphasize that the resulting flat band
is the ground state of the SO-coupled lattice, which further
enhances its experimental feasibility because atoms are usually
adiabatically loaded to the lowest band in experiments [52].
Such SO mechanism for flat bands is very different from
previous schemes in literature using high-order tunneling or
high-orbital physics.

The above intuitive physical picture agrees well with the
numerical results. Using the Bloch theorem, the Bloch waves
can be written as �(x,t) = 	(x) exp [−iμ(k) t + ikx], where
	(x) is the periodic part of the Bloch wave function, and μ (k)
is the eigenenergy, which can be calculated using the standard
central equation. We measure the flatness of the lowest Bloch
band by the ratio R of the gap between the lowest and first
excited bands to the width of the lowest band. In Fig. 3, we
plot the flatness R with respect to � for two different γ .
In the calculation, we use λR = 804.1 nm and λL = 840 nm
which are typical for 87Rb atoms in experiments [15]. The
optical lattice potential is weak, V0 = 2EL, to make sure the
flat band does not come from the high lattice potential. For
simplicity we choose θL = π , and consider two different θR:
θR = π corresponds to γ = 0.74 [in Fig. 3(a)], and θR = π/2
corresponds to γ = 1.05 [in Fig. 3(b)]. We see the maximum
flatness can reach nearly 20/1 for γ = 0.74 and 170/1 for
γ = 1.05. The suppression of the flatness for γ = 0.74 < 1
agrees with our intuitive physical picture: The band minimum
for γ = 0.74 is a little bit far from the edge of the first
BZ, therefore the lowest band cannot be squeezed to exactly
flat. In experiments, γ can be varied using laser setups with
different θL and θR or through a fast modulation of the laser
intensities of the Raman lasers [32]. The dependence of the
maximum flatness on the SO coupling γ is plotted in Fig. 3(c).
With increasing SO coupling, the lowest band becomes more
flat.
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FIG. 3. (Color online) Flatness (ratio R) of the lowest Bloch band.
V0 = 1. (a) γ = 0.74 and c = 0. (b) γ = 1.05. Solid line: c = 0;
dashed line: c = 0.05. The inset is a typical example of flat band in
the nonlinear Bloch spectrum with � = 1.15, c = 0.05. (c) Plot of
the dependence of the maximum flatness on γ with c = 0. (d) The
dependence of the maximum flatness on c with γ = 1.05.

III. STABILITY OF BEC IN SO-COUPLED
OPTICAL LATTICES

So far the study has been limited to the linear case, i.e., a
single atom, while the interactions between atoms in BEC may
play a major role on the dynamics of BEC. In the presence of
a weak lattice potential, the mean-field theory still applies and
the dynamics of BEC in SO-coupled optical lattices can be
described by the nonlinear GP equation

i
∂�

∂t
= H0� + V0 sin2(x)� + c(|�1|2 + |�2|2)�, (2)

where � = (�1,�2)T is the two-component wave function
of the BEC. The unit of time is m/h̄k2

L and the wave
function is normalized through

∫
dx(|�1|2 + |�2|2) = 1 in

one unit cell. The dimensionless interaction coefficient c =
h̄
√

ωyωzkLaN/EL, where N is the atom number in one unit
cell, a is the s-wave scattering length, and ωy and ωz are the
trapping frequencies in the transverse directions. We consider
a 1D BEC confined in an elongated cigar-shaped trap with high
transverse trapping frequencies (y and z directions), while the
trapping potential in the longitudinal direction (x) is negligible.
We also assume the interaction coefficients between atoms are
the same for different hyperfine states, which is a very good
approximation because their difference is very small [57].

Even in the presence of nonlinear terms, the solution of
the GPE is still the Bloch wave in a periodic optical lattice
[46,47]. The repulsive interaction shifts the Bloch spectrum
upwards, and modifies each band dispersion and energy gap
at the same time. However, isolated flat bands still exist in
the presence of nonlinearity, as shown in Fig. 3(b) where the
flatness of the lowest band is plotted for c = 0.05. Compared
with the linear case c = 0, the flatness of the nonlinear flat
band decreases with increasing nonlinearity [Fig. 3(d)] and
the maximum flatness is shifted towards a smaller value of �.

A typical example of the nonlinear Bloch spectrum with an
isolated flat band is shown in the inset of Fig. 3(b).

The combination of nonlinear interaction and flat bands
may lead to various important phenomena, one of which is
the superfluidity of the BEC in SO-coupled optical lattices.
For BEC in optical lattices, the breakdown of superfluidity
may be caused by two different types of instabilities of the
BEC, dynamical instability and Landau instability, both of
which have been extensively studied in theory and experi-
ments [46–56]. The existence of SO coupling and flat bands
may significantly modify the superfluidity of the BEC. The
stability analysis can be performed through Bogoliubov theory,
where quasiparticle excitations induced by perturbations are
taken into account through a small modification of the
wave function �i(x,t) = [	i(x) + �	i(x,t)] exp(−iμt +
ikx), where 	i(x) is the ground state of the BEC, �	i(x,t) =
ui(x) exp(iqx − iδt) + w∗

i (x) exp(−iqx + iδ∗t), q and δ are
the wave vector and energy of the quasiparticle excitations,
while ui and wi are the quasiparticle amplitudes. Substituting
the modified wave function into the Gross-Pitaevskii equation
(GPE), and linearizing the GPE with respect to ui and wi ,
we obtain Bogoliubov–de Gennes (BdG) equations δϕ = Mϕ

with ϕ = (u1,w1,u2,w2)T , where the matrix

M =
(
A12 B12

B21 A21

)
, (3)

with

Amn =
(
L(mn)(q + k) c	m

−c	∗
m L(mn)(q − k)

)
,

Bmn =
(

� + c	m	∗
n c	m	n

−c	∗
m	∗

n −� − c	∗
m	n

)
.

Here L(mn)(k) = −1/2(∂/∂x + ik)2 + V0 sin2(x) − iγ (∂/

∂x + ik) − μ + 2c|	m|2 + c|	n|2. Because the matrix M
is not Hermitian, its eigenvalues may be imaginary. The
dynamical instability is defined if M has one or more
nonzero imaginary eigenvalues. In this case, the instability is
characterized by the exponential growth of the perturbation.
The nonlinear Bloch wave is dynamically stable if all
eigenvalues are real numbers. On the other hand, the Landau
instability can be studied by solving the BdG equation [46],
βϕ = τzMϕ with τz = I ⊗ σz. The nonlinear Bloch wave 	i

is said to be Landau instable if one or more eigenvalues of
τzM are negative. Physically, the nonlinear Bloch wave with
Landau instability is not the local energy minimum of the
system.

We systematically study the stability of nonlinear Bloch
waves at the lowest Bloch band for various parameters. A
typical example of the dynamical and Landau instability of
the lowest band is shown in Figs. 4(a) and 4(b). Due to the
symmetry in the plane (q,k), we only show the region 0 � q �
1 and 0 � k � 1. In Fig. 4(a), the maximum of the imaginary
part of δ is shown. The BEC in the region with nonzero values
is dynamically unstable. There is a critical kc1 beyond which
Bloch waves become dynamically stable. In Fig. 4(b), the
negative maximum of β is plotted, and nonzero values indicate
the Landau instability. There is also a critical kc2 beyond which
Bloch waves are the local energy minimum.
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FIG. 4. (Color online) Instability of the lowest Bloch band. (a),
(b) Plots of the maximum of Im(δ) for dynamical instability (a) and the
negative maximum of β for Landau instability (b). V0 = 1, c = 0.01,
γ = 1.05, and � = 0.8. (c1), (c2), (d1), (d2) Instability regions in
the (k,�) plane. Dashed lines: the minimum of the lowest band; blue
grids: dynamical instability regions; gray shadows: Landau instability
regions.

In Figs. 4(c) and 4(d), we plot the dynamical and Landau
instability region for different nonlinearity, SO coupling,
and Zeeman field. For BEC in a regular optical lattice, the
energy minimum of the lowest band locates at k = 0, and
the Bloch waves in the region around k = 0 are stable, while
in SO-coupled optical lattices, the energy minimum of the
lowest band may not locate at k = 0, therefore we expect
the stability domains should change accordingly, as clearly
shown in Figs. 4(c) and 4(d). For γ = 0.74 < 1 in Figs. 4(c1)
and 4(c2), the minimum of the lowest band (dashed lines)

shrinks to k = 0 with increasing �, and the abrupt change
of the energy minimum corresponds to the flat band region.
When γ is close to one-half of the first BZ, e.g., γ = 1.05 in
Figs. 4(d1) and 4(d2), the energy minimum initially stays at the
edge of the first BZ k = 1. In the flat band region, the energy
minimum quickly moves to k = 0. For a larger γ , the energy
minimum initially increases from a value smaller than k = 1 to
the edge with increasing �, stays there for a certain range of �,
and then suddenly moves to k = 0. The numerical results agree
with the natural expectation that Bloch waves surrounding the
minimum of the lowest band are stable, as shown in Figs. 4(c)
and 4(d). However, we see the whole band is stable in the
flat band region, which means that the superfluidity of BEC
with any momentum in the flat band is conserved. There are
two other properties: (1) the region of dynamic instability is
always smaller than the region of Landau instability and (2)
the stable region increases for a larger nonlinear coefficient c.
These two properties are the same as those for BEC in regular
lattices [46,47].

IV. CONCLUSION

In summary, we show that the combination of SO coupling,
Zeeman field, and optical lattice can generate flat ground state
energy bands where the superfluid of the BEC is stable in the
whole band region. Our proposed SO-coupling mechanism,
when generalized to 2D, may provide an experimentally feasi-
ble route for generating chiral flat bands and studying relevant
fractional quantum Hall insulator physics. The stable superflu-
idity in the whole ground-state band may lead to other interest-
ing phenomena that have not been explored in regular optical
lattices, such as dissipationless Bloch oscillation of BEC.
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