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Transport of dipolar Bose-Einstein condensates in a one-dimensional optical lattice
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We show that magnetic dipolar interactions can stabilize superfluidity in atomic gases, but the dipole alignment
direction required to achieve this varies depending on whether the flow is oscillatory or continuous. If a condensate
is made to oscillate through a lattice, damping of the oscillations can be reduced by aligning the dipoles
perpendicular to the direction of motion. However, if a lattice is driven continuously through the condensate,
superfluid behavior is best preserved when the dipoles are aligned parallel to the direction of motion. We explain
these results in terms of the formation of topological excitations and tunnel barrier heights between lattice sites.
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I. INTRODUCTION

Since the development of optical lattices for cold atoms [1]
there has been a wealth of research in this area, not least on
transport properties. Recent developments in the cooling of
atoms with strong magnetic dipolar interactions [2–5] have
broadened perspectives further, with the possibility to explore
how magnetic effects influence superflow; analogous problems
in solid state physics have been a matter of debate for many
years [6].

To date there have been a number of experimental studies on
continuous and oscillatory transport of cold atoms in periodic
potentials with nonmagnetic atoms [7], including work on
Bloch oscillations [8,9], critical velocities, and dynamical
instabilities [10,11]. The first experiments with dipolar gases
in optical lattices are now starting to reveal information about
static properties [12]. Theoretical work on gases in optical
lattices has primarily focused on static phase diagrams [13],
and dipolar interactions have also been considered in such
cases [14]. Dynamical effects in trapped dipolar gases without
a lattice potential have been studied [15], such as excitation
spectra [16,17] and anisotropic superfluidity [18,19].

However, there has been little work on the transport of dipo-
lar gases in optical lattices [20]. In particular there has been
no consideration of how the directional alignment of magnetic
dipoles in such systems affects the superfluid properties. There
has been theoretical work on lattice transport employing band-
structure calculations in one-dimension [21,22] but these are
difficult to extend to many experimentally relevant situations in
higher dimensions, especially when nonlocal interactions must
be taken into account [23]. In addition, such approaches leave
out certain details of the dynamical evolution of the cloud [24].
Saito et al. used a Hubbard model with a Gutzwiller Ansatz to
show that dipoles aligned perpendicular to a two-dimensional
lattice plane had only a small effect on dynamical instability
thresholds, but other configurations were not considered.

Here we show, using dynamical simulations of the nonlocal
Gross-Pitaevskii equation, that the directional alignment of
magnetic dipoles in a Bose-Einstein condensate plays a crucial
role in determining its transport properties through a shallow
one-dimensional optical lattice. Interestingly, the direction
required to best stabilize the superfluidity varies depending
on whether we consider oscillatory flow or continuous flow.
We show this occurs because the physical processes that break

down the superflow differ in the two cases. In the case of
oscillatory flow, superfluidity is broken down by the formation
of topological excitations. In the case of continuous flow no
such excitations are observed, but dipolar interactions act to
increase or decrease the tunneling barrier between lattice sites,
depending on the dipole orientation.

The paper is organized as follows: in Sec. II we explain
the numerical methods to solve the nonlocal Gross-Pitaevskii
equation for a dipolar gas in an optical lattice. In Sec. III we
present our results for continuous and oscillatory flow. Finally,
we conclude in Sec. IV.

II. NUMERICAL APPROACH

In both the oscillatory and continuous cases we model
the dynamics of the dipolar Bose-Einstein condensate (BEC)
using the full three-dimensional Gross-Pitaevskii equation
(GPE) [25,26], including the usual integral term for the dipolar
potential [27]
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where ψ(r,t) is the wave function at position r and time t

normalized to the total particle number N = 104, m is the mass
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strength with a the s-wave scattering length; the other symbols
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includes the optical lattice with spatial period d and depth
V0, and the harmonic trapping potential with the trapping
frequencies ωx , ωy , and ωz. The potential Vdd(r) describes
the interaction between two polarized magnetic dipoles and is
given by

Vdd(r) = μ0|μ|2
4π

1 − 3 cos2(θ )

|r|3 , (3)

where θ is the angle between an external magnetic field which
polarizes the dipoles and the vector r between the position of
the two dipoles (we assume perfect alignment with the field),
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μ is the dipole moment, and μ0 is the vacuum permeability. We
choose 52Cr atoms for our simulations as in recent experiments
[12] which have |μ| = 6μB where μB is the Bohr magneton
and we set a = 2.0 × 10−9 m [28]. For the optical lattice we
assume d = 1.59 μm and V0 = 1.53 Er [Er = h̄2π2/(2md2)
is the recoil energy]. The frequencies of the harmonic trap
are chosen to be (ωx, ωy, ωz) = 2π × (48 Hz, 16 Hz, 16 Hz).
With these parameters we obtain a system that is deep in the
superfluid regime.

To solve Eq. (1), we use a standard Fourier split-step
method where we treat the dipolar term with the convolution
theorem [27,29]. We prepare the numerical BEC ground
state by starting with the Gaussian analytical solution for the
harmonic trap [30] and ramping up the interactions and the
lattice potential adiabatically.

For each model system we look at three configurations to
determine the influence of the dipole-dipole interaction (DDI).
For the first configuration we neglect the DDI and look at the
system with pure contact interactions which will be referred
to as the Contact Configuration (this system is fictitious and
is used purely for academic comparison). Second, we look at
the system with the dipoles polarized along the x direction
(parallel to the direction of motion), which we call the Parallel
Configuration. Due to the geometry of our model system the
DDI raises the total potential energy in this case. Third, we look
at the system with the dipoles polarized along the y direction
(perpendicular to the direction of motion), henceforth referred
to as the Perpendicular Configuration. In this case the DDI
reduces the total potential energy. In the following section we
always depict the results for the Contact Configuration with
red solid curves, and the results for the Parallel Configuration
(Perpendicular Configuration) with green dashed curves (blue
dotted curves).

III. RESULTS

Here we present our results for oscillatory flow and
continuous flow. We are primarily interested in the breakdown
(or preservation) of superfluidity depending on the direction
of the magnetic dipoles. Unfortunately, the superfluid fraction
in our systems cannot be unambiguously defined in a useful,
quantitative way. This is primarily due to the nonequilibrium
and inhomogeneous nature of the system [31–36]. Naive use
of the Landau criterion is further complicated by the spatially
extended nature of the lattice potential that perturbs the system
[30]. We therefore make use of more qualitative measures.
In the oscillatory case, we consider the damping of in-trap
dipole oscillations as has been done previously [37]. In the
continuous case, we consider the total energy of the BEC; a
superfluid gas will acquire no energy from the moving lattice,
therefore an increase in the BEC energy indicates a breakdown
of superfluidity.

A. Oscillatory flow

To create oscillatory flow we displace the trap a distance
�x along the x direction at t = 0.0 and trigger a center-of-
mass oscillation as sketched in Fig. 1. Due to the harmonic
trap the BEC oscillates back and forth with a velocity that
varies sinusoidally (we do not fulfill the conditions for Bloch

FIG. 1. (Color online) Sketch of the model system for oscillatory
flow. The trap is displaced a distance �x in the x direction to trigger a
center-of-mass oscillation. The colored oval represents the BEC, the
gray line shows the trap before the displacement, the black line the
trap after displacement and the oscillating dark red line the optical
lattice. Black arrows indicate the axes with r the radial direction.

oscillations, a displacement of approximately 7 μm would be
required for the condensate to reach the edge of the first
Brillouin zone). In Fig. 2 we show the expectation value
of the BEC’s position in the x direction as a function of
time for a trap displacement of �x = 4.5 μm (this gives
a velocity amplitude of ωx�x ≈ 1.4 mm s−1). The Contact
Configuration (red solid curve) shows slight damping of the
center-of-mass motion during the simulation. However, the
Perpendicular Configuration (blue dotted curve) shows less
damping compared with the red solid curve. By contrast, the
Parallel Configuration (green dashed curve) shows stronger
damping. To further investigate the system we consider
snapshots of the density profile following several oscillations
in the trap. Figure 3 shows the disruption of the BEC
density profile as a result of oscillatory flow. Figure 3(o)
shows the profile at the start of the simulation before flow
has begun (t = 0.0). We use the Contact Configuration here
but differences due to the influence of the DDI are barely
discernible at this point. Figures 3(a)–3(c) show the density
profile after 0.08 s oscillatory flow (around four oscillation
periods). Figure 3(a) shows the Contact Configuration; we see
that a limited amount of disruption has occurred; compared
with the situation at t = 0.0, the cloud acquiring a small
“tail” to the left. By contrast, Fig. 3(b) shows the Parallel
Configuration. We see significantly more disruption in this

0 0.02 0.04 0.06 0.08 0.1
0

5

10

FIG. 2. (Color online) Expectation value of BEC position
along the x direction for the three configurations: without dipolar
interactions (red solid curve), with dipoles polarized parallel to the
direction of motion (green dashed curve), and with dipoles polarized
perpendicular to the direction of motion (blue dotted curve).
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FIG. 3. (Color online) Cross sections through the z = 0 plane
of the atom density distribution in the course of oscillatory flow
simulations. Panel (o) shows the starting profile without dipolar
interactions. Panels (a)-(c) show the profile after t = 0.08 s for (a)
the configuration without dipolar interactions, (b) with the dipoles
polarized parallel to the direction of motion, and (c) with the dipoles
aligned perpendicular to the direction of motion.

case, including a large density minimum in the center, and
radial topological excitations. These topological excitations
typically consist of solitons and vortices and form as a result
of the direction reversal of the BEC’s motion [38] which pushes
atoms into the radial direction r; this nonlinear mixing explains
the damping behavior in Fig. 2. Figure 3(c) shows the profile
for the Perpendicular Configuration. In this case, the “tail” is
smaller and the cloud has largely retained its form, compared
with the starting profile.

The reason we see less damping for the Perpendicular
Configuration is because the DDI creates potential wells
that restrict motion in the radial direction and therefore the
cloud is more stable against motion away from the primary
direction of flow. By contrast the Parallel Configuration
amplifies the creation of topological excitations because the
DDI raises the potential energy and thereby the level of
instability.

B. Continuous flow

In our second system we drag the optical lattice through
the BEC at constant velocity v, as sketched in Fig. 4.
Figure 5 shows the total energy per atom as a function of
time for different v. We see that below v ≈ 1.00 mm s−1, little
energy is transferred to the BEC [Fig. 5(a)]. However, around
this velocity, the three configurations begin to gain energy
[Fig. 5(b)]. Initially, this energy gain is similar in all three cases
but for higher velocities, the curves start to diverge from one
another [Figs. 5(c) and 5(d)]. The Perpendicular Configuration
(blue dotted curve) shows a greater increase in energy than the
others whereas the Parallel Configuration (green dashed curve)
has the smallest energy increase. The Contact Configuration
(red solid curve) lies between the other two configurations. We
see that the increase in energy only becomes significant after

FIG. 4. (Color online) Sketch of model system for continuous
flow. The colored oval represents the BEC. The optical lattice is
dragged along the x axis through the cloud at constant velocity. The
black line shows the harmonic trap, the oscillating gray curve shows
the optical lattice at t = 0.0 and the oscillating dark red curve shows
the shifted lattice. Black arrows indicate the axes with r the radial
direction.

∼10 ms. For this reason, these instability effects are unlikely
to have played a significant role in the oscillatory case, even
though the velocities were above the required thresholds; the
condensate spent too little time above the thresholds for the
atoms to respond.

As in the case of oscillatory flow, we explore this behavior
further by examining the cloud density profiles. Figure 6
shows the density profiles of the gas after 0.04 s flow time
with v = 1.13 mm s−1. Figure 6(o) shows the starting profile
at t = 0.0 as before. Figure 6(a) shows the profile for the
Contact Configuration. We see that significant numbers of
atoms have been displaced from their original positions in the
center. We are at the edge of the zone for dynamical instability
where perturbations in both the +x and −x directions can
grow exponentially in time. The density of these “wings”
is noticeably less for the Parallel Configuration [Fig. 6(b)].
By contrast, the Perpendicular Configuration shows increased
density in the wings [Fig. 6(c)]. Unlike the oscillatory flow,
we see no large density minima and little evidence of radial
topological excitations.
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FIG. 5. (Color online) Total energy per atom as a function
of time for lattice velocities (a) 0.75 mm s−1, (b) 0.98 mm s−1,
(c) 1.06 mm s−1, and (d) 1.13 mm s−1. The red solid curves show
the configuration without dipolar interactions, the green dashed
curves show the configuration with the dipoles aligned parallel to
the direction of motion, and the blue dotted curves show the con-
figuration with the dipoles aligned perpendicular to the direction of
motion.
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FIG. 6. (Color online) Cross sections through the z = 0 plane
of the atom density distribution in the course of continuous flow
simulations. Panel (o) shows the starting profile without dipolar
interactions. Panels (a)-(c) show the profile after t = 0.04 s for (a)
the configuration without dipolar interactions, (b) with the dipoles
polarized parallel to the direction of motion, and (c) with the dipoles
aligned perpendicular to the direction of motion. The lattice velocity
is v = 1.13 mm s−1.

To summarize these results, we show the total energy per
atom as a function of the lattice velocity in Fig. 7. The values
were taken after t = 0.02 s which is well above the correlation
time of the BEC. The energy increase is noticeably more
severe for the Perpendicular Configuration than the Parallel
Configuration. For comparison, instability thresholds have
been calculated by determining the lowest energy band and
checking its stability against perturbations following reference
[22] with pure contact interactions [39]. The thresholds for
energetic and dynamical instability from the band structure
calculations correspond well to all three of our configurations,
as expected [37].

That the Perpendicular Configuration can stabilize super-
flow for oscillatory motion but destabilize it for continuous
flow (vice versa for the Parallel Configuration) may initially
seem paradoxical. However, we have observed that the
superflow is not broken down by topological excitations in
the continuous case, as it is in the oscillatory case. We
therefore turn our attention to tunneling between lattice sites
by considering the effective lattice potential Veff(r) which
is the sum of the optical lattice, the contact interaction and
the dipolar interaction. If we compare the depth of Veff(r) at
x = 0 for the Perpendicular Configuration with the Contact
Configuration, we find that the DDI increases the effective
lattice depth by about 3.0%, making it harder for atoms to
tunnel. Conversely, the Parallel Configuration lowers the depth
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FIG. 7. (Color online) Total energy per atom at t = 0.02 s
as a function of v for the three configurations: without dipolar
interactions (red dots), with the dipoles polarized parallel to the
direction of motion (green diamonds), and with the dipoles polarized
perpendicular to the direction of motion (blue squares). Vertical gray
lines show the thresholds for the energetic instability (dashed curve)
and the dynamical instability (dot-dashed cure).

of the effective potential by about 3.6%, effectively increasing
the hopping coefficient. Consequently, the reduction (increase)
of the tunnel barrier facilitates (hinders) the motion of the BEC
through the lattice, thereby explaining the results in Figs. 5–7.

IV. CONCLUSIONS

In conclusion, we have studied superfluid transport of mag-
netic dipolar Bose-Einstein condensates in one-dimensional
optical lattices. We have shown that the dipolar interactions
can be used to stabilize the superflow in such systems but
the atomic dipoles must be aligned in different directions
to achieve this, depending on whether the flow of the gas
is oscillatory (“alternating current”) or continuous (“direct
current”). In spite of the apparently paradoxical nature of
this result, we showed it could be simply explained by the
dipoles’ effect on topological excitations and optical lattice
barrier height. The direction reversal in the alternating case is
the key difference that gives rise to different physics.

It is likely that the effects we studied here will be even
more pronounced for cold atoms with stronger magnetic dipole
moments such as erbium and dysprosium, assuming that pos-
sible instabilities can be controlled. There are further questions
relating to two- and three-dimensional lattices; interesting
phenomena may occur in deeper lattices. In addition, there
is the possibility of considering finite-temperature gases and
studying the effects of magnetic dipoles on the superfluid
critical temperature.
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[27] K. Góral and L. Santos, Phys. Rev. A 66, 023613 (2002).
[28] The scattering length can be tuned through a wide range using

Feshbach resonances. This is a typical value [40].
[29] T. Lahaye, J. Metz, B. Fröhlich, T. Koch, M. Meister,
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