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Atom lens without chromatic aberrations
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We propose a lens for atoms with reduced chromatic aberrations and calculate its focal length and spot size.
In our scheme a two-level atom interacts with a near-resonant standing light wave formed by two running waves
of slightly different wave vectors, and a far-detuned running wave propagating perpendicularly to the standing
wave. We show that within the Raman-Nath approximation and for an adiabatically slow atom-light interaction,
the phase acquired by the atom is independent of the incident atomic velocity.
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A crucial element of the toolbox for atom optics [1] is a lens
to focus atom waves. Such an atom lens plays a crucial role in
the realm of atom lithography [2], which is important nowa-
days for a multitude of technological applications. For this
reason, many theoretical suggestions [3] and their realizations
in experiments [4] have been made using laser fields. However,
most of these realizations suffer from chromatic aberrations.
In the present paper we propose a lens that is free of this type of
aberration by using a special combination of light waves. Our
lens is the atom-optics analog of a conventional achromatic
lens [5].

We start our analysis by recalling the key features of a
conventional thin lens [2,6] where a two-level atom interacts
with a standing light field detuned by �, giving rise to the Rabi
frequency �0. This interaction creates the optical potential
Uopt(x) ≡ (h̄�2

0/�) sin2(kxx) for the motion along the x axis,
which we treat quantum-mechanically. In contrast, the velocity
vy of the atom in the direction of the y axis is large and remains
almost constant during the scattering process. For this reason
we consider this motion classically, which allows us to set
y ≡ vyt .

Moreover, due to the small interaction time w0/vy de-
termined by the waist w0 of the standing wave and the
longitudinal velocity vy , and the large detuning �, we neglect
the spontaneous emission, provided that

�we

(
w0

vy

)
� 1, (1)

where � and we are the spontaneous emission rate and the
occupation probability of the excited state, respectively. In
the case of |�| > �0, the maximum value of the population
probability is we ∼ (�0/�)2.

In the Raman-Nath approximation [7] for the transverse
center-of-mass motion of the atom the displacement of the
atom along the x axis caused by atom-field interaction is small
compared to 1/kx , corresponding to

ωr �0
w2

0

v2
y

� 1, (2)

where ωr ≡ h̄k2
x/(2M) denotes the recoil frequency.
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Within these approximations we imprint the phase

φ(x) ∼ −Uopt

h̄

w0

vy

= −�2
0

�

w0

vy

sin2(kxx) (3)

onto the wave function of the center-of-mass motion of the
atom in the ground state, which for kx |x| � 1 is a quadratic
function of x, that is,

φ(x) ≈ −�2
0

�

w0

vy

k2
xx

2. (4)

This quadratic variation is the origin of a thin lens [6,7] with
the focal length

F0 = Mv2
y

2h̄�0

�

k2
xw0�0

≡ κv2
y�. (5)

The spot size S ≡ α0F is determined by the focal length
F and the angular divergence α0 ≡ δv/vy of the atomic beam,
with δv being the uncertainty of the transverse atomic velocity.
For a Gaussian wave packet of width δx the uncertainty δv =
h̄/(Mδx) gives rise to the angular divergence α0 = h̄/(Mvyδx)
and the spot size

S0 = vy�

2k2
xδxw0�

2
0

. (6)

According to Eqs. (5) and (6) in a thin conventional lens
both the focal length F0 and the spot size S0 depend on the
atomic velocity vy , namely, F0 ∝ v2

y and S0 ∝ vy , resulting
in large chromatic aberrations. These scaling laws serve as
our motivation to engineer a phase element for atoms and,
in particular, a lens with reduced chromatic aberrations. Our
suggestion relies on the interaction of a two-level atom with
a near-resonant standing wave, providing us with the optical
potential inducing the focusing, and a far-detuned traveling
light wave removing the achromatic aberrations.

We create the lens field by the superposition

Es(t,r) = El(r)e−iωt (eik2r − eik1r) + c.c. (7)

of two traveling waves of wave vectors k1 ≡ (kx,ky) ≡
(k cos α,k sin α) and k2 ≡ (−kx,ky), which form an angle α

relative to the x axis shown in Fig. 1. Here El(r) describes
the position-dependent real-valued amplitude of the waves,
which, throughout the article, is assumed to be of the form
of the TEM01 Hermite-Gauss mode with a node along the y
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FIG. 1. Scattering of the wave packet 
 = 
(x) of a two-level
atom by a combination of a standing electromagnetic field formed by
two propagating waves of wave vectors k1 and k2 and a traveling wave
propagating orthogonal to the x-y plane serving as a control field. As
the atom propagates along the y axis with the velocity v = vy ey , the
envelope of the two running waves translates according to the relation
y = vyt into the time-dependent function fl = fl(vyt). During the
atom-field interaction the effective detuning of the field frequencies
from the atomic transition changes its sign due to the control field
with an envelope fc(t) in the shape of a “top hat.”

axis. The frequency ω is detuned from the frequency of the
atomic transition between the ground |g〉 and excited |e〉 states
of the corresponding energies Eg ≡ h̄ωg and Ee ≡ h̄ωe by an
amount � ≡ ω − ωe + ωg as shown in Fig. 1.

A running control wave

Er (t,r) = Ec(x,y)ei(kcz−ωct) + c.c. (8)

with the position-dependent amplitude Ec(x,y) and the shape
of a top-hat propagates along the z axis perpendicular to the x-y
plane. The frequency ωc is far detuned by �c ≡ ωc − ωe′ + ωe

from the atomic transition between the exited state |e〉 and
some other state |e′〉. We suppose that the control field is
weak enough to be considered perturbatively, resulting in the
Stark shift �Ee = |℘̃Ec|2/(h̄�c) of the atomic exited state |e〉,
where ℘̃ ≡ 〈e|d|e′〉 is the dipole matrix element.

The time evolution of the state vector

|
(t)〉 = ae(t ; r)e−iωet |e〉 + ag(t ; r)e−iωgt |g〉 (9)

follows from the Schrödinger equation. Indeed, within the
rotating-wave approximation the time-dependent amplitudes
ag and ae, which depend on the position r of the atom as a
parameter, obey the system of equations

ih̄
d

dt

(
ae

ag

)
= Ĥ

(
ae

ag

)
. (10)

The Hamiltonian

Ĥ ≡
(

�Ee V ∗
l e−i�t

Vle
i�t 0

)
(11)

contains the complex-valued coupling matrix elements

Vl(r) = 2℘El(x,y)e−ikyy sin(kxx), (12)

with ℘ ≡ 〈g|d|e〉 being the dipole matrix element.
We assume that the x and y dependence of El and Ec can

be separated and, since the atomic motion along the y axis
is treated classically, y = vyt , we find the forms El(x,y) ≡
E l(x)fl(y) = E l(x)fl(vyt) and Ec(x,vyt) = Ec(x)fc(t) for the
electric field amplitudes. Here the envelope function

fl(y) ≡
√

2

π1/4

y

w0
exp

(
− y2

2w2
0

)
(13)

of the standing wave results from the TEM01 Hermite-
Gauss mode along the y axis and satisfies the normalization
conditions ∫ ∞

−∞
dyf 2

l (y) = w0. (14)

In contrast, the envelope

fc(t) ≡ θ (t) =
{

1, t � 0,

0, t < 0,
(15)

of the control field has a top-hat profile, that is, a stepwise
dependence as expressed by the Heaviside function θ (t) [8].

Moreover, the detunings � and �c are assumed to have
the same sign and we can then set the amplitude of the Rabi
frequency �c ≡ |℘̃Ec|/h̄ of the control field to �c = √

2��c.
As a result, the Stark shift �Ee induced by the control light
field is given by �Ee = 2h̄�f 2

c (t).
The Hamiltonian Eq. (11) finally takes the form

Ĥ ∼=
(

2h̄�f 2
c (t) h̄�(x)fl(vyt)e−i(�−ωα )t

h̄�(x)fl(vyt)ei(�−ωα )t 0

)
,

(16)

where

ωα ≡ kyvy (17)

and

�(x) ≡ (2|℘E l|/h̄) sin(kxx) ≡ �0 sin(kxx) (18)

are the velocity-dependent Doppler and position-dependent
Rabi frequencies, respectively.

We now solve the Schrödinger equation (10) with the
Hamiltonian Eq. (16) in the case of an adiabatically slow
atom-field interaction. For this purpose we substitute the
second equation of the system (10) for the amplitude ag into the
first one for ae and get the second-order differential equation

d2

dt2
ag −

(
i�̃ + 1

fl

dfl

dt

)
d

dt
ag + �2f 2

l ag = 0 (19)

with the initial conditions

ag(t0) = 1,
dag

dt

∣∣∣∣
t0

= 0 (20)

at time t0. Here we have introduced the time-dependent
effective detuning

�̃(t) ≡ � − ωα − 2�f 2
c (t) = � − ωα − 2�θ (t). (21)
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In the case of a slowly varying envelope fl(t) with∣∣∣∣ 1

fl

dfl

dt

∣∣∣∣ � |�̃| or |�̃| w0

vy


 1, (22)

we can neglect its time derivative in the second term of Eq. (19)
and arrive at the approximate equation

d2

dt2
ag − i�̃

d

dt
ag + �2f 2

l ag � 0. (23)

For each time interval, that is, for −∞ < t � 0 and 0 � t <

∞, when the detuning �̃ is constant, the solution of Eq. (23)
with the initial conditions Eq. (20) reads

ag(t) = 1

2

[
1 − �̃(t0)

λ(t0)

]
eiφ+(t) + 1

2

[
1 + �̃(t0)

λ(t0)

]
eiφ−(t) (24)

with

φ±(t) = 1

2

∫ t

t0

dt ′[±λ(t ′) + �̃(t ′)] (25)

and

λ(t) ≡
√

�̃2(t) + 4�2f 2
l (vyt). (26)

For the two time intervals −∞ < t � 0 and 0 � t < ∞ the
initial time t0 corresponds to t0 = −∞ and t0 = 0, respectively,
where the envelope fl(vyt) vanishes. From Eq. (26) we find
λ(t0) = |�̃(t0)| and

1

2

[
1 ± �̃(t0)

λ(t0)

]
= 1

2

[
1 ± �̃(t0)

|�̃(t0)|
]

= θ [±�̃(t0)]. (27)

With the definitions Eqs. (21), (25), and (26) of �̃, φ± and
λ together with the explicit form Eq. (27) for coefficients, we
can cast Eq. (24) into the compact form ag ≡ exp(iϕg), where
the phase

ϕg(t ; x) = 1

2

∫ t

−∞
dt ′[�̃ − sgn(�̃)

√
�̃2 + 4�2(x)f 2

l (vyt ′) ]

(28)

depends on the transverse coordinate x of the atom. Since we
are interesting in engineering a lens for matter waves, we can
ignore the phase −ωgt in the Schrödinger picture, which is
independent of x, and the total phase �g acquired by the atom
during its interaction with the two light fields is the sum

�g ≡ ϕg(t → ∞; x) = φg(x; � − ωα) + φg(x; −� − ωα)

(29)

of the two contributions determined by the time intervals
−∞ < t � 0 and 0 � t < ∞, where

φg(x; δ) ≡ sgn(δ)

2

∫ ∞

0
dt

[|δ| −
√

δ2 + 4�2(x)f 2
l (vyt)

]
.

(30)

In the case of ωα � |�|, the total phase �g given by
Eq. (29) reduces to

�g(x) = ωα

∫ ∞

0
dt

[
|�|√

�2 + 4�2(x)f 2
l (vyt)

− 1

]
. (31)

When we introduce the integration variable y ≡ vyt , and
recall the definitions Eqs. (17) and (18) of ωα and �, we
arrive at

�g(x) = ky

∫ ∞

0
dy

{[
1 + 4

�2
0

�2
sin2(kxx)f 2

l (y)

]−1/2

− 1

}
.

(32)

We emphasize that �g is proportional to ky , which is a
consequence of the noncollinearity of the two wave vectors
k1 and k2. Moreover, �g is independent of vy . Hence, the
combination of the lens field and the control wave acting on
the atom creates an achromatic phase element.

We now use this phase element to construct a lens with
reduced chromatic aberrations. For this purpose we consider
a position of the atom close to a node of the standing wave,
which allows us to expand the square root in Eq. (32), and we
arrive at

�g(x) ≈ kyvy

�

(
−�2

0

�

w0

vy

k2
xx

2

)
= kyvy

�
φ(x). (33)

Here we have recalled the normalization condition Eq. (14)
for the profile function fl and the form Eq. (4) of the phase φ

induced by a regular optical potential.
Due to the control field �g is the product of the phase φ

corresponding to a conventional optical potential and the ratio
(kyvy)/�. Hence, the focal length and the spot size of our lens
read

F = �

kyvy

F0 and S = �

kyvy

S0. (34)

Since according to Eqs. (5) and (6) F0 and S0 depend
quadratically and linearly on vy , in our lens the focal length F
is proportional to vy and the spot size S is independent of it.
This scaling implies a reduction of the chromatic aberrations
in comparison with the conventional technique of focusing
atoms. Moreover, in our lens both the focal length F and the
spot size S are larger by a factor |�|/(kyvy) than those of the
conventional lens.

The reduced chromatic aberrations are due to the symmetry
of the TEM01 Hermite-Gauss mode with respect to a node
at y = 0. Indeed, our combination of light waves acts as
two thin optical lenses covering the domains −∞ < y � 0
and 0 � y < ∞ and contributing to the total phase �g given
by Eq. (29). Depending on the sign of �, the first lens is
converging, whereas the second one is diverging, or vice versa.
According to Eq. (5), the corresponding focal lengths

F± ≡ 2κv2
y(±� − ωα) = 2κv2

y(±� − kyvy) (35)

give rise with the familiar identity

1

F = 1

F+
+ 1

F−
(36)

to the total focal length

F = 2κv2
y

(� − kyvy)(� + kyvy)

2kyvy

≈ �

kyvy

F0, (37)

which coincides with Eq. (34). Here we have recalled the
definition Eq. (5) and used the fact that kyvy � |�|. Thus,
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the suggested atom lens is designed in a similar manner as a
conventional achromatic lens in optics [5].

The conditions Eqs. (1) and (2) are satisfied in experi-
ments [2]. Indeed, for metastable helium with the velocity
vy = 2000 m/s, the angle α = 10−3, the waist w0 = 50 μm,
the wavelength λ = 1083 nm, the wave packet width δx =
λ, the detuning � = 2π × 30 MHz, the rate � = 107 s−1,
and the Rabi frequency �0 = |�|, we obtain the interaction
time 2w0/vy = 50 ns and the Doppler frequency kyvy =
2π × 1.85 MHz. For these values, we obtain the focal length
F0 = 390 μm, the spot size S0 = 3 nm, and F0/F = S0/S =
(kyvy)/� = 0.06.

In summary we have proposed a lens with reduced
chromatic aberrations. Our scheme differs from a conventional
lens by the use of two rather than a single light field. The
improvement factor is given by the ratio of the detuning and a
Doppler shift.

It is interesting to note that we can interpret [9] �g as a sum
of two Berry phases [10–12] acquired by the atom during the
two interaction regions −∞ < y � 0 and 0 � y < ∞. Since
the Berry phase is purely of geometrical nature, it is insensitive
to small perturbations in the control parameters [13]. For this
reason, we expect that our lens designed in this way is more
robust against small fluctuations of the system parameters,
such as the intensity of the light fields.

We are deeply indebted to J. Baudon, M. V. Fedorov,
R. Kaiser, M. K. Oberthaler, R. Walser, and V. P. Yakovlev
for many suggestions and stimulating discussions. M.A.E.
is grateful to the Alexander von Humboldt Stiftung and
Russian Foundation for Basic Research (Grant No. 10-02-
00914-a). P.V.M. acknowledges support from the EU project
“CONQUEST” and the German Academic Exchange Service
(DAAD).

[1] A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, Rev. Mod.
Phys. 81, 1051 (2009); C. S. Adams, M. Sigel, and J. Mlynek,
Phys. Rep. 240, 143 (1994).

[2] M. K. Oberthaler and T. Pfau, J. Phys.: Condens. Matter 15,
R233 (2003); V. I. Balykin and P. N. Melentiev, Nanotechnol.
Russia 4, 425 (2009).

[3] V. I. Balykin and V. S. Letokhov, Opt. Commun. 64, 151 (1987);
G. M. Gallatin and P. L. Gould, J. Opt. Soc. Am. B 8, 502 (1991);
B. Dubetsky and P. R. Berman, Phys. Rev. A 58, 2413 (1998);
J. L. Cohen, B. Dubetsky, and P. R. Berman, ibid. 60, 4886
(1999); S. Meneghini, V. I. Savichev, K. A. H. van Leeuwen,
and W. P. Schleich, Appl. Phys. B: Lasers Opt. 70, 675 (2000);
V. I. Balykin and V. G. Minogin, Phys. Rev. A 77, 013601 (2008).

[4] J. E. Bjorkholm, R. R. Freeman, A. Ashkin, and D. B. Pearson,
Phys. Rev. Lett. 41, 1361 (1978); J. J. Berkhout, O. J. Luiten, I. D.
Setija, T. W. Hijmans, T. Mizusaki, and J. T. M. Walraven, ibid.
63, 1689 (1989); O. Carnal, M. Sigel, T. Sleator, H. Takuma, and
J. Mlynek, ibid. 67, 3231 (1991); T. Sleator, T. Pfau, V. Balykin,
and J. Mlynek, Appl. Phys. B: Lasers Opt. 54, 375 (1992);
G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham,
M. Prentiss, and K. K. Berggren, Phys. Rev. Lett. 69, 1636
(1992); J. J. McClelland, R. E. Scholten, E. C. Palm, and
J. Celotta, Science 262, 877 (1993); W. G. Kaenders, F. Lison,
A. Richter, R. Wynands, and D. Meschede, Nature (London)
375, 214 (1995); B. Holst and W. Allison, ibid. 390, 244 (1997);
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