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Dynamical excitations in the collision of two-dimensional Bose-Einstein condensates

T. Yang, B. Xiong, and Keith A. Benedict
Theory of Condensed Matter, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom

(Received 23 August 2012; published 5 February 2013)

We investigate the way in which the pattern of fringes in a coherent pair of two-dimensional Bose condensed
clouds of ultracold atoms traveling in opposite directions subject to a harmonic trapping potential can seed
the irreversible formation of internal excitations in the clouds, notably solitons and vortices. We identify
underdamped, overdamped, and critically damped regimes in the dipole oscillations of the condensates according
to the balance of internal and center-of-mass energies of the clouds. We carry out simulations of the collision
of two clouds with respect to different initial phase differences in these regimes to investigate the creation of
internal excitations. We distinguish the behavior of this system from previous studies of quasi-one-dimensional
BECs. In particular we note that the nature of the internal excitations is only essentially sensitive to an initial
phase difference between the clouds in the overdamped regime.
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I. INTRODUCTION

Andrews et al. [1] clearly demonstrated the matter-wave
nature of atomic Bose condensates by showing that when
two Bose condensed clouds are allowed to overlap spatially,
quantum interference fringes are observed. This, and most
subsequent experiments on atomic interference, used freely
expanding atom clouds [2–5] to avoid the complicating effects
of interactions. An alternative approach, however, involves
controlling the motion of atom clouds using time-dependent
trapping potentials [6,7], often generated by atom chips [8],
where the nonlinear effect due to interatomic interactions
would be significant. In the noninteracting limiting case
the interference fringe pattern will appear while the clouds
are spatially overlapping but smoothly disappear as the
clouds separate. However, in Ref. [9] it was shown that the
recombination process of a split condensate is very sensitive
to atomic interactions. When interactions are important, the
spatial modulation associated with the interference pattern
can lead to the creation of nontrivial internal excitations
(solitons and vortices), which do not disappear after the clouds
separate. These excitations may have important consequences
for interferometry. Such processes have been widely discussed
in the context of quasi-one-dimensional (1D) BEC clouds
[4,10–14]. The relative phase of two BECs can be read
out by measuring the size of the cloud [12,15] after free
expansion or the amplitude of soliton oscillations (or the
condensate dipole mode) [11]. Analysis of the dynamics of
solitons highlighted the potential for exploiting the resonant
production of vortices when the initial relative phase of two
interfering condensates is π to develop motion detectors
[13]. In a two-dimensional (2D) configuration (disk-shaped
condensates) the situation may be different. Such a 2D
geometry is of interest because, like the elongated (quasi-1D)
geometry studied previously, 2D condensates have large length
(in both x and y directions for 2D configurations): a desirable
feature for matter-wave interferometry because it provides
natural averaging over any small fluctuations in the trap
potentials, the force to be measured, or the thermal fluctuations
within the BEC. However, in two dimensions one expects the
effects of (quantum and thermal) phase fluctuations to be less
severe.

The primary objective of this paper is to investigate the
processes by which internal excitations are seeded by the
formation of quantum interference fringes in a coherent pair
of 2D Bose condensed clouds in relative motion subject to
a harmonic trapping potential and how these result in the
damping of dipole oscillations: in particular, the sensitivity of
the dynamics to the phase difference between the two clouds. In
addition to the intrinsic interest of such processes, they are sig-
nificant (and mostly inimical) to applications of matter-wave
interferometry such as metrology, gravitational, temporal, and
rotational sensing [16–18] as well as fundamental studies of
decoherence [19] and vortex production [3–5,20].

The energy cost of the formation of internal excitations
must be paid from the center-of-mass (c.m.) kinetic energy of
the clouds hence leading to the damping of c.m. oscillations
in a confining potential. The dynamics of the system is
mainly determined by the competition between the c.m. kinetic
energy and the interatomic interaction energy. The system
is studied in three regimes. (a) The underdamped regime
corresponds to the situation in which the c.m. kinetic energy
is much larger than the interatomic interaction energy. In this
case the system responds in a manner that is qualitatively
similar to the noninteracting system, albeit with curved fringes
due to the nonuniformity of the clouds. (b) The critically
damped regime refers to the situation in which the c.m.
kinetic energy and the interatomic interaction energy are of
the same order. This means that nonlinearity is important
and the effect of scattering becomes noticeable, which may
make the dynamics of the system complicated. (c) In the
overdamped regime, the c.m. energy is much smaller than
the interaction energy, where the system undergoes a merging
process dominated by the nonlinear interaction rather than
collision.

In this paper, we present detailed calculations within the
framework of zero-temperature mean-field theory, which en-
able us accurately to characterize the behavior of collision and
interference dynamics as a function of the initial displacement
between the two disk-shaped condensate clouds and the role of
the initial relative phase difference in these different regimes.
We will describe the way in which quantum interference
can lead to the creation of permanent excitations and the
consequent damping of dipole oscillations.
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The physical situation that we consider in this paper
involves cooling a cloud of atoms to zero temperature in an
anisotropic harmonic potential. The potential is then changed
to have two minima in order to (partially or fully) separate
the condensate into two clouds whose centers of mass are
symmetrically placed about the minimum of the original
potential, a distance 2� apart. It is supposed that the separation
process is carried out adiabatically so that the clouds retain
their mutual phase coherence and remain in the ground state
of the double-well potential. We allow for the possibility
that an overall phase difference, θ , is imposed between
the two clouds. The potential is then suddenly switched
back to its original form and the system is allowed to evolve.
The stipulation that the two clouds retain their full phase
coherence ensures that the whole system is described by a
single complex order parameter field, which evolves according
to the time-dependent Gross-Pitaevskii (GP) equation [21,22].

A quasi-2D BEC can be formed in a highly anisotropic trap
of the form

Vtrap(r) = V⊥(r⊥) + Vz(z)

= 1
2mω2

⊥(x2 + y2) + 1
2mω2

zz
2, (1)

with ωz � ω⊥. In this limit the dependence on the z coordinate
is quenched such that the three-dimensional order parameter
for a gas of Ntot atoms has the form

�(x,y,z; t) =
√

Ntotφ(x,y; t) exp{−iωzt/2}
× exp

{−z2/2l2
z

}
/
(
πl2

z

)1/4
, (2)

where lz = √
h̄/mωz is the oscillator length in the tightly

confined direction and φ is normalized to unity.
The dynamics of such a 2D BEC with Ntot atoms is governed

by the 2D GP equation

ih̄
∂

∂t
φ = − h̄2

2m
∇2

⊥φ + V⊥(r⊥)φ + g2Ntot |φ|2 φ, (3)

where g2 = g3D/
√

2πlz = 2
√

2πaslzh̄ωz is the 2D coupling
constant and as is the bulk s-wave scattering length.

Initially, we suppose that the system is prepared as
described above and that the two clouds are widely separated
so that they do not overlap spatially. At time t = 0 we have

φ(x,y; t = 0) = 1√
2

[φ0(x + �,y) + eiθφ0(x − �,y)], (4)

where φ0(x,y) is a localized wave packet. This is a coherent
superposition of two independent, normalized, condensate
wave functions φ0(x ± �,y). In the next two subsections we
will discuss the subsequent evolution of the order parameter,
first without and then with interactions. We will leave the
discussion of the situation in which there is an initial overlap
between the two clouds to later in the paper.

A. Noninteracting case

If a noninteracting BEC of N/2 atoms is prepared in
a displaced trap with V⊥(x,y) = mω2

⊥[(x − �)2 + y2]/2 by
cooling to its ground state and the trap is then suddenly
switched so that the minimum moves to x = y = 0 then the
cloud c.m. will execute undamped simple harmonic motion.

The initial state, in this case, is a simple Gaussian, centered on
the point x = �, y = 0, which evolves according to

φ(x,y; t) = e−iχ(t)φ0(x − X(t),y)eiP (t)x/h̄, (5)

where

X(t) = � cos(ω⊥t),
(6)

P (t) = −mω⊥� sin(ω⊥t),

φ0(x,y) =
√

1

πl2
⊥

exp{−(x2 + y2)/2l2
⊥}, (7)

with l2
⊥ = h̄/mω⊥ and χ (t) is a time-dependent phase. X(t)

and P (t) are, of course, the position and momentum of a
classical particle of mass m initially at rest at position x = �

in the same potential.
If the initial state consists of a superposition of two

identically prepared Gaussians [Eq. (7)] displaced by x �→
x ± � then, in the absence of interactions, they will evolve
independently as

φ(x,y; t) = 1√
2

[e−iP (t)x/h̄φ0(x + X(t),y)

+ eiθ eiP (t)x/h̄φ0(x − X(t),y)] (8)

with X(t) and P (t) as given above. The corresponding density,
ρ2(x,y; t) = N |φ(x,y; t)|2 is then

ρ2(x,y; t) = N

πl2
⊥

e−(x2+y2+X2(t))/l2
⊥

{
cosh

(
2X(t)x

l2
⊥

)

+ cos

(
2P (t)x

h̄
+ θ

) }
. (9)

The two clouds are maximally overlapped at times Tn = (n +
1
2 )π/ω⊥ when

ρ2(x,y; Tn) = N

πl2
⊥

e−(x2+y2)/l2
⊥

{
1 + cos

(
2mω⊥�

h̄
x−θ

)}
(10)

corresponding to perfect rectilinear fringes parallel to the y

axis with the fringe spacing given by the de Broglie relation
L = 2πh̄/2mω⊥�. The initial relative phase difference simply
shifts the fringe pattern.

If we consider the energetics of the noninteracting case we
can express the energy of the initial state as ET = EK + EP

where

EK = N

∫
d2r⊥

h̄2

2m
|∇⊥φ|2 = N

1

2m
[P (t)]2 + N

1

2
h̄ω⊥

(11)

is the kinetic energy and

EP = N

∫
d2r⊥

1

2
mω2

⊥ |r⊥|2 |φ|2 = N
1

2
mω2

⊥ [X(t)]2

+N
1

2
h̄ω⊥ (12)

the (trap) potential energy. We can regroup these into two
conserved quantities,

Ecm = N 1
2mω2

⊥�2 (13)
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is the energy associated with the bulk motion of the two clouds
and

E0 = Nh̄ω⊥ = N
h̄2

ml2
⊥

(14)

is the zero-point energy of the two clouds.

B. Interactions and damping

The inclusion of interactions between the atoms will,
naturally modify this picture. While a single BEC, when
subject to a displaced trap potential, will execute undamped
simple-harmonic motion (dipole mode), the complexity of the
dynamics of a pair of separated condensates will depend on
the relative magnitudes of the c.m. energy and the interatomic
interactions. Interatomic interactions will lead to the irre-
versible creation of internal excitations within the clouds and
hence damping of the c.m. oscillations. We therefore identify
underdamped, critically damped, and overdamped regimes.
In the underdamped regime, the clouds retain their separate
identity, separating after a clear “collision” process and then
recolliding a number of times with decaying amplitude. In the
overdamped regime the oscillation is effectively stopped by
the first collision leaving a single, merged condensate cloud.
In the critically damped regime the clouds pass through one
another but never properly separate after the first collision.

If we imagine adiabatically splitting an interacting 2D BEC
with N atoms into two well separated clouds, then for moderate
interaction strengths we would expect the initial clouds to
be well described by the Thomas-Fermi (TF) approximation
appropriate for the minima of the preparation trap potential

|φ0(r⊥)|2 =
{

mω2
⊥

g2N

(
R2

TF − |r⊥|2) |r⊥| < RTF

0 |r⊥| > RTF

, (15)

where, as always, the TF radius, RTF, is chosen to give the
correct total number of particles, which yields

RTF =
√

2l⊥γ (16)

(which must satisfy RTF � �) and the 2D TF parameter is

γ =
(

2Nas

lz
√

2π

)1/4

. (17)

In this case, the conserved energy will be ET = Ecm + Eint,
where

Ecm = N 1
2mω2

⊥�2

(18)
Eint = ETF = 2

3μTFN = 2
3Nh̄ω⊥γ 2.

These will not be separately conserved and we expect an
irreversible transfer of energy from Ecm to Eint leading to
damping of the dipole oscillations of the two condensates at
the expense of the creation of internal excitations within each
cloud.

We seek to define an effective measure of the relative
importance of interactions, which can be directly evaluated
in a simulation. We define a parameter, ηn, at each turning
point Tn = nπ/ω⊥ of the dipole oscillation (at which the c.m.

kinetic energy is zero) as

ηn = EI

EP

=
1
2g2N

2
∫ |φ(r⊥,Tn)|4d2r⊥

1
2mω2

⊥N
∫ |r⊥|2|φ(r⊥,Tn)|2d2r⊥

. (19)

In the noninteracting limit (g2 = 0) this is identically zero. In
the TF regime it will be

ηn ∼
2
3h̄ω⊥γ 2 + εEX

1
2mω2

⊥�2
n

, (20)

where �n is the displacement of the c.m. of the cloud from the
center of the trap at time Tn and εEX is the excitation energy
per atom of the cloud (i.e., the excess internal energy of the
cloud over the TF energy per particle). Since the scattering will
act to damp the dipole oscillations (decreasing �n) and create
excitations within the cloud (increasing εEX) ηn will increase
with n.

II. PREPARATION OF INITIAL STATE

In experiments, a condensate held in a magneto-optical trap
(MOT) can be split into two condensates adiabatically by using
a tailored magnetic potential from an atom chip [23], by the
introduction of an optical barrier via a shaped blue-detuned
laser [24] or by passing counterpropagating red-detuned laser
beams through an acousto-optic modulator driven at RF
frequency [12] to form a double-well potential in a plane. If the
plane is not horizontal, the difference in gravitational potential
between the two local minima leads to a time-dependent phase
difference between the two condensates [12]. Alternatively, a
phase difference can be imposed between the clouds by phase
imprinting [25].

We based our simulations on a condensate of N = 2 ×
104 87Rb atoms in a trap potential with ω⊥ = 2π × 5 Hz
and ωz = 2π × 100 Hz. We will always keep the interaction
strength and the number of atoms in the system fixed. The only
quantities that we change are the initial displacement, � and
the initial relative phase of the condensate clouds, θ . We use
a scattering length, as = 0.3 × 5.4 nm, which is shorter than
that appropriate for 87Rb, in order to see the structure of vortex
excitations clearly in our simulation. To consider the effect of
the relative phase on the dynamics, we keep the initial phase of
one condensate fixed and adjust the initial phase of the other
from 0 to 2π .

To simulate the underdamped and critically damped cases,
we obtained the configuration, φ0(x,y), of the order parameter,
which minimized the mean field energy∫ {

h̄2

2m
|∇⊥φ0|2 + 1

2
mω2

⊥|r⊥|2|φ0|2 + N

2
g2|φ0|4

}
d2r⊥

(21)

subject to the constraint
∫

d2r⊥|φ0|2 = 1. The initial state
for the simulations was that given in Eq. (4). We used this
method to generate the initial state rather than minimizing the
mean-field energy of the system in a suitable quartic potential
in order to improve numerical efficiency and accuracy. The
order parameter was then allowed to evolve in the 2D trap
potential.

To reach the overdamped regime without changing the
frequency of the harmonic trap required � < RTF so another
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FIG. 1. The equipotential lines of a 2D double-well potential with
narrow cental barrier along about x = 0. The parameters used are
σx/ l⊥ = 0.1, σy/ l⊥ = 10, U0/h̄ω⊥ = 50.

method of preparing the initial state was used. The lowest
energy configuration of the order parameter was found in a
potential

VDW(x,y) = 1

2
mω2

⊥(x2 + y2) + U0 exp

{
− x2

σ 2
x

− y2

σ 2
y

}
, (22)

where the second term provides a strong central barrier to
suppress the overlap between the two clouds. Such a trap
potential would be a suitable model of, for example, the
effect of a narrowly focused, blue-detuned laser applied to
split the condensate. The height of the central barrier is given
by the amplitude of the Gaussian function U0, and the distance
between the two wells can be adjusted using the parameters
σx and σy . We can see two distinct potential minima clearly in
Fig. 1, which have the same shape as the RF-induced potential
in the experiment in Ref. [26]. The parameters we used in our
simulations are σx/l⊥ = 0.1, σy/l⊥ = 10, and U0/h̄ω⊥ = 50.
The ground-state order parameter of the condensate is obtained
by the imaginary-time-evolution method [27] for the time-
dependent GP equation (3). We then used this configuration
as the initial state for real-time evolution of the GP equation,
representing the sudden removal of the laser. The drawback
of this method is that the change of potential on its own will
excite shape oscillations in the cloud. The alternative method
would have been to prepare the clouds in a higher-frequency
trap potential and then allow the system to evolve in a softer
trap. Even in the absence of interactions this would have led
to the clouds expanding and changing shape during the slow
approach to the collision.

III. NUMERICAL SOLUTION AND RESULTS

In the numerical investigations we used l⊥ as the unit of
length and 1/ω⊥ as the unit of time. Hence we define dimen-
sionless wave vectors k̃ = kl⊥, times t̃ = ω⊥t and frequencies
ω̃ = ω/ω⊥ in order to minimize numerical instabilities.

A. Scattering effects in the underdamped regime

As we have discussed, the importance of the scattering
between atoms depends on the competition between the c.m.
kinetic energy and the interatomic interaction energy, which
in turn affect the dynamics of the system.
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FIG. 2. Normalized density profiles of the two condensate clouds
without initial phase difference colliding at the bottom of the trap.
(a) noninteracting case with � = 7.5l⊥; (b) interacting case with
� = 7.5l⊥; (c) interacting case with � = 4l⊥.

In Fig. 2, we show the density profiles at the point of
maximum overlap (t̃ = π/2) of the two clouds with zero
initial phase difference starting from different displacement
positions. The bright region is a low-density area, while the
dark region is a high-density area. For a noninteracting system
there is only kinetic energy so η = 0. In this linear regime the
unperturbed condensates always show straight fringes during
the interference as seen in Fig. 2(a). For interacting systems
when the displacement is large, the clouds will have maximum
c.m. kinetic energy, i.e., high relative peak velocity when
they begin to interfere. The system still responds linearly.
The scattering processes arising from interactions produce a
frictional force on the cloud tending to reduce its velocity and
hence increase the fringe spacing. The frictional force will be
largest in the center of the trap where the density is highest.
In addition, the interaction will lead to an overpressure in the
fringe maxima, which will tend to fatten the fringes in the
trap center. However, because the duration of the collision is
correspondingly short, the effect of scattering is very small. In
Fig. 2(b), the initial separation is set to be � = 7.5l⊥. We can
see that interference fringes are nearly straight. With smaller
initial separations, the two clouds reach a smaller peak velocity,
the interaction energy is comparable to the c.m. kinetic energy
and the duration of the collision is correspondingly longer.
As is shown in Fig. 2(c), where � = 4l⊥, the distortion of
the fringes has become quite sizable. The width of the fringes
increases with the nonlinearity, while the peak density does
not change dramatically in comparison to that of the fringes
in the linear situation [Fig. 2(b)]. The nonlinear situation
however gives us fewer fringes associated with the damping
of the dipole oscillation of each cloud. The expansion rate of
the central fringe is highly nonuniform along the y axis due
to the nonuniform density distribution. At the center of the
clouds, where the density is highest, the fringes expand most.
The spacing of fringes are close to their noninteracting value
toward the edge of the cloud (low-density region) where the
interaction is negligible. This leads to the central fringe taking
a lenticular shape, accompanied by the bending of the other
fringes. There is only the central fringe left eventually before
the two clouds start to separate.

In Fig. 3 we show the density profiles of the two clouds
without initial phase difference after their first collision, where
the initial separation � is 7.5l⊥ [Figs. 3(a) and 3(c)] and 4l⊥
[Figs. 3(b) and 3(d)] respectively. The effect of interactions
is not obvious in the underdamped regime (� = 7.5l⊥). As
seen in Fig. 3(a) the condensates expand a little bit in the y

direction, which means that some atoms gain a y component
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FIG. 3. Normalized density profiles of the colliding condensates
in the trap without initial phase difference. The initial separation � is
7.5l⊥ [(a), (c)] and 4l⊥ [(b), (d)] respectively. Times are (a) t̃ = 2.15,
(b) t̃ = 3.05, and (c) t̃ = 4.25, (d) t̃ = 3.5.

to their momentum via scattering. This momentum is small,
however, due to the short collision time, which means that the
scattering-induced distortion of condensates is not obvious
after the first collision. After the first collision the clouds pass
through each other; each moving toward the original position
of the other. The density profile of the condensates will vary
in a manner similar to the breathing mode and the condensates
will undergo a damped c.m. oscillation. Figure 3(c) shows that
the clouds regain their original shape with a small distortion
at t̃ = 4.25 before their second collision.

When the initial separation is reduced, the maximum c.m.
kinetic energy is correspondingly smaller and the nonlinear
interaction term in Eq. (3) becomes more important. We reach
the critically damped regime (e.g., � = 4l⊥) where the cloud
c.m. kinetic energy is comparable to the interaction energy. As
seen in Fig. 3(b) the modulation of the density in the middle of
the cloud (high-density area) moves rapidly in the y direction
due to strong scattering, leading to two density peaks appearing
symmetrically about the x axis for each cloud. Due to the
trap potential, self-interference occurs when these two density
maxima move back towards one other as seen in Fig. 3(d).
The most distinct feature in this regime is that the clouds no
longer pass cleanly through each other and regain their original
shape after their collision. We can see clearly that there are
more structures in the clouds in Fig. 3(d) than in Fig. 3(c).
The interference fringes will be completely distorted when the
second collision begins and this leads to excitations in the form
of vortex pairs and soliton rings as shown in Fig. 4.

In Fig. 5, we show quantitatively the scattering effect by
plotting the dynamics of Ny , which is the number of atoms
with y component of momentum |k̃y | > 10dk̃ where 2π/25 is
the spatial resolution of the simulation. As seen in the figure,
the initial value of k̃y is 0 because the condensate clouds are set
to move along the x axis. The black solid line is the absolute
value of a sinusoidal curve fitted with fixed frequency ω̃ = 1,

which indicated that there are two collisions during one dipole
period. For all three distinct initial conditions there is only
one peak during the first half period because the scattering
occurs after the two clouds collide at the bottom of the trap
(t̃ ∼ π/2). The peak value increases with decreasing �. After
the first half period two peaks appear. The first one is induced
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FIG. 4. Normalized density profiles (the left panels) and the
corresponding phase plots (the right panels) of the colliding con-
densate clouds in a trap during the second recombination. This is the
continuation of the simulation for � = 4l⊥ shown in Fig. 3. From (a)
and (b) we can see clearly the formation of two vortex pairs located
at the left and the right side of the center of the trap. Curved solitons
arise in the center of the trap. These vortex pairs approach each other
until the vortices with opposite charges annihilate, leaving a soliton
ring as seen in (c) and (d). The soliton ring will decay into vortices
thereafter. Times are (a), (b) t̃ = 4.15, (c), (d) t̃ = 4.5.

by the self-interference in the y direction of each cloud, and
the second one arises from the collision of the two clouds.
For the underdamped case (the red line marked with open cir-
cles) the self-interference-induced scattering is always weaker
than the collision-induced scattering before the conditions of
the underdamped regime are violated (recall that ηn increases
with n), while it is true for the critically damped case (the blue
line marked with cross and the green line marked with dots)
only in the second half period. In this intermediate regime the
creation of solitons and vortices after the second half period
suppress the scattering along the x direction (collision-induced
scattering), which makes the second peak lower than the first
one.

Generally in the above regimes the initial phase difference
of two clouds will not change the physics intrinsically.
Especially for the underdamped situation, only the location
of the fringes varies with the relative phase θ , while the period
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FIG. 5. (Color online) Oscillations of condensate atom number
Ny for different initial conditions.
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and spacing of the fringes are not changed. In the underdamped
regime, the trajectory is independent of θ indicating that the
initial relative phase will not change the scattering properties
at all. In the critically damped regime the only difference
between the θ = 0 and θ = π trajectories is the peak values.
An interesting point is that the peak values of θ = π is always
smaller than those of θ = 0, which is different from the results
for the merging process (overdamped collision) in Ref. [12]
where the atom loss after recombination increased as the
relative phase increased from 0 to π .

If we reduce the distance between two clouds further,
the interaction energy will dominate the system. In this
overdamped situation the dynamics of the system could be
very different from the cases we have considered so far. The
two clouds could merge into one condensate after the first
collision. In the next section we will look at this nonlinear
regime where the initial relative phase plays a more important
role.

B. Phase sensitivity of excitations in overdamped collisions

In Refs. [12,14], it was reported that for elongated conden-
sates that are tightly confined in the radial directions, when the
central barrier potential is suddenly turned off, two clouds
merge into a single cloud. When the initial relative phase
between the two clouds is zero, the merged cloud is in its
ground state with respect to the trapping potential. When the
initial relative phase is π , the merged condensate contains a
dark soliton.

For 2D disk-shaped clouds, the size of the condensate in
the merging direction (x axis in our case) is large. As we have
seen, when the separation between the c.m. of the two clouds
is comparable to the diameter of one cloud, i.e., � ∼ RTF, the
c.m. kinetic energy that the clouds will have is comparable to
the interaction energy. This energy is high enough to prevent
the two clouds merging into one condensate after the first
collision, as they will not lose sufficient momentum in the
merging direction due to scattering. If we want to investigate
the merging of 2D condensate clouds we need to enter the
overdamped regime where the interaction energy dominates
the system, i.e. � < RTF. This means that there will be an
overlap between the two clouds which depends on the height
and width of the central barrier of the trap, VDW [see Eq. (22)].

As we have seen, solitons are created during the interference
process. We know that soliton stability depends on the
nonlinearity and geometry of the medium [28]. In general,
solitons in BECs are always thermodynamically unstable, and
dark solitons in BECs are also expected to be inherently
dynamically unstable [29–32]. In a uniform system with
background density ρ, a soliton corresponding to a phase jump
of θ (0 < θ � π ) has velocity [33,34]

vs/vc = cos(θ/2) = (1 − ρd/ρ)1/2, (23)

where vc = (g2ρ/m)1/2 is the speed of sound and ρd is the
difference between ρ and the minimum density in the center
of the soliton. For a given density, increasing the relative phase
from 0 to π will decrease the velocity of the dark soliton. In
the limiting case θ = π , the velocity of a soliton is 0. The
formation of vortex pairs inside the combined condensate
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FIG. 6. Normalized density profiles and phase plots of the
condensates prepared in a double-well potential, which are released
into a harmonic potential well at time t = 0. The initial relative
phase is θ = 0. The left panels are the density profiles of the
condensates prepared in a double-well potential (a) and then released
in the harmonic potential [(c), (e), (g), (i)]. [(d), (f), (h), (j)] are the
corresponding phase plots of (c), (e), (g), (i), respectively. (b) is the
density profile of the ground-state condensate with N atoms in the
harmonic potential well. The density profile of the dynamic state (g)
is close to the ground state (b), but with some distortion and a few
excited atoms around it. Density and phase modulations are obvious
in plots (i) and (j). Times are (a) t̃ = 0, (c), (d) t̃ = 0.5, (e), (f) t̃ = 1.0,
(g), (h) t̃ = 1.57, (i), (j) t̃ = 10.

depends strongly on the velocity of the soliton vs and the
density distribution of condensates.

First, we consider the situation for which the initial relative
phase between the condensates is 0. As shown in Fig. 6(a),
there is an overlap between the cloud in the left well and that
in the right well. The dynamics of the two clouds will lead to
them interfering and merging after the central barrier is turned
off. The spacing of the central fringe increases with time until
the two clouds reach their maximum overlap and the shape
of the central fringe is close to that of the ground state of a
condensate with N atoms in the harmonic trap [see Figs. 6(g)
and 6(b)]. The outer fringes nearly vanish and the two clouds
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FIG. 7. (a) The initial density profile of a condensate prepared in
a 2D double-well potential at y = 0. (b) the top view of the initial
density profile. Density (c) and phase (d) profile at t̃ = 0.5 and y = 0.

merge into one with some excited atoms being found near the
edge of the cloud [see Fig. 6(g)]. The scattering is sufficient,
due to the long collision time, to ensure that the combined
condensate can not separate any more. The expansion of the
condensate is not as obvious as in Fig. 3(b) due to the small
maximum c.m. kinetic energy of the clouds and the fact that
the interatomic interaction dominates the system. However the
cloud cannot reach its ground state, as would happen in the 1D
case, because the trapping frequency in the merging direction
is too low. As predicted by Eq. (23) the dark solitons move
at vc and decay rapidly so the system should be dominated
by density wave excitations. In Figs. 6(i) and 6(j) we see
that a state with density and phase modulations, but without
topological defects, is obtained, meaning the system is in a
collective excited mode.

Second, we consider the situation where the initial relative
phase is π , but with the other conditions kept unchanged. We
find this merging process is completely different from the case
where θ = 0, and that it is also distinct from the quasi-1D
merging of condensates with relative phase π reported by
Refs. [12,14], where the merging time is too fast (merging
occurs in the tight confining direction) to make the soliton
decay. In the 2D case, the radial frequency of the trap is weak,
and so will not quench mechanical excitations in either x or
y direction. As seen in Figs. 7(a) and 7(b), the condensates
with relative phase π are initially prepared in a double-well
potential. At time t = 0, the central Gaussian barrier is
turned off suddenly. For interference with π relative phase
there should be two central fringes. Due to the small initial
separation of the two clouds, these two central fringes are very
fat and nearly keep the original shape of the initial clouds. Our
simulations show that two density waves propagate in opposite
directions at a reduced amplitude as seen in Fig. 7(c). The
initial soliton will eventually reach a point where its central
density is zero, and the phase difference is π between the two
parts [see Figs. 7(c) and 7(d)], where a completely dark soliton
(black soliton) is created. The velocity of the black soliton is
zero. In Fig. 8, we give the snapshots of the time evolution
of the condensates, which show that the black soliton is not
as stable as in the merging of elongated condensates. After
approximately 143ms (t̃ 
 4.5) of real-time propagation, the
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FIG. 8. Sequence showing the density profiles (the left panels)
and the corresponding phase diagrams (the right panels) for conden-
sates prepared in a double-well potential undergoing a sudden merger
in a harmonic trap. The initial relative phase is θ = π . Times are (a),
(b) t̃ = 0.5, (c), (d) t̃ = 7.5, (e), (f) t̃ = 8, (g), (h) t̃ = 15.2.

black soliton begins to undulate. It is bent at first, then divides
into two from the middle with atoms passing through the center
and propagating from left to right. The atoms in the right cloud
are pushed by these additional atoms and then two paths from
right to left are formed, one above and one below the center
of the cloud, leading to the decay of the soliton via the snake
instability [35,36]. A pair of vortices form near the center
of the condensate and subsequently the other two vortices
nucleate at the edge of the cloud, move around the edge to the
left and towards each other, and then annihilate at y = 0. We
note that due to the initial phase difference of π between the
two condensates there is a persistent phase jump as shown in
Figs. 8(f) and 8(h).

For initial relative phases between 0 and π , the initial
dark soliton propagates in the positive x direction, and curves
with the expansion of the central interference fringe. This
curvature is similar to that observed in Ref. [37]. However the
dark soliton will eventually decay into vortex pairs instead of
oscillating in the trap.

The nonuniform density distribution in our system makes
the speed of a soliton a function of y, which leads to the
curvature of the solitons. the formation of vortex pairs inside
the combined condensate would require longer lifetimes (i.e.,
smaller velocity) for the solitons. In Fig. 9 Nx is the number
of atoms with |k̃x | > 10dk̃, and Nxy is the number of atoms
with |k̃x | or |k̃y | larger than 10dk̃. We can see that Ny is almost
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FIG. 9. (Color online) Oscillations of condensate atom number
Nx (red dotted line), Ny (green dashed line) and Nxy (thick solid line)
for different initial relative phases. The cyan thin lines are sinusoidal
curves fitted with frequencies ω̃ = 1.66 (a), 1.6 (b), 1.3 (c), 1.0 (d),
0.6 (e).

unchanged until the soliton began to decay (green dashed line),
which means that the scattering in the y direction is suppressed
by the formation of solitons. The lifetime of solitons increases
as θ is increased from 0 to π as predicted by Eq. (23).
When θ is smaller than π/2 the oscillation frequencies of
Nx and Ny are nearly the same after the decay of solitons
as is that of the Nxy oscillation. When θ = 0 the velocities
of the accompanying density waves are close to vc [10] and
the corresponding frequencies are close to 2ω⊥. As shown in
Figs. 9(d) and 9(e), when θ is above π/2 the formation of
vortices inside the combined condensate as seen in Fig. 8(g)
will diminish the amplitude of the number oscillation, which
means that the presence of vortex pairs in the combined
condensate suppresses density waves.

IV. CONCLUSION

In this paper we have studied, within zero-temperature
mean-field theory, the way in which quantum interference
fringes can seed the irreversible formation of internal ex-
citations (soliton and vortex textures) in counterpropagating
2D Bose condensed clouds of ultracold atoms. Such 2D

geometries are of interest for their potential in matter-wave
interferometry as they are likely to be less susceptible to
thermal and quantum fluctuation effects than their quasi-
1D counterparts. Generally, the nature of the dynamical
excitations created when two clouds collide or merge depends
not only on the initial separation of the clouds but also on
their initial relative phase. This is true in both quasi-1D and
2D systems. However the collision and merging processes in
the 2D configurations are quite different to those observed in
1D or quasi-1D systems [12,14]. We also found that scattering
effects are suppressed in 2D, which potentially increases the
sensitivity in some interferometric schemes. Furthermore, the
relative phase of the atom clouds can be determined over
a wide range in the overdamped merging process even at
zero temperature. In our 2D calculations we show that in the
two limiting cases (underdamped and overdamped regimes)
scattering is less effective due to the short collision time or the
small c.m. kinetic energy. In the underdamped regime during
our simulations the amplitude of Ny oscillation is smaller than
4% for the first collision, and is still smaller than 15% even
during the third collision. In the overdamped regime Nxy is
always under 4% as t̃ < 20, while the resulting oscillations of
the condensate atom number in Ref. [12] are about 25%. This
means that an in-trap 2D interferometer can provide better
contrast. Only when the system is in the critically damped
regime is the scattering sufficient (up to 40% around the third
collision), to make the transverse self-interference of each
cloud obvious. The combination of the interference patterns in
both the x and y directions renders the dynamical excitations
in the system quite complicated.

We have shown that there is no simple linear relation
between the formation of topological excitations and the c.m.
kinetic energy. The smaller the c.m. kinetic energy, the more
important is the initial relative phase. When the kinetic energy
dominates, regular, if slightly curved, interference fringes are
observed and there are no dynamical excitations after the two
clouds are separated. In the critically damped regime vortex
formation occurs, which is not intrinsically affected by the
initial relative phase. In the overdamped regime we observe
significant qualitative sensitivity to the initial phase difference.
The two clouds can merge into one in this case while the final
states are, however, excited in different ways, depending on
the initial relative phase. We found that only when the initial
relative phase is larger than π/2 will there be a vortex pair
that can persist in the combined condensate. Otherwise, all the
vortex pairs formed in the merging process will simply move
around the edge of the combined condensate and escape so
that the system is left with density modulations.

Jo et al. [12] also showed that the recombination of a
split quasi-1D condensate held by an atom chip leads to a
heating of the atomic cloud, which depends on the relative
phase of the two clouds. This qualitatively agrees with the
analytical prediction that the recombination process can lead
to exponential growth of unstable modes [9]. Our simulations
show that in the underdamped regime the dynamical properties
are not sensitive to the relative phase at all. The role of initial
phase difference is only limited to the position of the fringes.
In the critically damped regime the collective density wave
oscillations do not increase with increasing relative phase
from 0 to π . In the overdamped regime the oscillation of
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Nxy is suppressed by the formation of topological excitations
(solitons and vortices) inside the clouds when the relative phase
is π .

To conclude, we have identified the ways in which the
collision and merger dynamics of a coherent pair of 2D clouds
differs from their quasi-1D counterparts. In particular, the way
in which the decreased stability of a soliton affects the outcome
of collisions at late times. We can expect the mean-field
approach that we have used to work well in situations in
which thermal and quantum fluctuations are negligible. Of
course, this limits the description to low temperatures but
also to situations in which the particle density is sufficiently
large that the order parameter can be treated as a classical
field. Hence, even at zero temperature, quantum fluctuations
may be important in the regions close to the minima of the
interference fringes and the perimeter of the atom clouds.
Thermal fluctuations will suppress the magnitude of the order
parameter, reducing the fringe contrast, and cause lateral
modulations in the fringe pattern. Thermal effects will also
allow the spontaneous nucleation of vortex-antivortex pairs,
which will proliferate as the Kosterlitz-Thouless transition

[38,39] is approached. In the overdamped regime, this should
broaden the sharp change in behavior seen here at a phase
difference of π/2. Previous theoretical studies of the quantum
dynamics of bosonic atoms in a combined harmonic and
lattice potential indicated that quantum fluctuations can result
in strong dissipation [40–42]. We expect, however, that for
more moderate and weak interaction strengths, the inclusion of
quantum fluctuations will not qualitatively affect the behavior
in the underdamped and, at least at early times, the critically
damped regimes, but will likely have a strong effect in the
overdamped regime where complex textures develop in the
merged cloud. Hence the next step in the study of these
processes should be the inclusion of such quantum (and
thermal) fluctuations using, for example, the finite temperature
truncated Wigner approach [43–45].
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