
PHYSICAL REVIEW A 87, 023424 (2013)

Continued-fraction analysis of dressed systems: Application to periodically driven optical lattices
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Radio-frequency quantum engineering of spins is based on the dressing by a nonresonant electromagnetic field.
Radio-frequency dressing occurs also for the motion of particles, electrons, or ultracold atoms, within a periodic
spatial potential. The dressing, producing a renormalization and also a freeze of the system energy, is described by
different approaches: dressed atom, magnetic resonance semiclassical treatment, and continued-fraction solution
of the Schrödinger equation. A comparison between these solutions points out that the semiclassical treatment,
to be denoted as the S solution, represents the most convenient tool to evaluate the tunneling renormalization of
ultracold atoms.
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I. INTRODUCTION

The analysis of a system with few degrees of freedom, an
electron or an atom, interacting with a large system, photons
or phonons, relies often on a renormalization approach, where
the parameters of the initial system are modified by the
interaction. Examples of this approach are the effective mass
for the electron motion in a semiconductor, or the exten-
sive renormalization in quantum electrodynamics. Another
example is the dressed atom introduced by Cohen-Tannoudji
in order to describe the modification of a two-level atomic
magnetic response by an applied radio-frequency (rf) field in
the absence of decoherence processes [1]. For a nonresonant
rf driving at a high frequency Cohen-Tannoudji and Haroche
[2] derived a renormalization of the atomic level splitting
dependent on the amplitude of the rf field and described by
a zeroth-order ordinary Bessel function. That modification
producing a magnetic “freezing” of the two-level response
(i.e., a nonmagnetic system) was examined for atoms in [3–6],
for a Bose-Einstein condensate of chromium in [7], for an
artificial atom in [8], and recently proposed for improving the
precision of optical clocks [9].

The same renormalization and freezing of the system prop-
erties under the application of a time-dependent modulation
was applied to a variety of processes, all characterized by
weak decoherence processes. We mention here the dynamical
localization describing the renormalized motion of a charged
particle within a periodic potential under a time-modulated
force [10] and the coherent destruction of tunneling for a
double-well potential with a periodic driving, with a complete
localization of a wave packet in one well for specific values of
the driving force [11]. For the motion of ultracold degenerated
atomic gases within a shaken optical lattice, the tunneling
atomic evolution is renormalized under the application of
a time-modulated force, as proposed in [11–16] and tested
experimentally in [17–22] within the framework of quantum
simulation of solid-state physics. The renormalization of an
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optical lattice potential acting on cold atoms in a regime of
classical diffusion and transport was investigated in [23].

The target of the present work is to characterize the
renormalization and freezing for a wide parameter range.
The starting point is the continued-fraction solution for the
two-level atomic magnetic response to an applied rf field,
as typical of the nuclear magnetic resonance for a one-half
spin. The regime of strong perturbation was investigated
by several authors [24–28], in the presence or absence
of decoherence. Their solution was expressed in terms of
infinite continued fractions. The present work investigates
the renormalization process through the continued-fraction
approach. That treatment allows us to explore numerically the
shaken-lattice renormalization for all parameter ranges, and in
particular for explored experimental conditions. The numerical
complexity of the continued-fraction solution, and its slow
convergence in the regime of experimental interest, brought
us to consider carefully the corrections to the zero-order
Bessel function derived for the dressed-atom problem mainly
through a semiclassical treatment [29–32], and later recovered
through renormalization group techniques [33]. On the basis
of the analogy between the renormalization of the magnetic
resonance energy and of the atomic tunneling in optical lattice,
we focus our analysis on the high-frequency regime realized
for a rf modulation at a very large frequency. Then we explore
the corrections when this limiting condition is not precisely
satisfied. The low-frequency regime covered by the treatments
of Refs. [10,14,16,34] is not examined here.

Section II presents different systems where the renormaliza-
tion of the interaction strength has been investigated: magnetic
resonance, motion in a periodic potential, and tunnel coupling
in a periodic potential. This section reports also the standard
result of the renormalization process given by the zero-order
Bessel function, valid under appropriate operating conditions.
Section III reports the solution for the temporal evolution of
the wave function in the magnetic resonance case. Section IV
derives the renormalization through the continued-fraction
approach, valid for all operating conditions, and also through
a semiclassical treatment refining the Bessel-function result.
Section V reports numerical results determining the limiting
validity of the usual zero-order Bessel correction, and derives
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the renormalization for a large set of parameters. A conclusion
completes our work.

II. DRESSED SYSTEMS

A. Magnetic resonance

(a) Semiclassical approach. For a spin-1/2 system interact-
ing with a static magnetic field along the z axis and driven
by an oscillating rf field along the x axis, the semiclassical
Hamiltonian Hsc is

Hsc = h̄ω0

2
σz + h̄�

2
cos(ωt)σx, (1)

where σx,z are the Pauli matrices, h̄ω0 the energy splitting
between the magnetic levels, and � the Rabi frequency
proportional to the rf field amplitude.

By writing the atomic wave function |ψ〉 written as a
superposition of the |±〉 atomic eigenfunctions

|ψ(t)〉 =
∑
m=±

Cm(t)|m〉, (2)

the Schrödinger equation leads to the following temporal
evolution for the Cm coefficients:

iĊ+ = ω0

2
C+ + �

2
cos (ωt) C−,

iĊ− = −ω0

2
C− + �

2
cos (ωt) C+. (3)

In the ω0 → 0 limit, and for C+(t = 0) = 1 as initial
condition, these equations have solution

|ψ(t)〉 = cos

[
�

2ω
sin (ωt)

]
|+〉 − i sin

[
�

2ω
sin (ωt)

]
|−〉.

(4)
As in [7,27] the result of calculating the σz time-averaged
mean value over |ψ〉 may be expressed through the following
renormalized eigenvalues of the Hsc Hamiltonian:

Eren
± = ±h̄ω0

2
J0

(
�

ω

)
. (5)

The introduction of a renormalization coefficient R defined by
the ratio between renormalized and original eigenvalues leads
to

R = Eren
±

± 1
2h̄ω0

= J0

(
�

ω

)
, (6)

depending on the zero-order ordinary Bessel functionJ0. Thus
the applied sinusoidal magnetic interaction renormalizes the
atomic coupling to the static magnetic field, with a reduction
by the factor J0(�

ω
). The effective magnetic energy is frozen

whenever �/ω is a zero root of the J0 Bessel function, as
observed in the experiments of Refs. [3–5,7]. The magnetic
resonance renormalization was explored by Ref. [6] in the
ω < ω0 low-frequency regime, where the present approach is
not valid.

(b) Quantized approach. Introducing a quantum description
of the rf field, with operator a† and a for the creation and
annihilation of one radio-frequency photon, the dressed-atom

Hamiltonian Hda of the above configuration is [35]

Hda = h̄ωa†a + h̄�√
2n̄

(a + a†)σx + h̄ω0

2
σz, (7)

where n̄ represents the mean number of photons applied to the
atoms.

For the high-frequency case ω � ω0 the last term in Hda

may be neglected and its eigenstates easily determined. Then
a perturbation treatment for the σz term of that Hamiltonian
leads to Eq. (5) for describing the interaction with the static
field [35]. The previous renormalization result is obtained also
through this approach.

Notice that the dressed-atom approach, and also the
semiclassical approach of [32], demonstrated that the J0

renormalization is valid for whatever spin value and equally
spaced Zeeman levels.

B. Dynamic localization

Dynamic localization was introduced by Dunlap and
Kenkre [10] for the motion of an electron on a discrete one-
dimensional periodic lattice with spacing dL in the presence
of an oscillating force. It is based on exact calculations
for the particle motion. A single-particle basis useful for
describing the electron tunneling among the discrete lattice
sites is provided by the j th Wannier function centered on the
j lattice site of the periodic potential [36]. In a given energy
band the Hamiltonian for free motion on the periodic lattice
is determined by tunneling matrix elements, which in general
connect arbitrarily spaced lattice sites. However, because the
hopping amplitude decreases rapidly with the distance, the
tunneling Hamiltonian may be well approximated by including
only the h̄J tunneling energy hopping between neighboring
lattice sites. Under this hypothesis, the Hamiltonian for the
electron on the linear lattice with an applied periodic force
F cos(ωt) is [10,37]

Hdl = h̄J
∑
m

(|j 〉〈j + 1| + |j + 1〉〈j |)

+ h̄K cos (ωt)
∑

j

j |j 〉〈j |. (8)

Here h̄K = FdL is the time-modulated energy difference
between neighboring lattice sites. Dynamic localization entails
a suppression of the particle transport with the particle position
oscillating in time and returning periodically to its original
value. It is associated with particle motion on an infinite lattice
and does not impose conditions on the frequency driving. Our
focus based on the analogy with magnetic resonance is on
the high-frequency driving and on a lattice with a site finite
number.

For the case of two lattice sites (j = −1/2,1/2), introduc-
ing the Pauli operators as σz = |1/2〉〈1/2| − | − 1/2〉〈−1/2|
and so on, the above Hamiltonian becomes [38]

Hdl = h̄Jσx + h̄�

2
cos (ωt) σz, (9)

where we have introduced � = K in order to emphasize the
equivalence of this Hamiltonian with that of Eq. (1) apart from
a change of the quantization axes and the J ≡ ω0/2 parameter
correspondence. Therefore the dressed-atom renormalization
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TABLE I. Values of the shaken-lattice experimental parameters,
J equivalent to ω0/2, ω, � = K/h̄, measured in units of the recoil
frequency ωrec/2π of the investigated atom. The last column reports
the ω0/ω ratio.

Ref. J ≡ ω0/2 ω � ω0/ω

[17] 0.02–0.08 0.15–0.9 0–6 0.04–1.0
[18] 0.19 0.8–4 0–1.2 0.09–0.47
[19] 0.004 1.9 0–3 0.004
[20] 0.002 0.9 0–5 0.004
[22] 0.02 0.9 0–9 0.04

applies also to this system, leading to a renormalized tunneling
rate,

Jeff = RJ. (10)

Once again the system response is frozen whenever �/ω =
K/(h̄ω) is a root of the J0 Bessel function. The applied
sinusoidal force produces a dynamic localization of the
particle.

For a spin larger than one-half and more than two lattice
sites, the Hamiltonian assumes a form equivalent to that of
Eq. (9), except for the angular momentum. Thus the magnetic
resonance analogy confirms the R renormalization also for an
arbitrary number of lattice sites.

C. Shaken optical lattice

In a 1D optical lattice ultracold atoms are confined within
the potential minima created by a single laser standing wave
with dL spacing [39,40]. The Hamiltonian for atomic motion
on the periodic lattice is determined by tunneling matrix
typically including only the J hopping between neighboring
lattice sites.

A periodic force F cos(ωt) (to be referred as lattice shake)
drives the atoms inside the optical lattice. Using the j th
Wannier function centered on the j lattice site, the Hamiltonian
of Eq. (8) describes also the motion of the ultracold atoms
within the optical lattice, with K = � again the shaking energy
difference between neighboring sites of the linear chain. There-
fore the dynamic localization and the renormalization of the
previous subsection applies also to the ultracold-atom shaken
lattices [11–16], as tested in several experiments [17–22].
The parameters of the Hamiltonian of Eq. (9) investigated
in those experiments are reported in Table I. Notice that most
experiments investigated the high-frequency regime, but large
deviations from that regime also occurred. Reference [41]
pointed out the difficulties in the precise measurement of the
tunneling freeze from the ultracold-atom images.

III. CONTINUED-FRACTION APPROACH

If a single-particle Hamiltonian is periodic in time, with
period T , then the Floquet’s theorem [42] states the existence
of a set of distinguished solutions |ψn(t)〉 to the time-dependent
Schrödinger equation. These Floquet states, analogous to the
usual energy eigenstates of time-independent Hamiltonian
operators [21,25,43], have the form

|ψn(t)〉 = |un(t)〉 exp(−iεnt/h̄), (11)

with time periodic functions |un(t)〉 = |un(t + T )〉. The quan-
tum number n specifies the state. The quantities εn are denoted
quasienergies. By inserting Eq. (11) into the Schrödinger
equation governed by the Hsc Hamiltonian, we deduce(

Hsc − ih̄
∂

∂t

)
|un(t)〉 = εn|un(t)〉, (12)

to be regarded as an eigenvalue equation for the Floquet
quasienergies. The set of Floquet functions is complete in
the Hilbert space on which acts the Hamiltonian. Hence,
any solution |ψ(t)〉 to the Schrödinger equation admits an
expansion in the |un(t)〉 basis.

If |un(t)〉 be a solution to the eigenvalue Eq. (12) with
quasienergy εn, then |un(t)〉eimωt also is a T -periodic solution,
with quasienergy εn + mh̄ω m being an arbitrary integer,
where ω = 2π/T . Therefore the quasienergy of a Floquet state
is determined only up to an integer multiple of the h̄ω photon
energy. In accordance with the solid-state physics terminology,
the quasienergy spectrum is said to consist of an infinite set
of identical Brillouin zones of width h̄ω, covering the entire
energy axis, each state placing one of its quasienergies in each
zone.

The quasienergies may be determined by diagonalization
of the Hamiltonian expressed in the Fourier space, as in [25],
or equivalently diagonalizing the dressed-atom Hamiltonian
as in [35]. We will make use of the continued-fraction solution
of Refs. [24,27]. We apply the Fourier expansion to the C±
coefficients of Eq. (2)

C−(t) = eiλt

n=+∞∑
n=−∞

Ane
−inωt , C+(t) = eiλt

n=+∞∑
n=−∞

Bne
−inωt .

(13)
Substituting these expansions into Eq. (3) and equating the
same order Fourier components, one obtains

(
λ − ω0

2
− nω

)
An = −�

4
Bn−1 − �

4
Bn+1, (14a)

(
λ + ω0

2
− nω

)
Bn = −�

4
An−1 − �

4
An+1. (14b)

These equations can be separated into a first set with all even
A’s and odd B’s being zero,(

λ̃+ − 4ω0

�
− l

4ω

�

)
Al = −Bl−1 − Bl+1, (15a)

(
λ̃+ − k

4ω

�

)
Bk = −Ak−1 − Ak+1, (15b)

and into a second one with all odd A’s and even B’s being
zero, (

λ̃− − k
4ω

�

)
Ak = −Bk−1 − Bk+1, (16a)

(
λ̃− + 4ω0

�
− l

4ω

�

)
Bl = −Al−1 − Al+1. (16b)

Here we have k even, l odd, and we introduce

λ̃+ = 4

�

(
λ + ω0

2

)
,

λ̃− = 4

�

(
λ − ω0

2

)
. (17)
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Equations (15) and (16) are independent and a complete
solution is obtained by adding the solutions of these equations.
Equation (16) may be rewritten as

xj = −xj−1 + xj+1

Dj

(18)

by imposing xj ≡ Aj for even j , xj ≡ Bj for odd j , with

Dj ≡ λ̃− + 4ω0/� − j4ω/� for odd j, (19a)

Dj ≡ λ̃− − j4ω/� for even j. (19b)

The recurrence Eq. (18) has a continued-fraction solution [27,
44], with expression for j > 0

xj

xj−1
= − 1

Dj − 1
Dj+1− 1

Dj+2− 1
...

(20)

and similar expression for a negative j . By replacing x1 and
x−1 into Eq. (18) for j = 0, we obtain the continued-fraction
solutions for λ̃+ and λ̃−, with

λ̃− = 1

λ̃− + 4ω0
�

(
1 − ω

ω0

) − 1
λ̃−− 8ω

�
− 1

λ̃−+ 4ω0
�

(
1−3 4ω

�

)
− 1

...

+ 1

λ̃− + 4ω0
�

(
1 + ω

ω0

) − 1
λ̃−+ 8ω

�
− 1

λ̃−+ 4ω0
�

(
1+3 4ω

�

)
− 1

...

(21)

and

λ̃+ = −λ̃−. (22)

All Floquet quasienergies are given by

ε±,n = −h̄λ = h̄

(
±ω0

2
− �

4
λ̃±

)
+ nh̄ω. (23)

The continued-fraction solution allows us to determine numer-
ically the Floquet quasienergies with the required accuracy.
Figure 1 reports the quasienergies within one Brillouin zone
vs ω0 for different values of the �/ω parameter. Those energy
diagrams may be applied to analyze either magnetic resonance
or dynamical localization or shaken optical lattices. The zero
crossing of the energy represents magic values where the
effective magnetic energy or quantum tunneling are frozen
at values different from ω0 = J = 0.

IV. RENORMALIZATION VS ω0 VALUE

The energy renormalization, to be investigated on the basis
of different theoretical approaches, will be concentrated on
the magnetic resonance case, but the analysis of Sec. II has
demonstrated that the substitution J = ω0/2 allows us to apply
our results also to the shaken optical lattices.

(a) J0 solution. The two-level energy splitting at ω � ω0

derived in Eq. (5) by the magnetic resonance treatment leads
to the R renormalization given by J0 Bessel function of
Eq. (6). The J0 renormalization approximation corresponds
to the following quasienergies:

ε±,n

h̄
= ±ω0

2
J0

(
�

ω

)
+ nω. (24)

FIG. 1. (Color online) Central Brillouin zone of the quasienergy
ε+,0 vs ω0, both measured in ω units, for different values of �/ω,
between 0 and 5. The quasienergy ε−,0 is the opposite of ε+,0.
Quasienergies calculated by truncating the continued fraction to seven
terms. Freezing occurs when the quasienergy is equal to zero at values
different from ω0 = 0. For �/ω = 2.4 close to theJ0 Bessel function
first zero, owing to the quasienergy flatness at ω0 ≈ 0 a nearly perfect
freezing is reached in a large range of low ω0 values.

This solution predicts a freezing for whatever ω0 at the �/ω

values corresponding to the zeros of the J0 Bessel function,
but its validity is limited to ω0 ≈ 0.

(b) S-corrected solution. On the basis of a magnetic
resonance semiclassical treatment, Refs. [30,32] derived an
ω0-dependent correction to the J0 renormalization. That
correction leads to the following quasienergies and renormal-
ization:

ε±,n

h̄
= ±ω0

2

[
J0

(
�

ω

)
−

(
ω0

ω

)2

S

(
�

ω

)]
+ nω, (25)

R = J0

(
�

ω

)
−

(ω0

ω

)2
S

(
�

ω

)
. (26)

Here S(x) is a product of Jn ordinary Bessel functions well
approximated by the following expression [31]:

S(x) = 16

2025x4
[α(x)J2(x) + β(x)J4(x) − γ (x)J6(x)] ,

(27)

where α(x) = 75(5 − x2/4)x2, β(x) = 6(408 − 74x2

− 23x4/16), and γ (x) = 145x2
(
3 − x2/2

)
/49. Within the

following section this solution will be used for calculations
around the first and second zeros of the zeroth order Bessel
function, and the validity limits for the ω0/ω application
range will be discussed there.

(c) Continued fraction. A general approach to derive
the R renormalization coefficient is based on the Floquet
quasienergies derived in the previous section, leading to

R = ε+,0

h̄ω0/2
. (28)

This equation allows a numerical determination of R without
restricting to the low ω0 values where the J0 approximation
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FIG. 2. (Color online) On the topR vs �/ω calculated at ω0/ω =
0.1 on the basis of different approximations: (a) from the continued
fraction containing terms up to 9 terms, the J0 solution of Eq. (5), and
the S-corrected one of Eq. (26); (b), (c), (d) and (e) from the continued
fraction limited to seven, four, three, and one terms, respectively. On
the bottom quasienergies ε+,0 (continuous lines) and ε−,0 (dashed
lines) vs ω0 at �/ω = 2.405. Thicker blue lines calculated on the
basis of the four terms continued fraction; thinner red lines on the
S-corrected solution. The central black horizontal dot-dashed line
based on Eq. (24). Diagonal lines for the ω0 → 0 quasienergies.

(without or with the S function) is valid. The quasienergy
can be derived either from the continued-fraction solution of
Eq. (20), truncated to a finite number j of terms, or from a
diagonalization of the system of Eqs. (18) truncated to a finite
number of equations with 2j + 1 terms. The Hamiltonian
diagonalization approach was applied in Ref. [6] for the
renormalization calculations in both the low-frequency and
high-frequency regimes.

V. NUMERICAL RESULTS

The R renormalization coefficient is a complex function of
the system parameters ω0/ω and �/ω, and the previous section
approaches may be used for numerical analyses at different
parameter values. Figure 2(a) reports the R results at ω0/ω =

0.6

0.4

0.2

0.0

-0.2

R

3.02.52.01.51.0
Ω/ω

(a)

-0.06

-0.04

-0.02

0.00

0.02

J e
ff/

ω

2.62.42.2
Ω/ω

(b)

FIG. 3. (Color online) In (a) renormalization coefficient R and
in (b) effective tunneling Jeff vs �/ω ratio for different values of
J/ω. Continuous blue lines for J/ω = 0.02, dashed green lines for
J/ω = 0.2, and dotted red lines for J/ω = 0.4.

2J/ω = 0.1 vs �/ω, obtained using Eq. (28) linking that
coefficient to the Floquet quasienergies. For the quasienergies
determined from the continued-fraction solution, and also from
the diagonalization of the system of Eqs. (18), the results of
Fig. 2(a) show a slow convergence at low ω0 values, as already
pointed out by Autler and Townes [24], the number of required
terms in the continued fraction depending on the �/ω value.
In the ω0,J → 0 limitR is well approximated by theJ0(�/ω)
function, the S correction vanishing there.

For the quasienergies’ dependence on ω0 at �/ω = 2.405,
Fig. 2(b) compares the continued-fraction solution to the J0

solution and the S-corrected one. The J0 solution leads to a
horizontal line close to the x axis because �/ω corresponds
to the Bessel first zero, indicating that it approximates the
quasienergies only for ω0 ≈ 0. On the contrary the S-corrected
solution approximates well the quasienergies for a large range
of parameters, at least for ω0/ω up to 0.5 corresponding to
J/ω up to 1.

For the shaken optical lattice experiments where the
condition ω0 = 2J 
 ω is satisfied, as in most cases, the J0

solution is well appropriate for R. At larger J values, the
S function correction to J0 can be used for the full range
of the parameters explored so far in experiments. Figure 3
reports an S-correction-based analysis of the shaken-lattice
renormalization at increasing values of J/ω. For J/ω = 0.4
the correction to R shown in Fig. 3(a) is 10% smaller than
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5

4

3

2

1

0

[Ω
/ω

] fr
ee

ze

2.01.51.00.50.0
J/ω

 S-solution
 Continued fraction

FIG. 4. (Color online) [�/ω]freeze values required to freeze the
tunneling coefficient (Jeff = 0) as a function of the J/ω unperturbed
tunneling coefficient. Continuous lines from the S-corrected expres-
sion and dots from the continued-fraction solution. Closed blue dots
for the first zero crossing of the eigenenergies and open blue ones for
the second zero crossing. The stars on the horizontal axis denote the
J/ω values explored in the shaken optical lattice experiments.

the J/ω ≈ 0 value, but becomes larger increasing J . Because
the most important quantity is the tunneling coefficient itself,
Fig. 3(b) shows the Jeff ≈ 0 dependence on �/ω at increasing
values of J/ω. Notice that increasing J/ω the Jeff = 0 freezing
configuration is reached at an �/ω value lower than the Bessel
first zero.

Figure 4 shows the [�/ω]freeze values required to produce
a tunneling freeze for a given J/ω initial value. We plot the
values associated with the first and second zero crossing of the
eigenenergies, corresponding to the first and second zero of
the Bessel function within the J0 solution. A comparison
between the S-corrected solution and the continued-fraction
solution is presented, confirming that for most shaken-lattice
experiments performed so far, the S-corrected solution pro-
vides a simple and precise determination of the modified
tunneling parameter. For a larger range of parameters the
continued-fraction solution should be used. The data points at
�/ω → 0 correspond to the quasienergy crossings in absence
of rf drive and do not have a physical meaning. Notice that
freezing can be produced also applying ω values lower than J ,

a regime that was not yet examined in the experiments. It may
be noticed that the general dependence of the freezing value
of Fig. 4 is similar, although not identical to the Bloch-Siegert
shift dependence investigated in [1,2,24,25,27–32]. In fact
for an applied oscillating field, as in the present magnetic
resonance configuration, all the crossings and anticrossings
of the energy levels are shifted towards lower ω0 values by
increasing � [35]. The Bloch-Siegert shift of the magnetic
resonance is associated with the position of the energy
anticrossings, while the freezing point is associated with the
zero crossing of the eigenenergies.

VI. CONCLUSIONS

We have examined the energy renormalization of a two-
level system usually associated with the dressed-atom ap-
proach, but also derivable from a semiclassical analysis of
the magnetic resonance. The S solution derived in Ref. [9]
for the Zeeman freezing of optical clocks is here applied to
the optical lattice experiments. Within that framework the
standard zero-Bessel dependence on the amplitude of the
electromagnetic field amplitude, valid only at zero magnetic
field, was extended to derive a general dependence on the
magnetic field amplitude. That result is important for the main
target of the present work, to use the magnetic resonance
results in order to perform an accurate analysis of the
renormalization occurring for the atomic quantum tunneling
between the minima of an optical lattice in the shaken lattice
experiments. The magnetic resonance correction to the energy
renormalization allows us to derive a very general formula
for the tunneling renormalization in shaken optical lattices.
The conditions for the complete cancellation of the tunneling
rate are functions of the tunneling energy without shaking
and of the modulation frequency. The precise determination
of the tunneling under different driving conditions will lead to
a better control in the quantum simulation experiments based
on optical lattices.
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