
PHYSICAL REVIEW A 87, 023420 (2013)

Multiconfigurational Hartree-Fock close-coupling ansatz: Application to the argon photoionization
cross section and delays
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We present a robust, ab initio method for addressing atom-light interactions and apply it to photoionization
of argon. We use a close-coupling ansatz constructed on a multiconfigurational Hartree-Fock description of
localized states and B-spline expansions of the electron radial wave functions. In this implementation, the
general many-electron problem can be tackled thanks to the use of the ATSP2K libraries [C. Froese Fischer
et al., Comput. Phys. Commun. 176, 559 (2007)]. In the present contribution, we combine this method with
exterior complex scaling, thereby allowing for the computation of the complex partial amplitudes that encode the
whole dynamics of the photoionization process. The method is validated on the 3s3p6np series of resonances
converging to the 3s extraction. Then, it is used for computing the energy dependent differential atomic delay
between 3p and 3s photoemission, and agreement is found with the measurements of Guénot et al. [ Phys. Rev.
A 85, 053424 (2012)]. The effect of the presence of resonances in the one-photon spectrum on photoionization
delay measurements is studied.
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I. INTRODUCTION

Since its discovery, the photoelectric effect has occupied
a forefront position among the processes triggered by the
interaction between matter and radiation. This is due to the
relevance of photoionization for a range of naturally occurring
phenomena, as for example those determining the opacity
of astrophysical objects [1], or leading to radiation damage
of biological systems [2], as well as for many technological
applications. A quantitative description of photoionization is
required to understand and control these processes. Research
in this direction has a long history [3,4] and generated vast
literature. The most recent development in this area includes
the advent of several new light sources providing shorter
pulses, higher intensities, or shorter wavelengths [5,6]. During
recent years, such sources have been utilized to also gain
knowledge of the temporal aspects of photoionization [7,8].

A reliable description of the photoionization event requires
a good representation of the atomic or molecular system during
all the stages of its interaction with light. This includes the
structure of the initial bound state, as well as of the final parent
or target states, but also the coupling between the released pho-
toelectron and the relaxing parent ion. In this work, we present
a tool that permits one to treat many-body effects in bound and
continuum states of many-electron atoms, irrespective of how
the photoionization process is to be treated. Depending on the
intensity, pulse length, and monochromaticity of the light the
appropriate method may be found everywhere on the range
from the standard one-photon time-independent formalism,
to the explicit solution of the time-dependent Schrödinger
equation. Since the latter approach quickly grows computa-
tionally heavy for all but the smallest systems, it is usually
necessary to stick to a simplified treatment of correlation for
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larger systems. The procedure we outline here allows for a
systematic refinement of many-body effects and the unified
approach for time-independent and time-dependent calcula-
tions permits further tests and verifications of the amount of
correlation in the latter by comparison with the effect on the
former.

In the present study we validate the approach and verify
that the underlying approximations are justified by comparing
photoabsorption cross sections for the argon atom, computed in
the weak-field limit, with existing experimental and theoretical
data. Furthermore, we show that the delay in the photoelec-
tron ejection observed experimentally [8,9] can be largely
explained by the single photoionization scattering phases when
corrected for the phase shift introduced in the experiment by
the probe photon [10].

For the description of the wave functions in the continuum
two different approaches dominate the literature. One possibil-
ity is to match a numerical solution, computed inside an inner
spherical region, with the appropriate asymptotic solution in
the outer region, whose analytical form is known. This is the
basis of most scattering methods such as, e.g., the R-matrix
method, originally adapted for the photoionization problem
by Burke and Taylor [11] and recently presented also in a
time-dependent version [12], as well as the K-matrix method
[13,14]. An alternative solution is to use complex scaling,
where radial coordinates are rotated in the complex plane. In
this case, the photoabsorption cross section can be directly
computed as the imaginary part of the frequency-dependent
polarizability [15–17]. Complex scaling methods present some
advantages as well as some disadvantages with respect to
scattering methods. On the one hand, with complex scaling,
resonance states have a more transparent representation since
they appear directly as eigenstates of the complex-scaled
Hamiltonian with a negative imaginary part of the energy.
On the other hand, the complex-scaled wave functions differ
from the generalized eigenstates of the unscaled Hamiltonian.
Therefore, properties that can only be extracted from the
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ionized part of the wave function are not easily obtainable.
This problem is circumvented using exterior complex scaling
[18], where the radial coordinate is scaled only outside a
sufficiently large region. In this method, the wave function in
the inner unscaled region can be directly analyzed. Exterior
complex scaling has been extensively applied to electron
and photon scattering problems [19–22] (see [23] for a
review).

The description of the target and parent-ion states is an
atomic structure problem than can be treated with the tools
targeting correlation in bound states, e.g., many-body pertur-
bation theory, coupled cluster, configuration interaction, etc.
(see, e.g., [24–26]). Most of these approaches can subsequently
be combined with different representations of the continuum.
Configuration interaction, for example, can be used to either
represent the atomic system in the inner R-matrix region or
be employed together with complex scaling. A method that
is particularly convenient when aiming at problems involving
single atomic continua, but nontrivial configurations, is the
multiconfiguration Hartree-Fock (MCHF) method [25,27]. It
is known to yield accurate correlation models for general
bound states [28] while still limiting the number of con-
figurations required for convergence. MCHF has often been
used in combination with the R-matrix method (see, e.g.,
Ref. [29]), but also together with other approaches to describe
the continuum (see, e.g., Ref. [30]). Here, we employ the
close-coupling ansatz, originally introduced by Massey and
Mohr [31,32], for the atomic wave function. The localized
part of the wave function is expressed in terms of MCHF
configurations; our implementation is based on the atomic-
structure package ATSP2K [33], while the radial component that
corresponds to the photoelectron is expanded on an extensive
B-spline basis. We use exterior complex scaling for an explicit
description of resonances and a good representation of the
continuum.

This paper is organized as follows. In Sec. II we outline
the present implementation of the close-coupling ansatz, and
in Sec. III the calculation of photoionization parameters is
discussed. To validate the method, we compare our results
for the photoionization of the argon atom with other the-
oretical and experimental data in Sec. IV. Argon provides
a good benchmark because it is comparatively light, so a
nonrelativistic description is appropriate, and its resonance
profiles and angular distribution, which encode the full
information about the complex partial amplitudes [34], have
been the target of many experimental and theoretical studies
[11,29,35–41]. Figure 1 is a diagram of the levels of neutral
argon accessible through one-photon transition, shown on
an energy scale corresponding to photoionization from the
ground state. Above the 3s3p6 threshold, we only mark the
levels of Ar+ in black and gray. In Sec. IV, we focus our
attention on the photon energy range between 26 and 30 eV
which comprises the 3s3p6np autoionizing series, which
entails strong configuration interaction. In Sec. V we use
our approach to estimate the one-photon Wigner-like delay
in the experimentally relevant region from 32 to 42 eV. The
importance of the presence of many resonances affecting the
atomic delay is demonstrated. Finally, in Sec. VI we draw our
conclusions.
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FIG. 1. (Color online) Diagram of the neutral argon levels and
ionization thresholds accessible through one-photon transitions. Data
are taken from the NIST atomic database [42]. The red level is the
Ar ground state, and the blue states are singly excited bound and
autoionizing states. Black lines are ionization thresholds that are
included in our analysis. Gray lines are other ionization thresholds
which are neglected in the present paper (cf. the Appendix).

II. THE CLOSE-COUPLING ANSATZ

A. Exterior complex scaling

In our implementation of the close-coupling ansatz, the
states in the continuum are evaluated on an exterior complex-
scaled (ECS) radial coordinate

r → r (θ) ≡
{

r if r < R0

R0 + eiθ (r − R0) if r � R0.
(1)

As mentioned earlier, this approach provides a good descrip-
tion of the photoabsorption cross section in general, and of
transiently bound states, in particular. In the present context,
ECS has two further advantages. First, as detailed in Sec. II B,
we employ existing MCHF codes [33] to describe the bound
states. If R0 is large enough, the output of these programs can
be directly used in conjunction with additional complex-scaled
functions without any modification. In fact, this was the reason
why Simon [18], who wanted to treat molecules without having
to scale the molecular potential, introduced ECS to begin with.
Second, with ECS we are able to analyze the ionized part of
the wave function to determine partial complex amplitudes.
This will be discussed in more detail in Sec. III.

B. Multiconfiguration Hartree-Fock method

In the MCHF method, the atomic wave function is expanded
on an orthonormal set of symmetry adapted linear combina-
tions of Slater determinants [25,27], {�(γiLS)}, known as
configuration state functions (CSF),

� =
∑

j

cj�(γjLS). (2)

The radial functions {Pnl(r)}, which define the occupied and
correlation spin orbitals, and the {cj } mixing coefficients are
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then optimized to minimize the energy functional

E[{Pnl(r)},{cj }] = 〈� |H | �〉 , (3)

where H is the nonrelativistic atomic Hamiltonian with infinite
mass nucleus, under the orthogonality constraint for the radial
orbitals {Pnl(r)}: ∫

Pnl(r)Pn′l(r)dr = δnn′ . (4)

We use the ATSP2K package [33] to solve the MCHF problem.
The close-coupling expansion is defined by a set of N -

electron target states (�a) coupled to an extensive set of one-
particle states with defined orbital angular momentum l. This
group of (N + 1)-particle states is further complemented by a
set of localized states (χξ ). The wave function of the atomic
state before or after photoabsorption can be expressed as

� =
∑

ξ

cξχξ +
∑
α,n

cαn ALS{�aPnl(rN+1)}, (5)

where α is the channel index, indicating target state a

and photoelectron angular momentum l, and ALS yields
a symmetry adapted, antisymmetric (N + 1)-electron wave
function. The N -electron CSF are built from the orbitals
obtained in the MCHF calculation, and we find the target
states (�a) as the linear combinations that diagonalize the total
N -electron Hamiltonian. We further use these orbitals to set up
the (N + 1)-electron CSF that form the χξ . All intermediate
angular couplings compatible with the total symmetry under
examination are included in the close-coupling expansion
which, in this sense, is therefore complete. As in MCHF-based
R-matrix approaches [29], orbitals that are occupied in the
target states, and which derive from a MCHF optimization,
are kept frozen throughout the calculations. A discretized
description of the continuum orbitals Pnl(r) describing the
photoelectron is assumed. The configuration interaction coef-
ficients cξ and cαn in Eq. (5) give the close-coupling ansatz
a great flexibility. Even if occupied orbitals are optimized
on the parent states, the second term of Eq. (5) is able to
account for the orbital adjustment between the N - and N + 1-
electron systems. One drawback of this approach is that highly
excited configurations or configurations involving correlation
orbitals often appear as discrete states that are embedded
in the continua, slightly above the physical states described
by the model. These states appear as artifacts of the calculation
in the photoionization cross section, so-called pseudoreso-
nances.

C. Description of the photoelectron

The photoelectron radial function basis {Pnl} [cf. Eq. (5)]
is expanded in B-splines [43],

Pnl(r
(θ)) =

∑
i

ciB
k
i (r (θ)). (6)

The B-splines of order k are defined as piecewise polynomials
of order k − 1 between predefined isolated points, called knots.
In this work, we use k = 7. With exterior complex scaling,
it is convenient to let the knot sequence follow the scaled
r in Eq. (1), i.e., r (θ) [44]. B-splines can be used to form
effectively complete basis sets for the description of localized

electron partial wave packets, in particular in atomic problems
[45,46]. Since B-splines are nonorthogonal, however, they
cannot be directly used in combination with ATSP2K. The
expansion coefficients in Eq. (6) are obtained through the
following procedure. First the MCHF orbitals, computed on a
radial grid using the MCHF program of ATSP2K, are fitted with
B-splines using the W_BSW program of the B-spline R-matrix
(BSR) package [47]. The exterior complex scaling radius R0

is chosen to be larger than the radius at which the MCHF
orbitals numerically vanish, therefore, the MCHF orbitals
are expressed in the region where r is unscaled. Second,
for each orbital obtained at the MCHF stage, the B-spline
corresponding to the largest mixing coefficient in Pnl(r) is
removed. Finally, the remaining B-splines are orthogonalized
to the MCHF orbitals with the Gram-Schmidt algorithm.
When combined, the occupied Pnl(r) and the orthogonalized
B-spline set form an orthonormal basis equivalent to the
original B-spline radial basis. The B-splines which do not
vanish at R0 are complex [23]; as a consequence, the final
basis set is complex as well.

III. ATOMIC PHOTOIONIZATION USING EXTERIOR
COMPLEX SCALING

The correlated many-electron basis set that we use to de-
scribe the system before and after photoabsorption is obtained
by diagonalizing the full complex-scaled Hamiltonian Hθ

projected on the space spanned by the ansatz in Eq. (5). The
resulting eigenenergies Eθ

k , corresponding to the eigenvectors
|kθ 〉, are in general complex. Those corresponding to bound
states have a vanishing imaginary part of the energy; some
complex eigenvalues, which correspond to resonances, are
largely independent of the rotation angle; finally, the remaining
eigenvalues correspond to the unstructured continuum.

A. The total cross section

The single-photon absorption cross section can be ex-
pressed in terms of the dynamic polarizability of the ground
state |0〉 of the atom,

σ (ω) = − e2

4πε0

4π

3

ω

c
Im〈0 | (ε̂ · R) G+

0 (E0 + h̄ω) (ε̂ · R) |0〉,
(7)

where R = ∑
j rj , G+

0 (E) = (E − H + i0+)−1 is the Green’s
function of the field-free Hamiltonian, h̄ω is the photon energy,
and ε̂ is the direction of the laser polarization.

With complex scaling, the Green function is constructed as
a sum over the many-electron basis set components as [15,16]

σ (ω) = − e2

4πε0

4π

3

ω

c
Im

[∑
k

〈0|ε̂ · R(θ)|kθ 〉〈kθ |ε̂ · R(θ)|0〉
E0 − Eθ

k + h̄ω

]
,

(8)

where |kθ 〉 and 〈kθ | are right and left eigenvectors of the
complex-scaled Hamiltonian Hθ , with complex eigenvalues
Eθ

k . For the field-free Hamiltonian Hθ , the left eigenvectors are
simply the transpose of the right eigenvectors (see, e.g., [48]).
The sum over |kθ 〉 goes over all eigenstates to Hθ including
both resonances and continuum states. We note that since
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resonances appear directly as eigenstates of Hθ the effect
of a resonance on the photoionization process is accordingly
accounted for by a single term in Eq. (7).

B. The Fano profile

As was shown by Fano [49] the cross section in the vicinity
of an isolated resonance, situated at Er (relative to E0) and
with autoionization width �, can be parametrized as

σ (ε) = (q + ε)2

1 + ε2
σa + σb, (9)

where q is the so-called asymmetry parameter and ε is defined
as

ε = h̄ω − Er

�/2
, (10)

while σa and σb are slowly varying as a function of ε.
Looking at the contribution from a specific resonance in

the sum on the right-hand side of Eq. (8), we can indeed put
each such contribution in the form of Eq. (9). The derivation
is detailed in Ref. [16]; here we just give the results. Each
resonance k contributes with

σk(εk) = (qk + εk)2

1 + ε2
σ k

a + σ k
min, (11)

where the reduced energy εk of the resonance |k〉 is defined as
in Eq. (10), with Er

k = Re[Ek] − E0 being the position of the
resonance, and �k = −2 Im[Ek]. The asymmetry parameter
qk , but also σ k

a and σ k
min, are here constants and are determined

by the resonance parameters and by the complex dipole
matrix element between the ground state and the considered
resonant state, the numerator in the term in brackets in Eq. (8).
Labeling it Rk + iIk = 〈

kθ |ε̂ · R(θ)|0〉2
[16], the three constants

are found to be

qk = bk − Ik

|Ik|
√

b2
k + 1, (12)

σ k
a = e2

4πε0

4π

3

1

h̄c

(
Rk − 2IkE

r
k/�k

2qk

)
, (13)

σ k
min = − e2

4πε0

4π

3

1

h̄c

(
2RkE

r
k/�k + q2

k Ik

2qkbk

)
, (14)

where

bk = Ik�k + 2Er
kRk

Rk�k − 2Er
kIk

. (15)

If the sum over all the other contributions in Eq. (8), from other
resonances as well as from the smooth continuum, just give
slowly varying contributions in the vicinity of the resonance
k, then it is clear that the total cross section is well described
by Eq. (9). This condition should be fulfilled if the resonance
is far from other resonances and from thresholds.

The resonance parameters Er , �, and q in Eq. (12) are
often obtained from experiment through a fit to a Fano profile.
For validation purposes, we compare these with our calculated
values in Sec. IV. Another parameter that is also obtainable
from experiments is the coefficient ρ2 [50],

ρ2 = σa

σa + σb

. (16)

Here σa can be calculated directly from Eq. (13), while σb is
not given by σmin alone but from the full sum over states k in
Eq. (8). However, in the limit that Eq. (9) is valid, σb can be
obtained from Eq. (8) at ε = −q.

C. Partial cross sections

Equation (8) gives a convenient way to obtain the total
cross section. For the extraction of the partial cross sections
we analyze the many-electron, one-photon perturbed wave
function �(ω,r1,r2, . . . ,rN ), which is a function of the photon
energy as well as of the coordinates of all the particles in
the system. The perturbed wave function solves the following
inhomogeneous differential equation:

(H − E0 − h̄ω)�(ω,r1,r2, . . . ,rN+1)

= − (ε̂ · R) �0(r1,r2, . . . ,rN+1), (17)

where the source term on the right-hand side describes the
excitation from the ground state by the dipole operator acting
on all electrons. The concept of perturbed wave functions was
introduced by Sternheimer [51], and it remains a useful tool
also today, with novel applications emerging in the field of
attosecond science [10]. Here it is obtained through direct
summation over our many-body basis as

|�θ 〉 =
∑

k

|kθ 〉 〈kθ |ε̂ · Rθ |0〉
E0 − Eθ

k + h̄ω
, (18)

which represents the full many-electron wave packet formed
by absorption of one photon from the initial state. To extract
partial physical observables, �θ is projected on a specific
channel, α, defined by a bound N -electron state of the parent
ion and a fixed angular momentum of the outgoing electron.
As a result, we obtain a radial perturbed wave function
(PWF), denoted ρθ

α(ω,r), which is a superposition of the
radial functions Pnl(r) introduced in Eqs. (5) and (6). Figure
2 shows the complex and imaginary parts of ρθ

α(ω,r). For
r < R0, ρθ

α(ω,r) is equal to the radial perturbed wave function
without complex scaling, while in the complex-scaled region
r > R0 it is artificially damped. As a second step, the complex
amplitude Aα(ω) of the PWF is obtained by fitting ρα(ω,r) to
a linear combination of the energy-normalized regular FE

l and
irregular GE

l Coulomb functions

Re[ρα(ω,r)] = Im[Aα(ω)]FE
l (−1/k,kr)

− Re[Aα(ω)]GE
l (−1/k,kr), (19)
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FIG. 2. (Color online) Radial perturbed function for the 3p → εd

channel, in length gauge, for ε = −q in the vicinity of the 3s3p64p

resonance. The red and dashed blue curves are its real and imaginary
parts, respectively.
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where here, k is the photoelectron wave number and E is the
corresponding energy. The fit is carried out for a radial distance
r < R0 so that it is not affected by the complex scaling, but
large enough that the asymptotic behavior is established. In
practice, we compute �θ , and Aα , for a specific M magnetic
quantum number. In the following, however, observables
extracted from the complex amplitudes are implicitly averaged
over orientations except if otherwise stated. The absolute
square of the amplitudes is related to the electron flux and,
hence, to the partial cross section, as

σα(ω) = 4π

3

e2

(4πε0)h̄c
a2

0
h̄ω

π
|Aα(ω)|2. (20)

Note that the amplitude (and the cross section) is that of
a photoelectron in channel α. The spin-averaged, angular
dependent photoelectron amplitude, with given M magnetic
quantum number, is obtained after multiplying it by spherical
harmonics coupled by Clebsch-Gordan coefficients as

Aα,M (ω)
∑
m

Ylm(θ,ϕ)〈La(M − m); lm|LαM〉, (21)

where La is the angular momentum of the N -electron system
�a , and Lα that of the total (N + 1) system. Expression (21)
can be used to obtain the angular dependence of photoelectrons
ionized by polarized light

dσ (ω)

d�
= σ (ω)

4π
[1 + β(ω)P2(cos φ)], (22)

where P2 is the second-order Legendre polynomial and φ is
the angle between the polarization direction and the direction
of the photoelectron. The parameter β(ω) is

β(ω) =
( ∑

αβ

�(α; β)Re[A∗
α(ω)Aβ(ω)]

)(∑
α

|Aα(ω)|2
)−1

,

(23)

where �(α; β) is a purely angular factor given by

�(α; β) = (−1)L0−La+lα+lβ+1i−lα+lβ δ(a,b)

×
√

2(2lα + 1)(2lβ + 1)(2Lα + 1)(2Lβ + 1)

3

× 〈lα0lβ0|20〉
{

lα lβ 2
Lβ Lα La

}{
1 Lα L0

Lβ 1 2

}
,

(24)

where the index 0 refers to the initial state, and α = (a,lα) and
β = (b,lβ) refer to the two interfering channels.

D. Extraction of resonance properties from
the partial cross section

Properties like ρ2, defined in Eq. (16), can be extracted from
the partial channels as well as from the total cross section. For
this we follow Kabachnik and Sazhina [34] and Sorensen et al.
[36], and express the amplitude of the PWF as the combination
of a resonant AR

α and a decoupled AD
α complex amplitude:

Aα(ε) = F(ε)AR
α + AD

α (ε), (25)

F(ε) = q + ε

i + ε
= (ε − i)

q + ε

1 + ε2
, (26)

where ε is defined as in Eq. (10). If the decay of the bound
component of the resonance is treated to lowest order in the
Coulomb interaction, these amplitudes have the same phase up
to a π shift [34,50]. We show in Sec. IV C that it remains valid
in the case of the 3s3p6np resonances of Ar, and that the effect
of the higher-order contributions, present in our approach, is
small. From AR

α and AD
α (ε), we can calculate ρ2 [50] as

ρ2 = σa

σa + σb

= 1 − σb

σa + σb

= 1 −
∑

α

∣∣AD
α

∣∣2∣∣AR
α + AD

α

∣∣2 , (27)

where we have used the fact that the nonresonant background
cross section σb is obtained from the sum of the squares of
the decoupled amplitudes AD

α . For the extraction of AR
α and

AD
α (ε), we suppose first that AR

α can be considered a constant.
Provided AD

α (ε) is slowly varying, we are able to describe it
around a certain ε as an n-term Taylor expansion. Then AR

α

can be obtained from the nth derivative of Eq. (25) as

AR
α = dnAα(ε)

dεn

(
dnF(ε)

dεn

)−1

. (28)

The number of terms n used is decided from the convergence
of AR

α for a given ε, and the stability of AR
α when ε is varied can

be used for assessing the reliability of the procedure. Making a
comparison between the values obtained for ρ2 from the total
cross section Eq. (16), and from the partial amplitudes, the
right-hand side of Eq. (27), is a test of the extraction of the par-
tial cross sections as well as of the Fano parametrization itself.

IV. APPLICATION TO ARGON 3s → np RESONANCE
REGION

A. Details of the calculations

In the present section, we briefly outline the construction of
the MCHF model. Our approach is similar to those followed
by Berrah et al. [29] and by Burke and Taylor [11]; the
reader can find further details in the original references.
The spectroscopic orbitals {1s,2s,2p,3s,3p} are optimized
by performing a Hartree-Fock (HF) calculation on the 3p5

2P o state of Ar+. Then, the {3d,4s,4p} correlation orbitals
are optimized in a MCHF calculation on the lowest 2S state of
Ar+ including single excitations of the 3s3p6 configuration,
as well as the 3s3p43d2 complex. As illustrated in Table I, this
state is characterized by a strong configuration mixing.

TABLE I. List of mixing coefficients in the MCHF expansion of
the lowest 2S

(
3s3p6

)
state of Ar+.

CSF Mixing coefficient

3s3p6 0.83498723
3s23p4(1D)3d −0.52070520
3s3p4(1S)3d2(1S) 0.09817089
3s3p4(3P )[4P ]3d2(3P ) −0.09655511
3s3p4(1D)3d2(1D) −0.08964443
3s3p5[1P ]4p −0.05536407
3s23p4(1S)4s −0.03427725
3s3p4(3P )[2P ]3d2(3P ) −0.01888098
3p64s 0.00827551
3s3p5[3P ]4p −0.00088679
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The set of CSF included in the diagonalization of the N -
electron Hamiltonian defining the 2S parent states entering
the close-coupling expansion [see Eq. (5)], is the same as the
one used in the MCHF calculation. For the 2P o parents, we
include the single excitations of the 3s23p5, and the doubly
excited CSF arising from the 3s23p33d2, 3p53d2, and 3p64p

configurations.
This model yields a threshold energy for the 3s photoion-

ization of argon of 29.73 eV, compared to the experimental
value of 29.24 eV [52]. The difference of 0.49 eV between
theory and experiment is due to the lack of balance between
the description of the ion and of the ground state of the
neutral atom. Since this discrepancy is mostly reflected in
a collective shift of all spectral features, we simply present
all our results on a photon energy scale shifted downward by
0.49 eV to compare with the experiment, rather than using any
semiempirical corrections.

The set of localized configuration state functions χξ in
Eq. (5) comprises all single and double excitations from
3s23p6, all triple excitations with at least two 3d electrons,
and the 3s23p23d34p configuration, i.e., all those listed in
Table II of Ref. [29].

The final close-coupling expansion using B-splines is
obtained as explained in Secs. II B and II C. For small radii,
a dense B-spline basis is necessary to correctly describe the
inner orbitals. A 0.1/Z a0 step size is used from the origin
to 1/Za0. Then, the knot spacing increases exponentially up
to 0.9a0. The knot sequence is then linear up to 80a0. It is
generated by the W_BSW program of the BSR package [47]. To
represent high-n Rydberg states, we extend the node set with
an exponential sequence of 100 nodes from 80 to R = 400a0.
The final basis contains 249 B-splines. We ascertain that the
results are stable with respect to changes of the complex scaling
parameters by varying R0, the radial distance at which exterior
complex scaling begins, from 50 to 80a0, and by doubling the
complex scaling angle θ in Eq. (1).

B. Total photoionization cross-section and Fano
profile parameters

The upper panel of Fig. 3 shows part of the complex
rotated energy spectrum for the 1P o manifold, obtained
from the diagonalization of the field-free Hamiltonian Hθ

using two different complex rotation angles. As expected, the
complex resonance energies are virtually independent of the
rotation angle. For example, all the parameters of the 3s3p6np

resonances agree to one ppm up to the n = 13 state. The
pseudocontinuum energies, instead, follow a θ -dependent path
in the complex plane [48]. Also Rydberg states with n > 13,
that do not fit in the computational box, show a θ dependence.

The lower panel of Fig. 3 shows total cross sections obtained
in length and velocity gauge. The thick lines correspond to the
cross sections obtained by including the complete sum over
the basis set in Eq. (8), while the thin lines are computed
including only the 3s3p6np resonance series by summation
over the corresponding σk given in Eq. (11). The latter curves
reproduce well the resonant structure of the cross section, but
the remaining nonresonant contributions are required to obtain
the absolute value of the cross section. The good agreement
of the calculated total cross section in the two gauges in
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FIG. 3. (Color online) Top panel: Details of the complex energies
of the field-free Hamiltonian of argon calculated for the 1P o symmetry
with θ = 0.055 rad (red circles) and 0.11 rad (black squares). Bottom
panel: Comparison of the total calculated cross sections (thick lines),
in length (full red curve) and velocity (dashed blue curve) gauges.
The empty circles are the experimental values of Berrah et al. [29], in
arbitrary units, scaled as in the original paper. The black squares are
absolute cross-section measurements from Samson and Stolte [53].
The thin lines are the cross sections computed by including only the
3s3p6np resonances in the basis set.

the transmission window suggests that σb in Eq. (9) is well
described and that the discrepancy comes mostly from σa .

Table II lists the parameters for some of the 3s3p6np

autoionizing states computed with our method, in length
and velocity gauges, and compares them to Refs. [29,38].
Our results are generally consistent with those obtained
with the R-matrix method [29] with similar choices for the
computational model and basis. The widths are slightly larger
than the experimental ones and those obtained from the fits to
the R-matrix calculation. The agreement of the q parameter
from the R-matrix calculation is good, but both calculations
show rather large deviations from the experiment. Reference
[29] attributes this discrepancy to the difficulty to accurately
represent the nonresonant background in the close-coupling
expansion. The marked gauge dependence of σa discussed in
the previous paragraph supports the fact that the contribution
from the resonant channel is not yet converged.

C. Partial cross sections and angular distribution

As a test of the robustness of the method outlined in
Sec. III C, we compare the total cross section computed with
Eq. (7) to the sum over the partial amplitudes of the 3p

photoemission channels computed with Eq. (20). This is shown
for the length gauge in Fig. 4. As can be seen in the lower panel,
the relative error between the two approaches is of the order of
10 ppm at most energies, which is close to our computational
accuracy. For the high n resonances, spurious long-range
effects affect the channel perturbed radial functions. Therefore,
their matching to Coulomb waves [see Eq. (19)] is less accurate
at the considered R0, but the error remains consistently of the
order of 0.1%. Above the 3s ionization threshold, the 3s3p6εp
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TABLE II. Comparison of the resonance parameters calculated in this work with the ones fitted to the R matrix and experimental cross
sections for the 3s3p6np resonances. For each resonance, parameters computed in length gauge are given on the first line, and the ones
computed in velocity gauge on the second line.

This work R matrix [29] Expt. [38] Expt. [29]

�E � �E � �E �

n (eV) (meV) q ρ2 (eV) (meV) q ρ2 (eV) (meV) q ρ2

4 26.585 87.4 -0.389 0.8391 26.633 83.8 -0.383 0.843 26.605 80.2(7) -0.286(4) 0.840(3)
-0.442 0.8350 -0.433 0.846

5 27.990 29.3 -0.299 0.8452 27.997 27.4 -0.292 0.825 27.994 28.5(8) -0.177(3) 0.848(3)
-0.345 0.8411 -0.342 0.829

6 28.509 13.3 -0.266 0.8467 28.508 12.4 -0.262 0.824 28.509 12.2(3) -0.135(9) 0.852(9)
-0.310 0.8425 -0.312 0.827

7 28.760 7.1 -0.250 0.8475 28.756 6.7 -0.249 0.823 28.757 6.6(1) -0.125(4) 0.846(9)
-0.293 0.8433 -0.299 0.827

8 28.901 4.3 -0.241 0.8476 28.896 4.0 -0.240 0.824 28.898 4.5(2) -0.132(4) 0.77(2)
-0.284 0.8434 -0.291 0.827

9 28.987 2.8 -0.236 0.8477 28.928 2.6 -0.235 0.823 4.1(2) -0.115(8) 0.63(3)
-0.279 0.8435 -0.286 0.826

10 29.045 1.9 -0.233 0.8479
-0.275 0.8436

11 29.085 1.3 -0.230 0.8480
-0.272 0.8437

12 29.114 1.0 -0.228 0.8480
-0.271 0.8438

13 29.135 0.7 -0.227 0.8481
-0.269 0.8438

channel accounts for the 10% discrepancy that can be seen in
the lower panel for photon energies above 29.24 eV.

We show in Fig. 4 that the window shape of the resonances
comes from the dominating 3p → εd channel, while the
3p → εs cross section is instead enhanced on resonance.
The partial amplitudes cannot generally be described by the
same set of resonance shape parameters. Here σs has, for
example, its maximum value at ε = −q ≈ 0.4, where the total
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FIG. 4. (Color online) Top panel: partial cross sections for 3p

ionization and total cross section, in length gauge. Bottom panel:
relative error of the sum of the above partial cross sections with respect
to the total cross section computed with Eq. (8), for R0 = 65a0 and
θ0 = 0.055 rad.

cross section has a minimum. This is due to a destructive
interference between AR

s and AD
s that suppresses the partial

background amplitude. This is illustrated in Fig. 5 where the
markers correspond to the norm and argument of the calculated
partial complex amplitudes in the vicinity of the 3s3p64p

resonance, while the curves are obtained from the simplified
expression

q + ε

i + ε

∣∣AR
α

∣∣ + η
∣∣AD

α (0)
∣∣, (29)

where η = 1 for α = d, and η = −1 for α = s. Here, we
drop the 3p5 label in α for conciseness. The good agreement
between the curves and data points illustrates the reliability
of the extraction of AD

α (ε) and AR
α and that AD

α (ε) is a slowly
varying function. More interestingly, it means that AD

d (ε) and
AR

d are in phase (arg[AD
d (ε)/AR

d ] ≈ 0) while AD
s (ε) and AR

s are
in phase opposition (arg[AD

s (ε)/AR
s ] ≈ π ) over a wide range

of ε. As mentioned in Sec. III D, these relations are rigorously
valid if the decay of the bound component of the resonance
is treated to lowest order in the Coulomb interaction [34,50].
However, while they hold with increased accuracy as the width
of the resonance decreases, they are not exactly realized within
more general models like ours.

Another test of our procedure for extracting the AD
α (ε) and

AR
α values, and in particular of Aα(ε), is the calculation of ρ2.

The values from the right-hand side of Eq. (27) agree with
those obtained from the total cross section as explained in
Sec. II within a couple of parts per thousand. We compare the
values obtained from Eq. (27) to the fitted ones from Berrah
et al. [29] in Table II. The present results in length gauge
agree with experiment up to the 3s7p state, while the velocity
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FIG. 5. (Color online) Norm, in atomic units, and argument of
the partial photoionization complex amplitudes versus the reduced
energy of the 3s3p64p resonance. (a) 3p → εd channel. (b) 3p → εs

channel. The crosses show 1 on 7 computed values. The lines are
obtained from Eq. (29). Red dashed curves and + signs indicate
length gauge, and blue full lines and × signs indicate velocity gauge.

gauge underestimates ρ2 slightly. The R-matrix fitted values
are systematically below ours and the experiment, except in
the case of the 3s3p64p resonance.

Finally, Fig. 6 compares the calculated β(ω) for the
3s3p6np resonances, n = 4–9, to the experimental data of
Berrah et al. [29]. Overall, the agreement is excellent. No
convolution is applied on the theoretical results so that discrep-
ancies appear close to the high n resonances. The β parameter
is, as expected, about 1.5 where the d channel dominates,
far from the resonances (see Fig. 4), while the photoelectron
angular distribution is anisotropic (β = 0) when the s channel
dominates, i.e., in the vicinity of the minimum of each Fano
structure. The structure in between those two extremes is well
described in the calculations, which means that, despite the
difference between theory and experiment regarding q values,
the relative amplitude and phase between the s and d channels,
leading to angular dependent interferences, is well represented.
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FIG. 6. (Color online) Calculated beta parameter (β) in length
(full red line) and velocity (broken blue line) compared to experiment
[29] (black dots). The vertical dashed line indicates a change of photon
energy scale.

V. APPLICATION TO PHOTOIONIZATION DELAY
MEASUREMENTS

Photoionization by attosecond XUV pulses assisted by
phase-locked IR laser-probe fields is a widely used experimen-
tal scheme to gain temporal information about subfemtosec-
ond pulse structures and dynamics [54]. This laser-assisted
photoionization process is often interpreted as an attosecond
streak-camera method, where the photoelectron will gain
momentum from the instantaneous vector potential of the
probe field depending on its exact time of ionization by
the attosecond pulse. Assuming that the intensity of both
pulses is weak, the corresponding light-matter interaction
can be treated using lowest-order perturbation theory and
the onset of this streaking mechanism can be described
with high fidelity using only a limited number of complex
transition amplitudes [55]. The delay-dependent probability
modulations of the photoelectron distributions are then directly
related to the phase differences of the two-photon, two-color
matrix elements (XUV ± IR). These so-called atomic phases
in laser-assisted photoionization [56], have been implemented
for reliable characterization schemes of attosecond pulses [57].
Recently, similar experimental techniques have been extended
to study the delay in photoionization from different initial
states in neon [7] and argon atoms [8,9]. Theoretical work
has shown that the total atomic delay, τA, measured in these
experiments can be approximated as the sum of the one-photon
Wigner-like delay in photoionization, τW , plus the so-called
continuum-continuum delay, τcc, which is induced by the laser-
probe field and the long-range ionic potential, so that [8,55,58]

τA = τW + τcc. (30)

In order to evaluate τW , we first apply the method
presented in Sec. III C in order to extract the partial wave
amplitudes, Aα(ω), which contain the asymptotic phase shifts,
δα(ω) ≡ arg[Aα(ω)], relative to the Coulombic phase shifts,
σl(ω), where l is the angular momentum of the photoelectron
in channel α. Then, using the total asymptotic phase shift,
ηα(ω) ≡ σl(ω) + δα(ω), we construct the Wigner-like delay
for channel α as a finite-difference derivative

τ
(α)
W ≡ ηα(ω>) − ηα(ω<)

2ωIR
, (31)
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where the difference between the XUV frequencies that will
interfere due to the influence of the probe field are separated
by two IR probe photons, ω> − ω< = 2ωIR.

The absorption of a laser-probe photon, required to make
the transition from the intermediate momentum ki to the final
momentum kf , induces a phase shift denoted φcc. Starting from
the formalism presented in Ref. [10], we use the soft-photon
approximation k2

f /2 	 ωIR and find the following expression
for the phase shift, using atomic units (h̄ = 1, e = 1, me = 1,
and 4πε0 = 1):

φcc(kf ,ωIR) = arg

{(
kf

iωIR

)iωIRZ/k3
f

�

[
1 + iωIRZ

k3
f

]}
,

(32)

where Z = 1 is the charge of the target ion. Equation (32)
is accurate for photoelectrons with high kinetic energy. The
continuum-continuum delay can then be written as

τcc(kf ,ωIR) ≈ −φcc(kf ,ωIR)

ωIR
. (33)

Alternatively this delay could be estimated with other methods
such as the eikonal Volkov approximation [59] or classical-
trajectory Monte Carlo simulations [58].

If there is more than one channel contributing to a given
final state, the two-photon amplitudes have to be added in
a consistent way depending on the experimental observable
[56]. Such a detailed analysis is beyond the scope of this
paper, where we will show that the correlated Wigner-like
delay Eq. (31) from the dominant channels is enough to explain
the observations within the experimental uncertainty.

Klünder et al. [8] and Guénot et al. [9] have measured
the 3s − 3p atomic delay difference at XUV photon energies
of 34.1, 37.2, and 40.3 eV corresponding to the high-order
harmonic sidebands 22, 24, and 26 for a generating field
of 1.55 eV. The contribution from the continuum-continuum
delay was then subtracted according to Eq. (30), in order to
isolate the Wigner-like delay in photoionization.

The first pseudoresonance in our model lies at an energy
of 39.4 eV, which is inside the range of the experimental
measurement, leading to an unphysical feature at 37.8 eV.
In order to assess the reliability of the computed delays, we
use a reduced close-coupling expansion by excluding the N -
and (N + 1)-electron CSF involving the 4s correlation orbital,
which is responsible for this artifact. In this truncated model,
the energy scale is shifted downward by 0.45 eV to match
the Ar 3s photoemission threshold. Another pseudoresonance
remains at 41.3 eV, affecting the Wigner-like delay at energies
close to the sideband 26, preventing comparison with the last
experimental value.

In Fig. 7(a) we present the Wigner-like delay obtained with
the reduced model. It is computed by Eq. (31) for channels
leading to photoemission from the 3p and 3s orbitals. In
Fig. 7(b) we show the delay difference between the two
dominant channels, 3s3p6εp and 3p5εd, using the full and
reduced close-coupling models. An exact determination of τcc

is difficult and we, therefore, compare these curves to the
original experimental data points for the Wigner-like delay of
Ref. [9] together with the ones estimated with the alternative
τcc from Eq. (33) and Ref. [59]. There is good agreement
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FIG. 7. (Color online) (a) Wigner-like delays for photoionization
from argon. There is no perceptible gauge dependence for photoion-
ization from the 3p orbital. For the 3s photoionization, the results
from velocity (blue broken) and length gauge (red dashed) are shown.
(b) Wigner-like delay difference between photoionization from the
3p and 3s orbitals in argon. The thin curves are obtained with the full
model that exhibit a pseudoresonance at 39.4 eV. The thick curves
are obtained with the truncated model for velocity (blue dashed)
and length (red full) gauge, respectively. The experimental values
of Ref. [9] are given with error bars. The experimental data point
obtained using the τcc from Eq. (33) and Ref. [59] are given by the
circles and squares, respectively.

between our theoretical model and the experimental points of
sidebands 22 and 24.

Going beyond the present analysis requires one to include
the many shake-up thresholds opening at these energies [52],
as shown in Fig. 1. As seen in experimental data [60]
and in R-matrix calculations [61], the 3s photoionization
partial and the total cross sections are highly structured by
resonances associated to those thresholds. This suggests that
the corresponding phases may be strongly altered as well.
However, the widths of these resonances are in general below
0.1 eV so that we can expect that they do not drastically
affect the measured delays obtained from an average over the
sidebands. Still, as we will show below, some structure should
be observable provided that the IR probe field is sufficiently
narrow.

The sideband amplitude can be obtained as the convolution
of the IR spectral envelope with the dipole element between
the perturbed wave function and the final state [10]. If, as
before, we limit our discussion to Eq. (30), we can estimate
the effect of the probe field bandwidth �IR by extracting the
Wigner-like delay from the complex amplitudes convoluted
with a Gaussian function

Ãα(ω) =
√

4 ln 2

π�2
IR

∫
dx Aα(x)exp

[
−4 ln 2(ω − x)2

�2
IR

]
. (34)
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FIG. 8. (Color online) Relative Wigner-like delays using a model
including some doubly excited resonances (see the Appendix).
(a) The probe field bandwidth is 60 meV and 0.6 eV, respectively, for
the top and bottom panels. Length (continuous red) and velocity
(dashed blue) gauge results are shown. The thicker, light curves
correspond to the reduced model used in Fig. 7. Experimental points
are shown with the same notation as in Fig. 7.

In Fig. 8, we present Wigner-like delay differences obtained
with a model that includes a range of physical resonances
associated to the thresholds in black in Fig. 1 (details are found
in the Appendix), after smoothing by the bandwidth of the
probe field using Eq. (34). The top panel shows the results for
a Gaussian IR envelope with FWHM of 60 meV, corresponding
to an IR field duration of 30 fs, typical of experiments using
trains of attosecond pulses. The bottom panel corresponds to
a FWHM of 0.6 eV, corresponding to a single IR cycle probe
pulse, typical of experiments using isolated attosecond pulses.
We show that the presence of resonances does not radically
change the baseline of the relative delays, but rather superim-
poses a structure that preserves the previous theory-experiment
agreement. Including the physical resonances in the model
also pushes pseudoresonances higher in the spectrum so that a
comparison can be made with the experimental delay extracted
at the sideband 26. Here, some limited agreement can still be
found in the top panel, within the theoretical and experimental
uncertainty. The Cooper minimum emphasized in Ref. [9],
experimentally located at about 43 eV, is also located at higher
photon energies in our calculations so that it does not affect the
computed delays. We should also note that, above 39 eV, many
more resonances could affect τα

W , corresponding to shake-up
electrons in higher orbitals, even though they seem to be less
important as far as the cross section is concerned [60].

An important implication of these results is that a rich
structure, originating from resonances, could be observed
experimentally by scanning the energy of the high-order
harmonics [see Fig. 8(a)]. In order to observe such features,
the bandwidth of the IR field should be sufficiently narrow.
Otherwise, if a too short probe pulse is used, which is often

the case in attosecond streaking experiments, these sharp
energy-dependent features cannot be resolved. In this case,
the resonances may affect the measured delay smoothly, as
shown in Fig. 8(b), where they cause an additional delay of
up to several tens of attoseconds as compared to the model
without resonances in this energy region.

Such a streaking experiment has been performed in neon to
extract a relative photoionization delay of 21(5) as between the
2p and 2s electron extraction [7]. No theoretical analysis has
been able to reproduce this result so far. Two of them include
the effects of a probe field within an ab initio many-body
framework. Full-fledged simulations of the measurement have
been performed by Moore et al. [62], using time-dependent
R-matrix theory, resulting in a relative delay of 10.2(1.3) as
Later, we have reproduced this result using two-photon matrix
elements computed using many-body perturbation theory [63].
In that study, the validity of Eq. (30) is demonstrated. In
both theoretical approaches the effects of transient double
excitations are neglected. As in the case of argon, the Ne+
level structure at the relevant energy, i.e., an XUV energy of
about 105 eV, is extremely rich [52]. Here we have seen that
such effects might play an important role. In neon, an extra
complication is that the experimental photon energy is above
several double ionization thresholds, and that triply excited
states may also be important, as pointed out in Ref. [62].
This implies that it will be important to include a complete
description of at least two active electrons, and possibly excited
configurations of the grandparent system.

VI. CONCLUSIONS AND OUTLOOK

We have presented a practical method, based on the Atomic
Structure Package (ATSP2K) [33], to obtain a general, many-
electron atomic wave function in a close-coupling expansion.
The structure of the localized part of the wave function
is represented using the multiconfiguration Hartree-Fock
(MCHF) method, which provides a versatile and flexible way
to represent complex many-body effects with a limited number
of configurations. By using B-splines to describe the radial
components of the photoelectron in the allowed partial-wave
channels, we obtain a multichannel method that, for the
description of one active electron in a box, is complete. This
paper develops this approach in combination with the exterior
complex scaling method of use, in particular, in the description
of monochromatic wave packets. In addition to evaluating the
total cross section with the standard tools of complex scaling,
we have extracted complex partial amplitudes that encode
the full information on the studied process. The consistency
between the two approaches has been verified in detail.

The method is validated by application to the photoion-
ization of argon close to the 3s ionization threshold. In
this energy region the final state is affected by strong
configuration interaction. We found good agreement of the
line profiles of the 3s3p6np autoionizing states with previous
R-matrix calculations and experiments. Also the computed
photoelectron angular distribution is in excellent agreement
with the measurements.

It has earlier been suggested that laser-assisted photoion-
ization by attosecond pulses gives access, in a universal
way, to relative one-photon Wigner-like delays (see, e.g.,
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Refs. [7–9]). So far, this interpretation of the observations has
remained uncertain since no ab initio calculations have been
able to reproduce the experimental data, even though some
encouraging results were obtained in the case of argon [9,63].
In this paper, we present a study that contributes to validation
of these claims, in the context of a weak probe field, by
including all relevant correlation effects, and by showing
that, in so doing, satisfactory agreement is obtained with
the observed atomic delay shifted by the atom-independent
continuum-continuum delay. We also show that the presence of
many resonances decaying into Ar+(3p5) and Ar+(3s3p6) in
the studied energy region affects the result of the measurements
in ways that are sensitive to experimental parameters. In a
future study we will extend the treatment to include consistent
ab initio calculations of the single photon and laser-assisted
photoelectron emission delays, in a similar way as done in
Ref. [63].

However, it has been shown for the helium atom that
dynamical screening effects caused by the polarization of the
parent ion by the IR field can affect the delay of electron
emission [64]. The rich structure of the Ar+ spectrum at the
relevant energies [52] suggests that such an effect could be
significant in the present case. A straightforward possibility
to include those effects in the calculation is to move to a
time-dependent approach, including explicitly the shape of
the IR pulse in order to account for the full many-body
dynamics of the process, both on the relatively long time scale
of autoionization, and the subfemtosecond scale set by the
XUV pulse.

For further developments we note that the compactness of
the MCHF and B-spline close-coupling approach presented
here makes it well suited for time-dependent many-body
calculations on systems in which exact calculations are
untractable. Only a limited number of such calculations exist
today (see, for example, [62,65–68]), all of them performed
within the time-dependent R-matrix framework [67,69,70].
As a next step we will combine the present approach with a
solution of the time-dependent Schrödinger equation along the
lines of Refs. [71,72], where the calculation is made without
complex scaling and the final physical results are extracted
by projection of the finite-time wave packet on K-matrix
scattering states. Absorbing boundaries are then used in order
to avoid reflections on the walls of the computational box in
the case of long simulations. We foresee here that the common
description of the structure part in the time-independent and
time-dependent calculations will be of significant value for the
tuning of the approximations regarding many-body effects that
has to be introduced in the time-dependent approach.
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TABLE III. Comparison of the lowest computed levels of Ar+ to
R-matrix calculations [61] and experimental data [73].

State This work Ref. [61] Expt. [73]

3p5 2P o 16.481 16.303 15.819
3s3p6 2Se 29.24 29.24 29.24
3p4(1D)4s 2De 34.699 34.999 34.203
3p4(3P )3d 2De 35.418 35.427 34.462
3p4(3P )4p 2P o 36.044 36.514 35.605
3p4(1S)4s 2Se 37.394 37.207 36.504
3p4(1D)4p 2P o 37.654 38.134 37.137
3p4(1D)3d 2De 38.647 38.508 37.148
3p4(1S)3d 2De 39.498 39.296 38.043
3p4(1D)3d 2Se 39.595 39.876 38.585

APPENDIX

Here, we give the details of the calculations used to produce
Fig. 8. The model is aimed at a qualitative description of the
spectral features in the range of the experiments performed in
Refs. [8,9].

According to Ref. [61], the most prominent features in
the 3s photoionization partial cross section and total cross
section, come from the resonances of the type 3p4nl[LSπ ]n′l′
with nl = 3d, 4s, and 4p, n′ � 7, and for the parent term
LSπ = 2Se, 2P o, 2P e, and 2De. The 2P e parent states are
mostly responsible for resonances at 31 eV and below so we
do not consider them. Using the same 1s, 2s, 2p, 3s, and
3p orbitals as before, we perform Hartree-Fock level average
calculations on the 3p4nl states optimizing the 3d, 4s, and
4p orbitals. Extending the active set of spectroscopic orbitals
by a 4d correlation orbital, we perform a MCHF calculation
on the lowest state of the 2Se symmetry of Ar+ including
all single and double (SD) excitations of the multireference
set (MR) {3s3p6 ∪ 3p44s ∪ 3p43d ∪ 3p44d}. Configuration
interaction calculations are then performed on the 2P o and 2De

states following the same MR-SD scheme with the references
{3p44s ∪ 3p43d ∪ 3p44d} and {3p5 ∪ 3p44p}, respectively.
Then, the CSF with a mixing coefficient over 0.07 are selected
to build the target states. The lowest levels of Ar+ obtained
in this model are compared to experiment in Table III. Most
values agree with the experiment within 1 eV.

The localized states χξ are chosen such that the close-
coupling expansion Eq. (5) still retains the completeness of
the B-spline set. Using this model, the photon energy scale is
shifted by 0.15 eV upward in order to match the experimental
3s photoionization. We choose a knot sequence as before for

TABLE IV. Computed Fano profile parameters for the for the
3s3p6np resonances. Positions are shifted upward by 0.15 eV.

�E �

n (eV) (meV) q (L) q (V)

4 26.524 81.0 −0.497 −0.646
5 28.005 25.0 −0.435 −0.489
6 28.516 11.7 −0.409 −0.443
7 28.764 6.4 −0.396 −0.423
8 28.903 3.9 −0.389 −0.412
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the inner region up to 1/Z a0, but with a linear step of 1a0 up
to 51a0 and then an exponentially increasing step up to 150a0

for accommodating orbitals with n � 7. The complex scaling
starts at 40a0 with a complex scaling angle of 0.11 rad. As
in Sec. IV, there is only a negligible difference between the
sum of the partial cross sections and the total cross section

computed with Eq. (7). In Table IV, we provide the results
obtained for the 3s3p6np resonance line shapes. A good
consistency is found with the values given in Table II, except
for the q parameters. Furthermore, the partial cross sections
obtained within this model exhibit strong features in qualitative
agreement with R-matrix calculations [61].
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