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Above-threshold ionization with highly charged ions in superstrong laser fields. II. Relativistic
Coulomb-corrected strong-field approximation
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We develop a relativistic Coulomb-corrected strong-field approximation (SFA) for the investigation of spin
effects at above-threshold ionization in relativistically strong laser fields with highly charged hydrogenlike
ions. The Coulomb-corrected SFA is based on the relativistic eikonal-Volkov wave function describing the
ionized electron laser-driven continuum dynamics disturbed by the Coulomb field of the ionic core. The SFA
in different partitions of the total Hamiltonian is considered. The formalism is applied for direct ionization of
a hydrogenlike system in a strong linearly polarized laser field. The differential and total ionization rates are
calculated analytically. The relativistic analog of the Perelomov-Popov-Terent’ev ionization rate is retrieved
within the SFA technique. The physical relevance of the SFA in different partitions is discussed.
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I. INTRODUCTION

Since the pioneering experiment by Moore et al. [1], laser
fields of relativistic intensities (exceeding 1 x 10'® W/cm? at
an infrared wavelength) have been applied for the investigation
of strong-field ionization dynamics of highly charged ions
[2-8]; see also [9]. A lot of effort has been devoted to the
numerical investigation of the dynamics of highly charged
ions in superstrong fields [10-20].

A common analytical approach for strong-field atomic
processes is the strong-field approximation (SFA) [21-23],
which has been applied for the treatment of relativistic effects
[24,25]. The main deficiency of the standard SFA is that the
influence of the Coulomb field of the atomic core is neglected
for the electron dynamics in the continuum and the latter is
described by the Volkov wave function [26]. While this is
well justified for the ionization of a negative ion, for atoms
and, moreover, for highly charged ions it is not valid and the
standard SFA can provide only qualitatively correct results. A
modification of the theory is required to take into account the
influence of the atomic core on the free electron motion.

The Coulomb field effects during ionization have been
treated in the Perelomov-Popov-Terent’ev (PPT) theory based
on the imaginary-time method [27,28]. In the PPT theory
the barrier formed by the laser and atomic field is assumed
to be quasistatic and the tunneling through it is calculated
using the Wentzel-Kramers-Brillouin (WKB) approximation.
The relativistic PPT theory [29-32] has provided the total
tunneling rate. However, spin effects are not investigated
thoroughly [33].

The standard SFA technique has been modified to include
the Coulomb field effects of the atomic core. A heuristic
Coulomb-Volkov ansatz has been used for this purpose; see
[34-45]. In a more rigorous way, the SFA is modified by
replacing the Volkov wave function in the SFA transition
matrix element by the so-called eikonal-Volkov one [46,47].
The latter describes the electron continuum dynamics in the
laser and the Coulomb field. Here the laser field is taken
into account exactly, while the Coulomb field is taken into
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account via the eikonal approximation. The nonrelativistic
Coulomb-corrected SFA based on the eikonal-Volkov wave
function was applied recently for molecular high-order-
harmonic generation [48-50]. The eikonal approximation has
been generalized to include quantum recoil effects [51,52].
The relativistic SFA based on the generalized eikonal wave
function was proposed in Ref. [53]. However, the final results
were obtained only in the Born approximation.

In this paper we develop the Coulomb-corrected SFA for
the relativistic regime based on the Dirac equation, extending
the corresponding nonrelativistic theory (see the first paper
of this series [54]) into the relativistic domain. This will
allow us to calculate spin-resolved ionization probabilities,
taking into account accurately the Coulomb field effects of
the ionic core. In the Coulomb-corrected SFA, the eikonal-
Volkov wave function is employed for the description of the
final state instead of the Volkov one. The influence of the
Coulomb potential of the atomic core on the ionized electron
continuum dynamics is taken into account via the eikonal
approximation. Direct ionization of a hydrogenlike system in a
strong linearly polarized laser field is considered. Two versions
of the relativistic Coulomb-corrected SFA are proposed that
are based on the usage of different partitions of the total
Hamiltonian in the SFA formalism. The physical relevance
of the two versions is discussed.

The plan of the paper is the following: In Sec. II the rela-
tivistic Coulomb-corrected SFA is developed. The differential
and total ionization rates for hydrogenlike systems are derived.
A modified SFA using a specific partition of the Hamiltonian is
considered in Sec. IIT and used for the calculation of ionization
rates.

II. RELATIVISTIC COULOMB-CORRECTED SFA

We consider the interaction of a highly charged ion with a
strong laser field in the relativistic regime which is described
by the time-dependent Dirac equation:

) 1 Ov(c)
lVM8M+ZVMAu_V i ¥ =0, (1)

where y# are the Dirac matrices; V© = —«/r is the Coulomb
potential of the atomic core; « is the typical electron
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momentum in the bound state, determined by the bound-state
energy via ¢* — I, = +/c* — c«2, where I, is the ionization
potential; and A, the four-vector potential of the laser field
(atomic units are used throughout). The transition amplitude
for the laser-induced ionization process from the initial bound
state </),.(") into an exact continuum state v » with an asymptotic
momentum p can be written [24]

M = _é / a5 (e A (r.0), @)

with A = y*A «- Equation (2) is still exact with the exact
wave function v ¢(r,t) describing the dynamics of the electron
in the ionic and the laser fields. Here we have used the standard
partition of the total Hamiltonian:

H = Hy + Hiy, 3)
Hy =ca-p+ B+ VO@r) 4)
Hi = BA, (5)

where a = %y, B = y° are the Dirac matrices, and c is the
speed of light. We consider a hydrogenlike highly charged ion
in the relativistic parameter regime; i.e., the wave function of
the initial bound state ¢fc) fulfills the Dirac equation with the
Hamiltonian Hj and is given by Ref. [55]

© K3/2
¢i (r,t) = ﬁ W( Kr) (2
X expl—«r — i(c — I,)t]v;, (6)

where the bispinor

Xi e
Vi=\ .1
i

describes the spin-up and spin-down states (i = +), with the
two-component spinors x4 = (1,0) and x_ = (0,1), respec-
tively, and the Pauli matrices o. The hydrogenlike system
interacts with a strong linearly polarized laser field

E(n) = —Eo cos(wn), ®)

where n = k*x, /o, and k" = (w/c,K) is the laser four-wave-
vector. [The coordinate and the momentum projections are
defined as rg =r-€, ry =r- K, PE=P-& p=p- k, and
ps =p - (k x &), with the unit vectors k and & in the laser
propagation and the polarization directions, respectively.] The
vector potential is chosen in the Goppert-Mayer gauge:

A" = (¢,cA) = (—r-E, =k (r - E)). 9)

Generally, the SFA in different gauges does not coincide
or correspond to different physical approximations [56-58].
In part I [54] we saw that in the nonrelativistic regime the
Coulomb-corrected SFA in the length gauge leads, first, to
rather simple expressions for the Coulomb-corrected ion-
ization amplitude [see Eq. (I.28), which refers to Eq. (28)
of part I [54]], which is due to the cancellation of the
r - E interaction Hamiltonian in the matrix element by the
Coulomb-correction factor, and second, to results coinciding
with the PPT ionization rates. Because the latter provides
a good approximation to experimental observations, in the
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relativistic regime we choose a gauge which generalizes
the length gauge into the relativistic domain [59], that is, the
Goppert-Mayer gauge defined by Eq. (9).

In the conventional SFA the exact continuum state is
approximated by the Volkov wave function which is identical
to the first-order WKB approximation of the continuum
electron in the laser field. A systematic improvement of
this approximation is achieved in the relativistic Coulomb-
corrected SFA by the replacement of the exact wave function
Y(r,t) with the relativistic eikonal-Volkov wave function.
Similar to the nonrelativistic case, see part I [54], first we
apply the WKB approximation to the solution of the Dirac
equation [Eq. (1)], then the resulting equations are solved via
a perturbative expansion in the Coulomb potential V().

Due to the gauge covariance of the Dirac equation, we
switch to the velocity gauge with its vector potential A* =
A*(n) = (0,cA), A = —f_"oo dn'E(n’) and after solving the
wave equation go back to the Goppert-Mayer gauge. The
quadratic Dirac equation in the velocity gauge becomes

Vv ©
)/0 + c)
c

0 y©

1 .
(ihy“au +-y"A, —
c

. T
X (lhy"aﬂ—i——y“AM — —C)I/f =0, (10)
c

[ 1202+ LA 424 0+ - VVO _ 21 @)
C
A2 y@?
+ 3t _62]¢:o, (1D
1 dA

where A’ = 194 'and we have inserted 7 to indicate the WKB
expansion. Let us assume that the solution has the form ¢ =
¢'S/" then the corresponding equation for S is

A v © Al V©
<8MS——“+guo ><8"S——+g“0 )
c c c c

1 . Yyy©
+z<32s_ M — ﬂ) =2

1 C C

The WKB expansion S = Sy + ?Sl + -
equations up to the first order in % /1i:

i\’ 24,018, A2
<7> L 9,800 Sy — 0 2
l C

yields following

CZ

VO3S, VO’

- (12)
n\' 24,0"8
<T> £ 20, 800" 8y — = 2L

1
~
2V©3,8 VY©
__35+M_ o51 @ . 3)
C C

These equations can be solved perturbatively with respect to
the potential term V(. If we define

So = 53" + 55", (14)
Sy =80 450, (15)
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the following equations can be derived:
24,0"30 A2

3 3(0)8“3(0) - _ o 0 16
10 0 - + 2 c? (16)
v ©
E)HS(D H=— 7°, (17)
c
29,507k = 3259 — M’ as)
c
a-(VV© 825(1)
3, 8\Vmh = — ( ) L 5 + 9,501 5O
2¢ 2
V©gy S(O)
0 (19)
c
where 7* = _3”5(0) —, is the relativistic momentum.

Equation (16) gives the Volkov action; i.e.,

SO =_p. ( + —) dn'. (20)
0 p c (k ) P n
On the other hand, the solution of Eq. (18)is
SO — —ﬂ. Q21
2¢(k - p)

Here we should note that S(()O) and S%O) generate the full Volkov
solution. The corresponding equations in the Goppert-Mayer
gauge can be found via a gauge transformation with a gener-
ating function y = A(#) - r. After a coordinate transformation
from (z,r) to (n,r) they become

SO, = (p + A(m) — §k> T

+/ dy <8+(P+A(nj\/2)~A(n)>’ 22)
n

A+k-a)e- A)
SO = 23
() = A (23)
with ¢ = ¢y/c? + p? and the constant of motion A =k - p/w.
Furthermore, Eqgs. (17) and (19) can be solved via the method
of characteristics as

dS(l) dx* V(C)
L = 9,802 = ———x", (24)
ds\" dx - VVO 25
L _ B 51)_ - _ + 0 + auS(()l)alLSgo)
do do 2c 2
V©y,s”
+ (25)
where the trajectory is given by
dxt
% - (26)

This leads to do = dn/ A, with the relativistic kinetic momen-
tum in the laser field

7 () = p(n) = V" + A
< ([p+A®m/2]-A
ot A 4 RRTAD2L A
cA
and the corresponding relativistic kinetic energy
< [p + A(m)/21 - An)
exOm) = £n) = —8,50 = ¢ + P AW/ @8

A

PHYSICAL REVIEW A 87, 023418 (2013)

Then the solutions of Egs. (24) and (25) read

(n) .
S, = f VO, 29)
n
SV — /°°d_n’ ot'VV(C)(r(n’))_ VO ()35
! M) = n A 2¢ c
825(1)
— 0,8y 918} — — } (30)

with the relativistic trajectory of the electron in the laser field
r(n) =r+ f" dn"p(n”)/ A, starting at the ionization phase 7
with coordinate r.

We can evaluate the explicit parameters for the applied
eikonal approximation estimating the imposed conditions for
the expansion of Egs. (14) and (15): S(()l) < S(O), and Sfo) <
S(()l). For this purpose we use order-of-magnitude estimations:

E,
S(()O) ~ [p'[c ~ E—O, 31
E,
S50 ~ 1n< E_o) ~1, (32)

A Ep. I
SO~ =~ 0% o _P (33)
cA

st~ [ar \/72 2 e
C

Here, the first two equations were already derived in part I [54],
seeEq. (1.22), E, = (21 ,,)3/ 2 Furthermore, taking into account
the typical time during tunneling 7, ~ y /o = «/Ey, with the
Keldysh parameter y = wk/E [21], the value of the typical
velocity of the electron during tunneling rg . ~ k [k & \/ZTI, 1,
the interaction length rg. ~ Fg.87., the uncertainty of the
initial time 87, ~ 1/+/k Eq [from the saddle-point integration
872 ~1/8(t,)1, (e ~ ¢, A ~ 1 (the electron is at rest at
the tunnel exit), and A ~ Egt,, we come to the following
conditions for the applicability of the eikonal approximation:

E <1 and ,/1” <1 35)
—_ an - .
E, c?

The action function S fl) can be approximated by the first term
in Eq. (30):

00 . (c) /
Sil)(l’aﬂ) — f dn/w. (36)
n

re(t) N
crg(D)?  crge

2cA

In fact, the order of magnitude of the terms on the right-hand
side of Eq. (30) are

v@ E
T~ fdn—~ °,/ : (37)
E, 3/2
T~ C—/ng(‘) = (c—’;) : (38)
E() (© Tc EO I[,
T3NC—2/dTIV e B (39)
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and 7y is vanishing because in the tunneling region AV(© = 0.
From the latter, we estimate the ratios

§~I—”/E<<1 (40)
—~\/;‘/ < 1; 41)

therefore, only the first integrand term may be maintained in
Eq. (30). Furthermore, one can see from Eqgs. (33) and (34)

that Sio) <« 1 and Sil) < 1, which allows us to expand the
corresponding exponents.
Thus, the relativistic eikonal-Volkov wave function reads

Yr(r,t)

=[1+

cu
A exp [iS(()O)(r,r;) + l'S(()l)(r,U)]’

x V(Q2r)e

with the bispinor u ; for the spin-up and spin-down final states

(f=D

(14K o)A+ fnoo dn'a - VVO(r(n')
2cA\

(42)

JA+ /D)2 s

(o-p) xs ’

A 2(c2+¢)

where x4+ = (1,0) and x_ = (0,1). The last term in the preex-
ponential [V V(] describes the spin-orbit coupling during
ionization (under-the-barrier motion). Via a p/c expansion of
the Dirac equation in the atomic and the laser field it can be
shown that the spin-orbit coupling, given in the Hamiltonian
by the term

up = 43)

a - [p(n) x VVO(r(n)]

Hgo =
50 4c?

(44)

can be evaluated along the most probable trajectory as follows:

I, 3/2
w~(2) . @
C

where the typical values for pgp ~ k, py ~ KZ/C, and r; ~
re ok /c have been used. It is of higher-order smallness than
the terms kept in the eikonal wave function and is neglected in
the further calculation.

Finally, the ionization amplitude in the Coulomb-corrected
SFA has the following form in the relativistic regime:

DE vV ©
c2 g

o0
M) = —i / dn(p()r, f| Hin exp [ =i 3" (x,)]10,.7)

x exp[—iS(n)],
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with the spatial parts of the initial |0,,i) and the final |p(n),, f)
spinors and the contracted action

s = | dn’{g—c2+1p+ [p+A<n)/2J-A(n)}_
" A
)

In the adiabatic regime (w < I,,U,, with the pondero-
motive potential U, = E}/4»?) the time integration in the
amplitude of Eq. (46) is calculated with the saddle-point
method (SPM). As in the nonrelativistic case, here also the
disturbance of the saddle-point conditions due to the Coulomb
field is neglected. This is in accordance with our approach
to take into account the Coulomb field perturbatively in the
phase of the WKB wave function: S(()l) is already proportional
to the Coulomb field V©(r); therefore, in the trajectory r()
it should be neglected. Mathematically this is justified as one
can see from the estimation BnS(()l) ~ I,/ Ey/E, [similar to
estimations in Eqs. (31)~(34)]. It shows that 3, S is negligibly
small compared to /,, and, consequently, the saddle-point
condition 9, S(n,) = 0 is not disturbed. The latter leads to the
following two saddle points per cycle:

PE +i\/2A(8—cz+Ip)—p2E:|

wn) = arcsin |:—

o/w (Eo/w)?
‘ [ pe .\/2A<e—c2+1p>—p%}
wn, = m — arcsin | — —i .
Ey/w (Eo/w)?

(48)

The amplitude is now evaluated at these phases. First, we
consider the action S(1,) in the exponent:

. 246 -+ 1,) — p2]?
Im{S(ny)} = 49
m {S(n;)} 3EGIA (49)
with |E(ng)| = Eo\/l — [pe/(Eo/w)]?. Since the real part

gives an unimportant phase in the resulting amplitude, only
the imaginary part is given. This function in the exponent
dominates the momentum distribution and determines the
maximum of the momentum distribution, which is located at
a parabola with py = I,/3c + p%/2c(1 +1,/3¢?), pp = 0.
In the following, therefore, we evaluate the less important
preexponential factor only at this parabola and neglect devia-

tions from it. In evaluating S ()
(1)

at the saddle point 1 = n;,

note that the integration in §;  starts at the saddle point
ns, when the electron enters the barrier due to the effective
potential, and goes to infinity when the electron is far away
from the core. However, the upper integration limit could be
set at the moment 1y, when the electron leaves the barrier,
since further integration over the continuum leads eventually
only to an unimportant phase of the amplitude. The time
which the electron spends under the barrier is short compared

o /
~isOwa) = [ dn 15

s

(46) with the laser period and the integrand can be expanded around
| the saddle point 7;:
3,7” (s
e(15) + B2’ = 1) + 2502 — )2 50)
2 , ’
Ac |l’ + W(n/ — )+ FL(nv)(n ns)? + 1‘6155_1'(:2)(77/ _ 77&)3|
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FIG. 1. (Color online) The Coulomb-correction factor Q, vs the
parameter A for y = 0.01 and /,/c? = 0.25 (equivalent to Z = 91):
(black, solid line) the numerical calculation via Eq. (50) without
approximations, (blue, short-dashed line) the analytical result of
Eq. (57), and (red, long-dashed line) the Coulomb-correction factor
of the relativistic PPT [31].

where F;(n) = —E(n) — ﬁ[p(n) -E(m)]/cA is the Lorentz
force due to the laser field. As the correction factor is evaluated
at the parabola with py = 1,/3c + p%/ZC(l + I,,/Scz) and
ps = 0, we derive the trajectories at these special values of
momentum. During the motion under the barrier the magnitude
of the coordinate variation in the k direction (imaginary) is
significantly smaller than in the & direction [ry(n)/re(n) ~
k/c] and the integrand can be expanded by r(n). It is taken
into account also that the ionization event happens close to
the laser polarization axis: ry < rg. The integral is, therefore,
approximated by

—isW(r,n,)

no , ik
= dn'—
/,73 7 Ac?

92 e(ns
£ + 8001 = ) + 5 Bt 2

|re + M(n — ;) — E("‘)(n no)?|
- /’7 e re(')?
c 2 e 0y — ) = e =R
(51
where
i2l,rg 21 iE(no)y/21
() = ~—— = L —n) + —————( —n,)°
3¢ 3¢ 2c
E (1)
— == n)’, (52)
C . 2
pE) = iy2A( — & +1,) - p}
~ i/21,(1 — 51,/36¢%), (53)

3_2p 2_@ Ip 21
273 (21,)7 2 |E(ny)| < exp [ 2]

— mfis
7T (3 = 22)p(n)? + k212
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e(ns) = ¢ — I, (54)

dne(ng) = —peng)Emo)/ A, (55)

9, ,£(s) = E(o)*/ A (56)

Other parameters are wny = arcsin[—pg/Eo/w], k =

\/ﬁ(l —1,/4c¢h), A~ 1—1,/3¢%, rg(n) ~ 0, and E(n,) ~
E(no). To have compact expressions, expansions on the small
parameter /,/c? are used above (I,/c* ~ 0.25 for hydro-
genlike uranium). The starting coordinate of the trajectory
r is found from the saddle-point condition of the inte-
gral fd3r exp[—ip(ns) - r — kr], that is, ry/ry = p(ny)/(ik).
With these parameters the integral in Eq. (51) can be
calculated:

I,

21,11 — 2
0, = exp[—i SV (r,n,)] = exp [_2,,] —
cr ] -3

21, I, I
= eXp|: 2 i| < ) Qnr (57)

with the small parameter A = —r - E(5,)/41,. In the expres-
sion above only the leading-order term in 1/ is retained. For
justification of our approximations, we compare in Fig. 1 our
analytically derived Coulomb-correction factor Q, with the
exact result of a numerical calculation of Eq. (50), and with
the Coulomb-correction factor of the relativistic PPT [31].
Deviation of our approximate Coulomb-correction factor from
the exact one occurs mostly due to the linearization of the A
dependence in the analytical expressions which, however, is
needed for further analytical integration.

Using the Coulomb-correction factor Q, of Eq. (57), the
spatial integration in Eq. (46) can be carried out. The Coulomb-
corrected preexponential matrix element reads

i ri(ny) = (P(y)r, FIr - E(my)(1 — Kk - ) Q,10,,i).  (58)

It is remarkable that the Coulomb-correction factor in Eq. (58)
cancels the dependence of the matrix element on the electric
dipole operator r - E and, approximately, also the preexpo-
nential term r~/»/<" of the initial-state wave function (when
the approximation r =~ rg, i.e., ionization happening at the
laser polarization axis, is used). This is a consequence of the
applied Goppert-Mayer gauge which significantly simplifies
the calculation of the ionization matrix element.

In this paper we are concerned with spin-unresolved
ionization probabilities. Therefore, we are free to choose the
orientation of the quantization axis. In the following we assume
that the initial spinor of the bound state is aligned along
the laser magnetic field direction. The spin-dependent matrix
element in Eq. (58) in this case yields

Ip
T (8, \ ¢ [21, , L\ .. o«

¢ =r —ip(n,) -1 — 11— 2 ) ut(l—k-o)v; (59
—{2’)<|E(ns)|> eXp[cZ}‘”‘p[ LA ”]< 6c2)”f( @ (59)

(60)
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where the factor m f; for different spin transitions is

V2c(2c + ipE)(l + g) B /326(168c4 —16icpg + 142c2pi- — 8icp% + 25pj§)

PHYSICAL REVIEW A 87, 023418 (2013)

myy =

, (61)
\/8c4 +6c2p% + ph 24/2(2¢ — ipE) (2¢2 + p%)S/2 4t + pi
_ V2c@e—ipp)(1 = 5) B (168¢* + 16ic* p + 1426 p}, + Bicpy, +25p}) .

\/8c4 + 6c¢2p% + pi

with 8 = ,/21,/c and m_, = m,_ = 0. Equations (61) and
(62) are exact in pg/c, and the pg/c term can be important
at £ > 1. As in the nonrelativistic case, see part I [54], the
matrix element has a singularity at the saddle point 7, and the
modified SPM has to be applied, which induces an additional
preexponential factor

1 . 1 63)

[P(0)* + 1 4[p(ns) - PO1)Y (7 — 15

The total preexponential factor after the n integration in
Eq. (46) becomes

zé_ﬂ(ZI )é_ﬂ 21
27 2 27 32 ex -r
’ ] P

myi(ns) = = T i
«/5\/1“(3—6—2”)|E(m)|2 2

with
V2e@e +ipp)(1+ 5)
myy =
\/8c4 +6¢2p2 + p}
n /f32c(2004 +2ic*pe + 13¢?pE +icpy + 2p‘g)
3v2(2¢ — ipe)(2¢* + 17%)3/2,/4c2 + p2
(65)
_ N2ec—ipp)(1 - %)
\/804 +6c2p2 + pi
ﬂzc(2Oc4 —2ic*pp + 13021’125 - icpz- + 2p‘}5)
3V2Q2c +ipg)(2c2 + 1)%5)3/2,/4c2 + p2
(66)
and rii_ = m_ = 0. In the last step the following expansion
is used:
—y 27i 8°(n;) V27 (1 N 411,,)
4p(ry) - P 4RI E(ny)P? 242 )
(67)

We note that an arbitrary configuration of the quantization
axis can be accomplished via a rotation. Explicitly, since both
the initial and the final states have two independent solutions
“up” and “down”, i.e., m; = x1/2 for j = 1/2, the rotated
state is given by

11/2,m) = " 11/2,m') Dy, (68)

where D, is the j = 1/2 representation of the rotation
matrix. Since the initial quantization axis is along the laser

2422 + ipg) (262 + p2)** J4c? + pd

magnetic field, any quantization axis can be aligned with two
angles (see Fig. 2) with the rotation matrix

(e cos(82/2)  —e 0/ sin(g2/2)
Dy = ( e92gin(0/2) €2 cos(8/2) ) (69)

Therefore, the transition matrix element n%/fi for arbitrarily
rotated spinors is given by

in terms of the initial one, 71 s;. For instance, in the case the
quantization axis is along the laser electric field the matrix is

=i _ 1=
Dm/m=(lii 1;), (71)

2 2

while in the case the quantization axis lies along the laser
propagation direction, it yields

1 L
Dy = (? lﬁ) (72)
57

and the calculation of the corresponding transition amplitudes
is straightforward.

The differential ionization rate averaged by the initial spin
polarization and summed up over the final polarizations is
defined as

dw

= %(|n%++<m>|2 + |y — () + li—i(n)I*
+ [ri—_(ns)|?) exp{—2Im [S(n,)1}, (73)

which with the help of Eq. (64) reads

Ip

3_4p 251,  19piI, 31-2 41
dw 27 (1+§TEZ——’— L ’)(21,,)( cz)a)exp (C—Z”)

aw 4c2 24c4
3p - :
&p 72T (3-22) Emo)P~ (1 + 25)?
411, —22A¢ = A +1,) - p]"”
x (1+ exp '
12¢2 3IEMmoIA
(74)
B
G
E
&
k

FIG. 2. Any quantization axis can be aligned with two angles.
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Note that there is an additional factor of 2 that arises due to
summing up over the two saddle points per laser cycle. The
momentum distribution at ionization in the relativistic regime
is plotted in Fig. 3. As already mentioned, the distribution is
located around a parabola; see also [60—64].

Characteristic features of the momentum distribution in the
relativistic regime are the large parabolic wings corresponding
to the large transversal momentum (along the laser propagation
direction) which arise during the free electron motion in
the laser field. However, a more interesting feature of this
distribution is the small shift of the peak of the distribution
with respect to the nonrelativistic one. While the nonrelativistic

41 2 2
3-=F Pe _ S, Vgl 4,
dw 27« (1 t35 — 3 24 )e (

Ip
)21,

PHYSICAL REVIEW A 87, 023418 (2013)

distribution peak is at pg = 0, p; = 0, in the relativistic case
it is shifted to pr =0, px = I,,/3c. As we have shown in
Ref. [65], this momentum shift is due to the under-the-barrier
dynamics and arises already at the ionization tunnel exit but,
notwithstanding the large momentum transfer from the laser
field during the electron excursion after the ionization, the
characteristic momentum shift of the peak of the distribution
is detectable far away from the interaction zone at the detector.

When the exponent in the differential ionization rate
is expanded quadratically around the parabola pp = pg,
ps =8pg, pk = I,/3¢ + p%/2c(1 + 1,/3c?) + 8py., the rate
expression reads

‘w L4 4 2B, (| I
e J— —_—
12¢2 ) P T3 EMm)] 12¢2

&p 03— 2e) B (1 + 25)
~ ,/21,, [ vp 3pi ]}
[EGOIL(1— 22) [+ d5 4+ 25 (14 2]

In Eq. (74) an expansion on the 1,/c* parameter is used to
clearly indicate the ,/c? scaling. Without 1,/c* expansion
the exponential factor of the differential ionization rate reads

dw { 23/38%3 VI, 32 8p3
W expl— _
dp (L+EMNEMm)I  EMmy) [} 4 E-D

2 f"("2+3)5”"}

~E(ny)

where E = \/1 —Y/2(/Y2+8—-7), T =1-— Ip/cz, and

2
DE(EZ+2)\‘/\/52+1——T+1+1

2
R o
C

B2+ 1411
(77

Using the expression in Eq. (76), the integration over mo-
mentum space can be done analytically. It yields for the total

ionization rate
1611, 41,
+ 72¢? >exp< c? )

2% 3
r@- —P) T

(21,,)4 2E, I,

o) exp|-— 1——= ). @8
E P 73E, 1262 (78)
0

In Fig. 4 the total ionization rate of Eq. (78) is compared
with the ITM result of Ref. [32]. The Coulomb-corrected
relativistic SFA and the relativistic PPT yields results for
the total ionization rate which are close, though they are not
identical. In the next section we modify the Coulomb-corrected
SFA with the aim to obtain ionization probabilities closer to
the relativistic PPT result.

(75)

pk/(Ip/C)

-0.5 0.0 0.5
PE/ A

pk/(Ip/C)

FIG. 3. (Color online) The differential ionization rate for the
parameters [,/c* = 0.25 and Eo/E, = 1/25: (a) relativistic calcu-
lation via Eq. (74) and (b) nonrelativistic calculation via Eq. (I.31).
Ay = JVE,JE(Ey/w) is the longitudinal momentum width.
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10F

— 8

=

S 6

>

e A

S

— 27
ok . . . o
0.00 0.05 0.10 0.15 0.20

I,/c?

FIG. 4. (Color online) The total ionization rate vs ionization po-
tential for Ey/E, = 1/32: (blue, short-dashed line) in the relativistic
Coulomb-corrected SFA via Eq. (78), (red, long-dashed line) in the
relativistic Coulomb-corrected dressed SFA via Eq. (98), and (black,
solid line) relativistic PPT from Ref. [32].

III. DRESSED COULOMB-CORRECTED RELATIVISTIC
STRONG-FIELD APPROXIMATION

In the standard SFA in the GoOppert-Mayer gauge, the
transition matrix element is given by Eq. (2), where

Hy=1-E(l-k-a) (79)

and the wave function of the initial state ¢l.(c)(r,t) describes the
freely evolving atomic system, fulfilling the equation

(id, — Ho)p\(r,1) = 0, (80)

with Hy = H — Hyy, = Hy = ca - p + Bc? + VO(r). How-
ever, in general, as pointed out in Refs. [56,57], the SFA can be
developed by employing different partitions of the total Hamil-
tonian, which will result in different physical approximations.
The main deficiency of the Coulomb-corrected SFA based
on the standard partition indicated above is that the influence
of the laser field on the atomic bound dynamics is completely
neglected. In this section we propose a modified version of
the SFA employing another partition of the Hamiltonian in the
SFA formalism. The main motivation is to use such a partition
where the laser field has a contribution to the bound-state
evolution. In the following this approach is therefore called
the dressed SFA. In particular, we use the following partition:

H = Hy+ Hin, (81)

Hy = ca-[p—Kk(r-E@m)/cl+ B+ V@) (82)

Hine =1 - E(). (83)
In this partition the transition matrix element reads

M = —i / dtd’ryr | (r.0) Hind (r.1), (84)

fi —

where the bound-state dynamics is determined by the follow-
ing time-dependent Dirac equation:

i3, = {ca - [p — k(r - E()/c] + Bc? + VO,
(35)

In this specific partition the initial bound-state wave function
(f)i(c) is the eigenstate of the instantaneous energy operator

E=ca [p+ A0+ B2+ VOr) (86)

PHYSICAL REVIEW A 87, 023418 (2013)

[66,67], with A(n) = —K(r - E(n))/c in the Goppert-Mayer
gauge; see Eq. (9). Note that in the nonrelativistic limit the
standard SFA in the length gauge corresponds to the partition
in which the initial bound state is the eigenstate of the energy
operator [56]. This point provides another argument in favor
of the applied partition in the relativistic case.

The term incorporating the laser electric field in Eq. (85)
describes the spin dynamics of the bound electron before
ionization and has to be considered in the further calculation.
We are concerned by the spin dynamics in the bound state
and by the dynamical Zeeman splitting of the bound-state
energies due to the spin interaction with the laser magnetic
field. Therefore, in solving Eq. (85) we restrict the bound-
bound transitions only to the transitions between different
spin states at fixed quantum numbers {n,j,m;}. The dipole
approximation for the laser field is adopted for the description
of the bound-state evolution: E(n) =~ E(¢), since the typical
length scale for the bound dynamics is much smaller than
the laser wavelength: r, /A ~ w/kc ~ y(Eo/E,)(k/c) K 1.
When the initial spin polarization is along the laser magnetic
field |¢©)) = |¢f§? ), then no spin transitions occur because

the interaction term Vint(®) = —(a - K)[r - E()] does not cause
spin flip (¢>§§,):F | Vim(t)|q>g? 1) = 0. Accordingly, in this case we
are looking for the solution of Eq. (85) in the form

i (r.0) = ¢ (1.1, (87)
where ¢§§f L (rt) = ¢§_,;) | (r)e~@ =1 is the ground state before
switching on the laser field, i.e., an eigenstate of the atomic
unperturbed Hamiltonian

[ca - p+ Bc? + VMDY () = (® — I,)p5 ().  (88)

The spin-quantization axis for ¢§;’ _(r,1) states is along the
laser magnetic field direction. Taking into account that

" 5 1o : A 21
/ df’<¢5;?ilvim<r’>|¢£;,’i>=ﬂ(l ) (89)

2\ 32

where A(n) = —ffoo E(n)dn’, the wave function of the
bound state reads

(1) = 6, (1) exp [i A (1 - 2"’)] ,

2c ﬁ
An) 21 e
¢ (1) = ¢i5_(1)exp [—i > (1 - 3—6’;)}

The Zeeman splitting term in the phase of the wave function is
of the order of A/c ~ Egt./c ~ k/c < 1. Tt is small, which
arises from the fact that the perturbation term Vim(t) couples
the large (small) spinor part of the initial-state bispinor with
the small (large) spinor parts of the final-state bispinor.

The explicit condition justifying the neglect of transitions
to excited states can be given as follows. The transition
probability between the states n — n’ with energy difference
wypw ~ I, (n and n’ are the principal quantum numbers) is
Py ~ Eory/wyy ~ Eory/1,, while the probability of a spin
transition in the state n is Pyy ~ Eorptg (s and s are the spin
quantum numbers). Therefore,

P, nn' ~ 1 EO

~—, 91
Pss’ IptK Ea ( )
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and the transitions to excited states are suppressed by a factor
of E()/ Ea-

With the wave functions of the bound-state Eq. (90),
the differential and the total ionization rates can be cal-
culated in the same way as in the previous section. The
structure of the ionization matrix element remains the
same:

[2AG — 2 +1,)— p2]°
3|E(n0)|A

M) = —in gi(ng)exp | —

’

92)

where 7 ¢; (1) is given by Eq. (59), in which the following
replacement should be done in order to account for the

m

PHYSICAL REVIEW A 87, 023418 (2013)

difference in the spinor operator of the interaction Hamiltonian
in the dressed SFA:

. A(ny) - a(l+k-
u;(l—k-a)viau}’[1+ On,) - el + “)]~-

2cA "
(93)

where ¥; = v; exp[:tiﬁ(n)(l — 211,/3c2)] is the spinor part
of the states given in Eq. (90). The spinor operator in
brackets in Eq. (93) comes from the spinor part of the Volkov
wave function. Note that the phase in the exponential in
Eq. (90) varies slowly compared with the contracted action
S. Therefore, it does not modify the saddle-point integration
but alters the preexponential term:

_ \/Ece_%(zc + lpE) ﬂze_[%(Zc +ipE) (86‘5 — 401C4pE + ]4C’;p%)

T 2 4
\/8c4 +6¢2py + P

Bre~ % (2c + ipr) (—28icp

%+ 3cph — 4ip3)

1242 (8¢* + 6¢2p% + [)415)3/2 ’

) (94)

12V2 (8¢* + 6¢2p% + pt)**

. \/Ecei;*f(Zc —ipE)

BReE (8¢> +40ic* pg + 14¢° pp. + 28ic? py, + 3epy + 4ipy)

) (95)

\/8c4 + 6czp% + p4E

12v2Q¢ +ipe) (262 + p}) /8¢t + 6¢2p}, + pt

and /iy = m_, = 0. With this the differential ionization rate in the dressed SFA yields

41 2 2 !
3——2" P& 371, 4 ppl, 3(1—%)
dw 27« (1 t 27 T Tl T 2aa )(2117) < wexp

a1,

&p 720(3 = 22) [ El (1 + 2)?

and the total ionization rate is

41p
2 3 71, 41,
w=——-7V-\l-5z)exp(
F(3 — C_ZP) b4 12c c

31

7_31p

@1, 2E, I,
) 7 |- 1——=2|. (o7
T 9P| T3E 12¢2 ©7

)
EO

In Fig. 4, the total ionization probability calculated via
the dressed Coulomb-corrected relativistic SFA is compared
with the result of the standard SFA, as well as with that of
the relativistic PPT. The conclusion can be drawn that both
relativistic Coulomb-corrected SFAs give slightly different
results compared to the PPT for large /,. The dressed SFA
is closer to the PPT result than the standard SFA. The total
ionization probabilities in the relativistic Coulomb-corrected
standard SFA is larger than the relativistic PPT by a factor
smaller than 1 + 37, /c2.

The standard SFA yields larger ionization probabilities
than the dressed SFA, which can be explained by a simple
tunneling picture. In the first case the magnetic field acts
on the electron only when it enters the barrier. In this case
during the tunneling the electron kinetic energy will change

) (, ay roe—ei- al”
<1+Tcz>eXp[ 3[E(,)|A } (96)

on the amount of the interaction energy with the magnetic
field uBy = —sEy/2c (s = %1 for spin along the magnetic
field or opposite), giving rise to a kinetic energy splitting for
different spin orientations of the electron and, consequently, to
different tunneling probabilities. However, in the second case
the magnetic field is also acting before tunneling and no kinetic
energy splitting occurs. The ratios of the Keldysh exponent
for these two scenarios can then be expanded in the spin
energy:

2[2(1 7-‘1-E()/2c)]3/2 2021 ,—Eo/26)]3/2
Ustandarda _ XP [—T] + exp [—T]
l—‘dressed 2 exp [_ 2[2212)]3/2 ]
3Eo
2
~14+1,/c. 98)

To decide which SFA partition is best suited to model the
ionization process, a comparison with numerical simulations
or experimental data is necessary.

Furthermore, we note that the Coulomb-correction term
[ dne - VV© /c that is neglected in both strong-field approxi-
mations gives a correction factor of only 1 + (1,/c?)/Eo/Eq,
which is of the order of a few percent for the most extreme
parameters (Ey/E, = 1/16, Z = 90).
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IV. CONCLUSION

We have generalized the Coulomb-corrected SFA for
the ionization of hydrogenlike systems in a strong laser
field into the relativistic regime. The applied Coulomb-
corrected strong-field approximation incorporates the eikonal-
Volkov wave function for the description of the electron
continuum dynamics. The latter is derived in the WKB
approximation taking into account the Coulomb field of
the atomic core perturbatively in the phase of the WKB
wave function. In physical terms, the disturbance of the
electron energy by the Coulomb field is assumed to be
smaller with respect to the electron energy in the laser field.
The eikonal-Volkov wave function is applicable when the
laser field is smaller than the atomic field Ey <« E, and
1, <%

We have derived an analytical expression for the ion-
ization amplitude in a linearly polarized laser field within
the Coulomb-corrected relativistic SFA when additionally
smallness of the parameters of /,, /e < 1and y « 1is used.
A simple expression for the amplitude is obtained when
using the Goppert-Mayer gauge. Moreover, in this gauge a
Coulomb correction factor (ratio of the Coulomb-corrected
amplitude to the standard SFA one) coincides with that
derived within the PPT theory. The differential and total
ionization rates are calculated analytically. The calculated
total ionization rate is slightly larger than the PPT rate at
large ionization potentials. To improve the predictions of

PHYSICAL REVIEW A 87, 023418 (2013)

the Coulomb-corrected relativistic SFA, we have proposed a
dressed SFA approach which is based on another partition of
the total Hamiltonian. In this approach the SFA matrix element
contains the eigenstate of the energy operator in the laser field
as the wave function of the initial bound state. The dressed
SFA takes into account the dynamical Zeeman splitting of the
bound-state energy due to the spin interaction with the laser
magnetic field (when the electron initial polarization is along
the laser magnetic field) and the precession of the electron
spin in the bound state (when the electron initial polarization
is along the laser propagation direction).

Our results show that the SFA technique allows the
analytical calculation of quantitatively correct differential and
total ionization rates in the relativistic regime, which takes into
account the impact of the Coulomb field of the atomic core
as well as the electron spin dynamics in the bound state. This
method can be viewed as an alternative to the PPT. In the next
paper in the series, the Coulomb-corrected relativistic SFA will
be used to investigate spin-resolved ionization probabilities.
While for the total ionization rate the prediction of the standard
SFA is close to that of the dressed SFA, for spin effects their
predictions are quite different. The next paper will be devoted
to this issue.
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