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Above-threshold ionization with highly charged ions in superstrong laser fields.
I. Coulomb-corrected strong-field approximation
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Aiming at the investigation of above-threshold ionization in superstrong laser fields with highly charged ions,
we develop a Coulomb-corrected strong-field approximation (SFA). The influence of the Coulomb potential of the
atomic core on the ionized electron dynamics in the continuum is taken into account via the eikonal approximation,
treating the Coulomb potential perturbatively in the phase of the quasiclassical wave function of the continuum
electron. In this paper the formalism of the Coulomb-corrected SFA for the nonrelativistic regime is discussed,
employing velocity and length gauge. Direct ionization of a hydrogenlike system in a strong linearly polarized
laser field is considered. The relation of the results in the different gauges to the Perelomov-Popov-Terent’ev
imaginary-time method is discussed.
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I. INTRODUCTION

Due to advances in laser technology strong near-infrared
laser fields nowadays are available up to intensities of 1 ×
1022 W/cm2 [1] and much stronger laser fields are envisaged
in the near future [2], stimulating the investigation of the
relativistic regime of laser-atom interaction in ultrastrong
fields. The pioneering experiment in this field was carried
out by Moore et al. [3]. They investigated the ionization
behavior of atoms and ions in a strong laser field at an intensity
of 3 × 1018 W/cm2. Several further experiments have been
devoted to relativistic laser-induced ionization [4–10].

Numerical investigation of the dynamics of highly charged
ions in superstrong fields was carried out in [11–21]. The
standard analytical approaches in the field of nonperturbative
laser-atom interaction are the strong-field approximation
(SFA) [22–24] and the imaginary-time method (ITM) [25,26].
For a theoretical treatment of the relativistic effects, the SFA
was generalized into the relativistic regime in [27,28] and the
ITM in [29–32], respectively. In the standard SFA the influence
of the Coulomb field of the atomic core is neglected in the
electron continuum dynamics and the latter is described by
the Volkov wave function [33]. Accordingly, the predictive
power of the SFA is the best for negative ions where no
long-range forces of the parent system act on the ionized
electron. For atoms or molecules with long-range Coulomb
forces the performance of the SFA downgrades to a qualitative
level [34]. This is true especially for highly charged ions.

In the nonrelativistic regime the ITM has been successfully
used to treat Coulomb field effects during the ionization in the
quasistatic regime and the well-known quantitatively correct
Perelomov-Popov-Terent’ev (PPT) ionization rate has been
derived [35,36]. The PPT theory uses the quasiclassical wave
function for the description of the tunneling part of the electron
wave packet through the quasistatic barrier formed by the laser
and atomic field, with matching of the quasiclassical wave
function to the exact bound-state wave function [37,38]. The
standard SFA technique has also been modified to include
Coulomb field effects of the atomic core. The simplest
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heuristic approach is the so-called Coulomb-Volkov ansatz in
which the Volkov wave function in the SFA matrix element
is replaced by a heuristic Coulomb-Volkov wave function
[39–49]. In the latter the Coulomb field is taken into account
via an incorporation of the asymptotic phase of the exact
Coulomb-continuum wave function into the phase of the
heuristic Coulomb-Volkov wave function [50]. Consequently,
the coupling between the Coulomb and laser field is neglected
in the Coulomb-Volkov ansatz and the approach fails when the
electron appears in the continuum after tunneling close to the
atomic core [51].

Following a more rigorous approach, the eikonal approx-
imation [52] has been proposed to apply for strong-field
problems [53]. In the latter, nonrelativistic free-free transitions
in the laser and the Coulomb field have been considered,
employing an eikonal wave function for the continuum
electron. Here the laser field is taken into account exactly,
while the Coulomb field is taken into account via the eikonal
approximation. The eikonal approximation was generalized
in [54] to include quantum recoil effects at photon emission
and absorption. A Coulomb-corrected SFA for nonrelativistic
ionization employing the eikonal wave function was first pro-
posed in [55]. Similar approaches were considered in [56–61].
Recently, the nonrelativistic Coulomb-corrected SFA based on
the eikonal-Volkov wave function for the continuum electron
was further elaborated in [62,63] and was applied for molecular
strong-field ionization and high-order-harmonic generation.
The Coulomb-corrected SFA has also been extended to include
rescattering effects [64,65]. Here the Coulomb field is taken
into account exactly in the quasiclassical electron continuum
trajectories that are later plugged into the phase of the
quasiclassical wave function.

In the relativistic regime, similar to the nonrelativistic
case, the standard SFA is only exponentially exact since the
Coulomb field is neglected during ionization, whereas the ITM
[29–32] can provide also correct preexponential factors. Can
the quantitatively correct relativistic ionization probabilities be
derived via the SFA technique accounting for Coulomb field
effects accurately? The relativistic generalized eikonal-Volkov
wave function (taking also into account quantum recoil) was
derived in [66]. The Coulomb-corrected SFA based on this
wave function was proposed in [67]. However, final results
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have been obtained only in the Born approximation, i.e., via
an expansion of the eikonal wave function with respect to the
Coulomb field, which, in fact, reduces the transition matrix
element to the one in the standard second-order SFA.

With this paper we begin a series of papers in which
we develop the relativistic Coulomb-corrected SFA based
on the Dirac equation, generalizing the nonrelativistic theory
of [55,63], and apply it for the calculation of spin-resolved
quantitatively correct ionization probabilities. Rather than the
Volkov wave function, the eikonal-Volkov wave function is
employed as final state of the Coulomb-corrected SFA. The
influence of the Coulomb potential of the atomic core on the
ionized electron continuum dynamics is taken into account
via the eikonal approximation. The latter means that the quasi-
classical Wentzel-Kramers-Brillouin (WKB) approximation is
applied for the electron continuum dynamics and, additionally,
the Coulomb potential is treated perturbatively in the phase of
the quasiclassical wave function. The formalism is applied for
direct ionization of a hydrogenlike system in a strong linearly
polarized laser field.

In this first paper, we begin with the nonrelativistic
Coulomb-corrected SFA to show in the most simple case the
scheme of the Coulomb-corrected SFA. The SFA formalism
is applied to treat the Coulomb field effect of the atomic core
during ionization systematically and to obtain quantitatively
correct results which, in particular, for the total ionization rate
coincide with the PPT result. Two versions of the theory based
on the velocity and length gauge, respectively, are considered.
Comparison with the PPT theory is carried out and the physical
relevance of the two gauges in the SFA is discussed. A
conclusion is drawn concerning the scheme of the relativistic
generalization of the Coulomb-corrected SFA. In the second
paper [68], the relativistic Coulomb-corrected SFA will be
developed, and the third paper in the series will be devoted to
spin effects in relativistic above-threshold ionization.

The plan of the paper is the following: In Sec. II the
nonrelativistic Coulomb-corrected SFA in the length gauge
is considered and differential and total ionization rates for
hydrogenlike systems are derived. The next section is dedi-
cated to the Coulomb-corrected SFA in velocity gauge. The
comparison of the different versions of the Coulomb-corrected
SFA is carried out in Sec. IV, and the conclusion is given in
Sec. V.

II. NONRELATIVISTIC COULOMB-CORRECTED
SFA IN THE LENGTH GAUGE

In this section we show how the nonrelativistic Coulomb-
corrected SFA in the length gauge is developed. Rather than
the usual Volkov wave function, it employs the eikonal-Volkov
wave function to describe the electron continuum dynamics
accurately, taking into account the Coulomb field effect of the
atomic core. As we see in this way the PPT ionization rates
can be recovered within the SFA formalism.

A. The standard SFA

We consider a highly charged hydrogenlike ion interact-
ing with a laser field. The dynamics is governed by the

Hamiltonian

H = H0 + Hint, (1)

where H0 is the Hamiltonian of the atomic system

H0 = p̂2/2 + V (r), (2)

with the atomic potential V (r), the momentum operator p̂,
and coordinate vector r (atomic units are used throughout).
The interaction Hamiltonian due to the laser field in length
gauge is

Hint(t) = r · E(t), (3)

with the laser electric field E(t). The time-evolution operator
U (t,t0) of the atom in the laser field can be formulated via the
Dyson equation

U (t,t0) = U0(t,t0) − i

∫ t

t0

dtU (t,t ′)Hint(t
′)U0(t ′,t0), (4)

where U0 is the time-evolution operator of the atomic system
without the laser field. The matrix element for a laser-induced
transition from the initial atomic ground state |φ(t)〉 = |0〉eiIpt ,
with the ground-state energy −Ip and the ionization potential
Ip ≡ κ2/2, into a continuum eigenstate of the total system
|ψp(t)〉 with an asymptotic momentum p is then given by

Mp = −i

∫ ∞

−∞
dt〈ψp(t)|Hint(t)|φ(t)〉. (5)

In the SFA, the final continuum state is approximated by a
Volkov state |ψV

p (t)〉, i.e., an eigenstate of a Hamiltonian,
where the electron is only interacting with the laser field [33].
In coordinate space it is given by

〈r|ψV
p (t)〉 = exp

[
iS

(0)
0 (r,t)

]/
(2π )3/2. (6)

The function in the exponent S
(0)
0 (r,t) = [p + A(t)] · r +∫ ∞

t
dt ′[p + A(t ′)]2/2 is the classical action of an electron

in a laser field in the length gauge. Note that the Volkov
wave function coincides exactly with the wave function in the
zero-order WKB approximation for the system. The ionization
matrix element in the SFA yields

Mp = −i

∫ ∞

−∞
dt〈p + A(t)|Hint(t)|0〉 exp[−iS̃(t)] (7)

with S̃(t) = ∫ ∞
t

dt ′{[p + A(t ′)]2/2 + κ2/2}. In the adiabatic
regime, when the laser frequency ω is smaller than the
ground-state energy Ip and the ponderomotive potential Up =
E2

0/4ω2, with the laser field amplitude E0, the time integration
in Eq. (7) can be carried out in good accuracy via the
saddle-point method (SPM); see, e.g., [69]. This yields

Mp = −i
∑

s

√
2π

i ¨̃S(ts)
〈p + A(ts)|Hint(ts)|0〉 exp[−iS̃(ts)],

(8)

where ts are the so-called saddle points of the integrable
function defined by ˙̃S(ts) = 0. After a partial integration in
Eq. (7), the transition operator in the matrix element can be
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transformed from Hint to V (r) [70]:

Mp = −i
∑

s

√
2π

i ¨̃S(ts)
〈p + A(ts)|V (r)|0〉 exp[−iS̃(ts)]. (9)

In the case of a long laser pulse the differential ionization rate
is expressed via the matrix element as follows [69]:

dw

d3p
= ω

2π
|Mp|2, (10)

where the summation in Eq. (8) is carried out only over the
saddle points of one laser period.

B. SFA for a negative ion

The calculation of ionization rates is straightforward in
the case of ionization of a negative ion. The latter can be
modeled by a zero-range potential V (z)(r) = −(2π/κ)δ(r)∂rr ,
with the matrix element 〈p|V (z)|0(z)〉 = −√

κ/(2π ) [71]. In a
sinusoidal laser field A(t) = (E0/ω) sin(ωt) the saddle point
equation yields

sin(ωts) = − pE

E0/ω
+ i

√
γ 2 +

(
p⊥

E0/ω

)2

, (11)

with the Keldysh parameter γ ≡ κω/E0, pE ≡ p · ê, p⊥ ≡
|p − (p · ê) ê|, ê ≡ E0/|E0|. In the tunneling regime (γ 	 1)
the saddle points in one laser cycle can be given approximately
via a perturbative solution of Eq. (11) with respect to γ :

ωts1 = − arcsin

[
pE

E0/ω

]
+ i

√
κ2 + p2

⊥
|E(t0)|/ω ,

ωts2 = π + arcsin

[
pE

E0/ω

]
+ i

√
κ2 + p2

⊥
|E(t0)|/ω , (12)

with |E(t0)| = E0

√
1 − (ωpE/E0)2. Inserting the saddle

points into Eq. (10) yields the differential ionization proba-
bility of a negative ion:

dw(z)

d3p
= ω

2π2|E(t0)| exp

[
−2(κ2 + p2

⊥)3/2

3|E(t0)|
]

. (13)

Since the ratios pE/(E0/ω) and p⊥/(E0/ω) are smaller than
one in the case of tunnel ionization, we can expand the
function in the exponent quadratically in terms of momentum
and neglect the momentum dependence in the preexponential
factor. With this we arrive at the differential ionization rate,

dw(z)

d3p
= ω

2π2E0
exp

[
− 2κ3

3E0
− κ

E0
p2

⊥ − κ3ω2

3E3
0

p2
E

]
, (14)

and the total ionization rate,

w(z) =
√

3

π

E
3/2
0

2κ5/2
exp

[
− 2κ3

3E0

]
. (15)

The SFA ionization rates of Eqs. (14) and (15) for a short-
range potential coincide with the ITM result [72]. The physical
reason is that neglecting the atomic potential after the electron
is transferred into the continuum is justified for negative ions.

C. SFA for a hydrogenlike system

In the case of atomic ionization, the Coulomb potential of
the ionic core cannot be neglected in the electron continuum
dynamics. Therefore, to obtain an accurate ionization rate,
the wave function of the continuum state |ψp(t)〉 in the SFA
ionization amplitude is approximated by the eikonal wave
function (instead of the usual Volkov function) which accounts
for the Coulomb field effect of the ionic core [55,63].

As we noted in the previous section, the Volkov wave
function is identical to the electron wave function in the laser
field in the zero-order WKB approximation. A systematic
improvement of this state compared to the exact continuum
state can be achieved employing the WKB approximation for
the wave function of an electron exposed to the simultaneous
action of the laser and the Coulomb field. From the Schrödinger
equation for an electron in a Coulomb potential V (c)(r) =
−κ/r and a laser field E(t),

ih̄∂tψ = −h̄2

2

ψ + V (c)ψ + r · E(t)ψ, (16)

the ansatz ψ = eiS/h̄ yields the following equation:

−Ṡ = (∇S)2

2
+ V (c) + r · E + h̄

i


S

2
. (17)

Using the WKB expansion S = S0 + h̄
i
S1 + · · · , we obtain the

equation (
h̄

i

)0

: −Ṡ0 = (∇S0)2

2
+ V (c) + r · E(t), (18)

where S0 is the classical action of an electron in the laser
field and the atomic potential. In the eikonal approximation
the partial differential equation for S0 is solved perturbatively
in the atomic potential V (c). The zero-order solution gives the
Volkov action

S
(0)
0 (r,t) = [p + A(t)] · r + 1

2

∫ ∞

t

dt ′[p + A(t ′)]2, (19)

with A(t) = − ∫ t

−∞ dt ′E(t ′), whereas the first-order solution
reads

S
(1)
0 (r,t) =

∫ ∞

t

dt ′V (c)(r(t ′)), (20)

with the trajectory of the electron in the laser field r(t ′) = r +∫ t ′

t
dt ′′p(t ′′) and p(t) ≡ p + A(t). The time t can be interpreted

as the time and r as the coordinate of the ionization event. Thus,
the approximate wave function of the electron continuum state
in the laser and Coulomb field, which is termed the eikonal-
Volkov wave function, in the nonrelativistic regime is

ψ (c)
p (r,t) = 1

(2π )3/2
exp

{
iS

(0)
0 (r,t) + iS

(1)
0 (r,t)

}
. (21)

It takes into account the influence of the atomic potential
quasiclassically up to first order and is used in the SFA
amplitude of Eq. (5).

Let us estimate the applicability of the eikonal approxima-
tion given by the condition S

(1)
0 	 S̃. The perturbed action can

be estimated S
(1)
0 ∼ ∫

V (c)dτ ∼ ∫
dτ ẋ/x ∼ ln(rE e/rE i) ∼

ln(
√

Ea/E0) ∼ 1, using the potential V (c) ∼ κ/rE (rE ≡ r ·
ê), the initial coordinate before tunneling rE i ∼ vcδτc, the
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velocity vc ∼ κ , the uncertainty of the initial time δτc [in the
latter, we use the time width of the saddle-point integration

δτc ∼ 1/

√
¨̃S(ts) ∼ 1/

√
κE0], and the tunnel exit coordinate

rE e ∼ κ2/E0. While the Volkov action is estimated S̃ ∼
p(τc)2τc + Ipτc ∼ E2

0τ
3
c + Ipτc ∼ Ea/E0 with the tunneling

time τc ∼ γ /ω = κ/E0 determined by the Keldysh parameter
and the atomic field Ea = κ3, the eikonal approximation for
the nonrelativistic ionization problem is valid when

E0

Ea

	 1. (22)

Note that E0/Ea < 1/16 in the tunneling ionization regime
for a hydrogenlike ion.

To be able to handle the additional term S
(1)
0 in the

SFA transition amplitude, we have to make simplifications.
The time derivative of S

(1)
0 given by ∂tS

(1)
0 (r,t) ≈ −V (c)(r +∫ ∞

t
dt ′′p(t ′′)) corresponds to the potential energy of the ionized

electron in the remote future, after it has escaped from
the bound state. Since the electron left the atomic system
after ionization and recollision is not considered here, its
potential energy is vanishing for asymptotically large times
and therefore it is justified to use Ṡ

(1)
0 (r,t) ≈ 0. Consequently,

the additional term S
(1)
0 in the exponent of the amplitude

has no influence on the saddle-point equation and leaves
the saddle points unchanged [73]; however, it can change
the preexponential term by a factor exp[−iS

(1)
0 (r,ts)]. Thus, the

Coulomb-corrected SFA amplitude of ionization reads

M (c)
p = −i

∫ ∞

−∞
dt〈p + A(t)|Hint(t) exp

[ − iS
(1)
0 (r,t)

]|0(c)〉

× exp[−iS̃(t)], (23)

where |0(c)〉 is the electron bound state in the Coulomb
potential. The next task is to find an analytic expression for
the new preexponential factor for times t = ts . Physically,
S

(1)
0 (r,t) corresponds to the sum of potential energies the

electron possesses on its trajectory. When the electron has left
the vicinity of the atomic core, the potential energy is small
and there are no further contributions to S

(1)
0 (r,t). Since we

consider the tunneling regime where E0/ω � κ , this situation
sets in at the very moment of ionization. Thus, it is justified
to expand the argument in S

(1)
0 describing the trajectory of the

electron, up to second order around the saddle point ts , i.e.,
around the instant of ionization:

r(t ′) = r + p(ts)(t
′ − ts) − E(ts)(t

′ − ts)
2/2. (24)

Furthermore, the momentum distribution of the amplitude
is dominated by the exponential function that is located
around the laser polarization direction; i.e., we can assume
in the preexponential function p = pE ê and p(ts) = iκ ê.
Additionally, it can be argued that the tunnel ionization starts
mainly in the area around the laser polarization axis r = rE ê,
i.e., at the outskirts of the atom in the direction of the laser
electric field. This typical value for the initial coordinate of
the trajectory r is justified via the saddle-point condition
for the integral

∫
d3r exp[−ip(ts) · r − κr], which leads to

rs/rs = p(ts)/(iκ). Thus, the integrand in the expression of

the Coulomb-correction factor of Eq. (20) can be simplified:

1

r(t ′)
= 1

|rE + pE(ts)(t ′ − ts) − E(ts)(t ′ − ts)2/2| . (25)

Furthermore, the motion after the electron has left the barrier
contributes only as an unimportant phase in the preexponential
factor in Eq. (23) and the integration limit can be set
at the tunnel exit: ωt0 = − arcsin [pE/(E0/ω)]. With these
simplifications the integral in Eq. (20) can be evaluated:

exp
[ − iS

(1)
0 (r,t)

] =
(

1 + √
1 + 4λ

−1 + √
1 + 4λ

) 1√
1+4λ

≈ 1

λ
+ O(λ), (26)

with the small quantity λ = −r · E(ts)/2κ2 which is of the
order of

√
E0/Ea 	 1; see Eq. (22). In fact, one can estimate

λ ∼ xcE0/κ
2 ∼ vaτcE0/κ

2 ∼ √
E0/Ea . We emphasize that in

all expressions after Eq. (22) expansions in this parameter are
employed.

We come to the conclusion that in the nonrelativistic regime
the Coulomb-corrected SFA amplitude differs from the one in
the standard SFA by the following Coulomb-correction factor:

Qnr = − 4Ip

r · E(ts)
. (27)

The transition amplitude can then be expressed in a very simple
form:

M (c)
p = 4iIp

∫ ∞

−∞
dt〈p + A(t)|0(c)〉 exp{−iS̃(t)}. (28)

This simple form for the ionization amplitude in length-gauge
Coulomb-corrected SFA is achieved because the Coulomb-
correction factor Qnr cancels the dipole interaction factor r · E
in the length-gauge matrix element.

The occurring matrix element is singular at the saddle point:

〈p + A(t)|0(c)〉 = 1

π

2
√

2κ5/2

{κ2 + [p + A(t)]2}2

= −
√

κ

2

1

πE(ts)2(t − ts)2
, (29)

where in the last step only the leading-order term in E0/Ea

is retained, and the integral in Eq. (28) must be calculated via
the modified SPM [69], taking into account the pole during
the integration. Compared to the case of a zero-range potential
this yields a correction factor in the amplitude of

M (c)

M (z)
= 23/2Ea

|E(t0)| . (30)

This correction factor is known from the ITM [35] but
appears to be reproducible also with the SFA technique. The
differential ionization rate in the case of a Coulomb potential
of the atomic core is

dw(c)

d3p
= 4

π2

ωκ6

E3
0

exp

[
−2Ea

3E0
− κ

E0
p2

⊥ − κ3ω2

3E3
0

p2
E

]
, (31)

and the total ionization rate yields

w(c) = 4

√
3

π

κ7/2

E
1/2
0

exp

[
− 2κ3

3E0

]
. (32)
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These rates are identical to the PPT ionization rate [35,36].
The momentum distribution of the ionized electrons in the
nonrelativistic regime indicates that the emission of electrons
with a vanishing final momentum is most probable. The
longitudinal and the transversal widths of the distribution are

‖ = √

E0/EaE0/ω and 
⊥ = √
E0/Eaκ , respectively.

Concluding this section, within the SFA S-matrix for-
malism and employing the eikonal-Volkov wave function
for the description of the laser-driven electron continuum
dynamics disturbed by the atomic Coulomb potential, as well
as neglecting recollisions, one can derive quantitatively correct
differential as well as total ionization rates that coincide with
the expressions obtained within the PPT quasistatic theory.
In the next section we apply the Coulomb-corrected SFA
formalism in velocity gauge.

III. NONRELATIVISTIC COULOMB-CORRECTED SFA
IN VELOCITY GAUGE

It is well known that the SFA is, in general, not gauge-
invariant and the SFA in different gauges corresponds to
different physical approximations. In this section we calculate
the ionization rate of a hydrogenlike ion using the Coulomb-
corrected SFA in velocity gauge. Later, we compare it with
the results of the PPT theory and the length-gauge Coulomb-
corrected SFA to answer the question: in which gauge is
the Coulomb-corrected SFA more relevant for the calculation
of the ionization rate of a hydrogenlike ion? We use this
information in the next paper for the development of the
relativistic Coulomb-corrected SFA.

In the velocity gauge the Hamiltonian is given by Eq. (1)
with the interaction Hamiltonian

Hint(t) = p · A(t) + A(t)2/2. (33)

The corresponding Volkov wave function describing the free
electron in the laser field in this gauge is

ψV (r,t) = 1
√

2π
3 exp[ip · r + iS̃(t)]. (34)

In the case of ionization of a negative ion, the ionization
amplitude in the standard SFA in the velocity gauge is given by
Eq. (9), where the preexponential matrix element is replaced:

〈p + A(t)|V |0〉 → 〈p|V |0〉. (35)

Since the matrix element 〈p|V |0〉 is constant and does not
depend on momentum in the case of a short-range potential, it
is identical to the one in the length gauge. Therefore, the overall
ionization amplitude for a negative ion is gauge invariant in
the standard SFA.

In the case of a Coulomb potential as ionic core the situation
is different. Here the preexponential matrix element is not
a constant and the different momentum dependencies could
lead to a gauge dependence. The Coulomb-corrected SFA
based on the eikonal-Volkov solution can be developed for the
velocity gauge similar to that in the previous section. The same
steps lead to the following final expression for the ionization

amplitude, cf. Eq. (28),

M (c)
p = −i

∫ ∞

−∞
dt〈p|Qnr [p · A(t) + A(t)2/2]|0(c)〉

× exp{−iS̃(t)}. (36)

In contrast to the length-gauge calculation, the saddle point
of S̃ lies not on the singularity of the preexponential matrix
element and the standard saddle-point approximation can be
applied. It yields for the amplitude

M (c)
p = 2Ea

[
pE(pE − 2iκ) − 2(pE − iκ)κ arctan

(
pE

κ

)]
√

πp2
E|E(t0)|3/2

× exp

[
− (κ2 + p2

⊥)3/2

3|E(t0)|
]

. (37)

The ionization differential rate in the velocity gauge Coulomb-
correct SFA reads

dw(c)

d3p
= 4κ6ω

π2E3
0

exp

[
− 2κ3

3E0
− κ

E0
p2

⊥ − κ3ω2

3E3
0

p2
E

]

×
{

1 + 4κ2

p2
E

− 4κ

pE

arctan

(
pE

κ

)(
1 + 2κ2
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. (38)
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FIG. 1. (Color online) (a) The ratio of the total ionization rate
derived in the Coulomb-corrected SFA with respect to the PPT rate
vs the parameter δ = √

E0/Ea/γ : SFA in the length gauge (black,
solid line), and SFA in the velocity gauge (red, dashed line). (b)
The parameter δ for different nuclear charges Z at a fixed angular
frequency ω = 0.05 a.u. and E0/Ea = 1/25. The laser intensity is
I = 5.6 × 1019 × (Z/10)6 W/cm2.
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FIG. 2. (Color online) The ratio of the total ionization rate derived
in the SFA with respect to the PPT rate vs the parameter E0/Ea :
(black, solid line) in the Coulomb-corrected SFA in the length
gauge (green, dash-dotted line), in the Coulomb-corrected SFA in
the velocity gauge for γ = 0.1 (blue, dashed line), standard SFA
with a Coulomb potential (red, dotted line), and standard SFA with a
zero-range potential.

The ionization differential rate in the velocity gauge dif-
fers from that in the length gauge, see Eq. (31), by the
expression in the curly brackets in Eq. (38). To obtain
the total ionization rate, the p⊥ integration can be carried
out analytically, but pE integration has to be accomplished
numerically.

In Fig. 1(a) we compare the total ionization rate calculated
within the Coulomb-corrected SFA in the length or velocity
gauge with the PPT rate for different values of the parameter
δ = √

E0/Ea/γ = (E0/Ea)3/2(Ip/ω). This parameter arises
since the deviation in the two gauges depends on the curly
bracket that is a function of pE/κ with the typical value for
the momentum in the laser polarization direction, pE ∼ 
‖ =√

E0/EaE0/ω. While the length-gauge result coincides with
the PPT one, the velocity-gauge result tends to the PPT rate
only in the limits δ → 0 [55] and δ → ∞, deviating from the
latter at intermediate values of δ. This is evident from Eq. (38),
since the curly bracket goes to 1 in both limits. For intermediate
values of the parameter δ, the deviation can be larger than a
factor of 2. Note that in the tunneling regime the parameter
δ can vary in the total range of (0,∞). In Fig. 1(b) we show
the value of δ for different nuclear charges Z and a suboptical
angular frequency. It can be seen that for this parameter set the
value of δ lies in an area where the results in the two gauges
differ significantly.

IV. COMPARISON OF DIFFERENT APPROXIMATIONS

In the previous sections we have calculated the ionization
of a hydrogenlike system in a strong linearly polarized laser
field using the Coulomb-corrected SFA in length and velocity
gauges. In Fig. 2 we compare the total ionization rates in
these approximations with the PPT ionization rate for different
values of E0/Ea . For comparison also the rates in the standard
length-gauge SFA are presented using a short-range potential
and a Coulomb potential. All approximations show the same

qualitative behavior, but the absolute values of the rates
differ significantly. The Coulomb-corrected SFA increases
the ionization rate by several orders of magnitude. This is
in accordance with the intuitive picture that the Coulomb
potential lowers the tunneling barrier and therefore facilitates
tunneling. Furthermore, it should be mentioned that the
Coulomb correction is only depending on E0/Ea , but not,
e.g., on Ip or ω.

Thus, from the results of this and the previous sections
one can conclude that the Coulomb-corrected SFA shows a
good agreement with the PPT theory only in the length gauge.
This is a message that should be taken into account in the
generalization of the Coulomb-corrected SFA in the relativistic
domain.

V. CONCLUSION

We have applied the Coulomb-corrected SFA for ionization
of hydrogenlike systems in a strong linearly polarized laser
field. The nonrelativistic regime is considered to show how
this approximation works and how to use the developed
procedure for a further generalization of the approximation
into the relativistic domain. The applied Coulomb-corrected
strong-field approximation incorporates the eikonal-Volkov
wave function for the description of the electron continuum
dynamics. The latter is derived in the WKB approximation
taking into account the Coulomb field of the atomic core
perturbatively in the phase of the WKB wave function; i.e.,
in physical terms, the disturbance of the electron energy by
the Coulomb field is assumed to be smaller with respect to
the electron energy in the laser field. We have derived an
analytical expression for the ionization amplitude within the
Coulomb-corrected SFA in length and velocity gauges. A
simple expression for the amplitude is obtained when using
the length gauge which is due to the fact that the Coulomb
correction factor (ratio of the Coulomb-corrected amplitude to
the standard SFA one) in this gauge cancels the factor of the
electric-dipole interaction Hamiltonian in the matrix element.
Moreover, a Coulomb-correction factor coinciding with that
derived within the PPT theory is obtained. The differential and
total ionization rates are calculated analytically. The calculated
total ionization rate in the length gauge is identical to the PPT
rate, while in the velocity gauge it can deviate from the PPT
result up to a factor of 2. Taking into account that the PPT rate
provides a good approximation for experimental results, we
can conclude that the Coulomb-corrected SFA works success-
fully in the length gauge. The SFA in different gauges, in fact,
corresponds to different partitions of the total Hamiltonian
used to develop the SFA [74]. Therefore, one can conclude
that the relativistic generalization of the Coulomb-corrected
SFA, which is carried out in the next paper, should be based
on the partition of the total Hamiltonian that in the nonrela-
tivistic limit corresponds to the partition of the length-gauge
SFA.
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[43] P. Krstić and M. H. Mittleman, Phys. Rev. A 44, 5938 (1991).
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